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Abstract

We introduce a potential application of two-dimensional linear algebra to concurrency. Motivated
by the structure of categories of wirings, in particular in action calculi but also in other models
of concurrency, we investigate the notion of symmetric monoidal sketch for providing an abstract
notion of category of wirings. Every symmetric monoidal sketch generates a generic model. If the
sketch is single-sorted, the generic model can be characterised as a free structure on 1, with structure
defined coalgebraically. We investigate how these results generalise results about categories of
wirings given by Milner and others, and we outline how the constructs may be extended to model
controls and dynamics.
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1 Introduction

Over recent years, we have introduced and begun to develop an abstract theory
of “two-dimensional linear algebra”[17,18,19,20]. We first explicitly used the
expression, which was suggested to us by Bill Lawvere, in [18]. It amounts to
the systematic replacement in linear algebra of sets by categories, involving a
systematic replacement of the category Ab by a 2-category of small symmetric
monoidal categories: sometimes we need maps that strictly preserve symmetric
monoidal structure, giving the 2-category SymMons, and sometimes we need
maps that preserve the structure only up to coherent isomorphism, giving the
2-category SymMon. The two-dimensional structures we have developed have
begun to prove useful in denotational semantics [16], specifically in regard to
the problem of giving an elegant unified account of the ways in which one
might combine “notions of computation.” But we believe they should also
prove useful in modelling concurrency. So this paper is devoted to an attempt
to outline how we think these ideas might impact on concurrency.

There are several ways to explain how two-dimensional linear algebra im-
pacts upon concurrency. In this paper, we explain it primarily in terms of
Milner’s action calculi [25] because we have detailed knowledge of them. The
aspect of two-dimensional linear algebra we emphasise is the definition of sym-
metric monoidal sketch, which we introduced and began to develop in [17].
Two-dimensional linear algebra is fundamentally part of the study of coalge-
bra, but we do not emphasise that here, an explanation appearing in [18]:
the results of Section 4 illustrate it. The focus of this paper is concurrency,
its originality lying primarily in its computing application rather than in new
mathematical results.

Fundamental to the notion of action calculus as developed by Milner and
colleagues [9,10,11,25,26,27] is the notion of a category of wirings. For Milner
et al, that category has objects given by natural numbers, with arrows freely
generated by symmetries, diagonals, and discard morphisms, all subject to co-
herence axioms. Composition in Milner’s category models a form of data-flow,
so diagonals represent the fact that data may be copied, discard morphisms
represent the fact that it may be discarded, and the symmetries exist by the
nature of concurrency: the monoidal structure of the category models paral-
lel composition. Having defined a category of wirings, Milner added controls
to represent specific calculi, then a rewriting relation to model reaction. We
believe all three of these constructions, namely defining a wiring category,
adding controls, and adding an account of dynamics, will eventually have a
sound category theoretic foundation, and in the final section, we outline one
proposal for it; but our primary focus here is on the structure of generalised
categories of wirings.
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Mathematically, Milner’s category of wirings is a definitive object of study:
it may be characterised, up to equivalence, as the free category with finite
products on 1, also as the free strict symmetric monoidal category on a com-
mutative comonoid, and also as the category Setop

f , the opposite of the cat-
egory of finite sets, with monoidal structure given by coproduct of sets. We
give the definition and summarise the main results in Section 2.

Not all paradigms of concurrency have categorical composition modelling
data-flow in the same sense. For instance, in modelling CCS or other calculi
as Plotkin and, independently, Gardner and colleagues [9,10,11] are doing,
composition works rather differently. Gardner’s wiring category still mod-
els the connection between names, but composition models name fusion. In
Plotkin’s work, the wiring categories describe connections between input and
output actions, along the lines of interaction categories [1]. So Plotkin and
Gardner, for separate reasons, have not only diagonals and discards, but also
codiagonals and introduction maps, as there may be different fusions for one
and many wires into (as well as out of) any one port for the other. One might
also consider variants in which one counts the number of wires between ports,
or one allows discards but not diagonals. So we seek an account of what are
the range of possible categories of wirings. Our leading example is Milner’s
category, but we also want to include those of Plotkin and Gardner, as well as
other possibilities, for instance allowing for discards but not diagonals. The
notion of a category of wirings is also implicit in the work on interaction cat-
egories [1,2], so we want to incorporate that too. And it occurs extensively
elsewhere in the literature, e.g., [6,28]. So, in Section 3, we recall the definition
of symmetric monoidal sketch and the basic theorem about them [17], and we
explain how it allows generalisation of Milner’s category of wirings to include
categories of wirings introduced by other researchers.

The notion of symmetric monoidal sketch may seem familiar to readers
with some knowledge of finite product sketches, but that familiarity is mis-
leading: central to the usual account of finite product sketches is the universal
property of finite products; symmetric monoidal structure does not satisfy
such a universal property, so requires entirely new techniques that are not
routine generalisations of those for finite products.

Every symmetric monoidal sketch S has a free strict symmetric monoidal
category Th(S) on it, generalising the fact that every commutative comonoid
has a free strict symmetric monoidal category on it. We call this strict sym-
metric monoidal category together with the universal model of the sketch the
generic model of the sketch. The generic model is characterised by the prop-
erty that if C is a small strict symmetric monoidal category, the category
Mods(S, C) of models of S in C is isomorphic to the category SMs(Th(S), C)

M. Hyland, J. Power / Electronic Notes in Theoretical Computer Science 100 (2004) 31–46 33



of strict symmetric monoidal functors from Th(S) to C, and this is natural
in C. We list explicit descriptions of various reasonable possible sketches that
have appeared in the literature, primarily in those papers and from those
sources cited above, and we characterise the various constructions in familiar
terms in particular cases. Our analysis includes examples such as commu-
tative monoids, commutative comonoids and relational bimonoids, and may
also relate to Winskel’s work using path categories [5]. It has surprised us
how much there is in common here beyond the vague idea that this is all
given by symmetric monoidal structure together with some added data and
axioms. We remark in passing that other authors, notably Grandis and col-
leagues [12,13,14], have also focused on a notion in the spirit of generic model
in modelling concurrency, albeit in a somewhat different setting to ours.

In Section 4, we show that, under a single-sortedness condition, Th(S) can
be characterised as a free coalgebra on 1, generalising the fact that Milner’s
construction is that of the free category with finite products on 1: the central
fact here is that every object of Th(S) has a canonically given coalgebra struc-
ture on it, so for instance, in Milner’s category of wirings, every object has
a canonically given commutative comonoid structure on it. This section con-
tains originality in the mathematics in addition to its computational content:
the results here extend those of [17] and [18].

Controls and dynamics are at the heart of modelling interaction, but one
cannot model interaction until one has modelled wiring, and to date, we are
unaware of any general category theoretic approach to modelling the various
choices for wiring. To support our treatment, in Section 5, we show one way
that one might add controls and dynamics generalising Milner’s ideas to allow
other concurrency paradigms.

For most of this paper, for ease of exposition, we shall gloss over coherence
questions relating to the distinction between preservation and strict preserva-
tion of category theoretic structure: every monoidal category is equivalent to
a strict monoidal category, so we may safely conflate the two notions. Ulti-
mately, the relevant coherence issues may be resolved by reference to [3] and
[22].

2 Categories of wirings

In this section, we investigate categories of wirings and their structure. Our
leading example arises from the work on action calculi and its semantic models
(see [10,11,25,26,27] and the papers cited therein). A fundamental part of the
definition of an action calculus was that of its underlying wiring category.
Assuming, as was the case in the leading examples, that the set of primes was
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given by a singleton, the wiring category was defined as follows:

Example 2.1 The wiring category of action calculus is the category with set
of objects N, with arrows generated by symmetries n⊗m ∼= m⊗n, by diagonals
δ : n −→ n⊗n, and by discards ! : n −→ 0, all subject to coherence equations,
where ⊗ is the sum of natural numbers.

The idea is as follows. In action calculus, composition in the category of
actions is used to model data-flow, and tensor product is used to model parallel
composition. Given a piece of data, one can copy it or one can discard it.
Parallel composition is, by its nature, symmetric. Thus one has symmetries,
diagonals, and discards. The following fact was recognised, although perhaps
not explicitly stated, in the action calculus work.

Proposition 2.2 The wiring category of action calculus is the free category
with finite products on the unit category 1.

It is in the category theoretic folklore that one can further give an explicit
description of the wiring category, up to equivalence, as follows.

Proposition 2.3 The wiring category of action calculus is equivalent to the
category Setop

f .

We can give a further characterisation of the category of wirings, involving
some more sophisticated category theory as follows. In the definition of strict
monoidal category, one has a monoid Ob(C) of objects of the category. But
one also has a notion of monoid in a monoidal category. We shall restrict
attention to commutative monoids in a symmetric strict monoidal category.

Definition 2.4 Given a symmetric strict monoidal category C, a commuta-
tive monoid in C consists of an object X of C together with maps j : I −→ X
and m : X ⊗ X −→ X, subject to commutativity of the evident diagrams.

Proposition 2.5 The category of wirings of action calculus is the initial strict
symmetric monoidal category with a commutative comonoid in it, i.e., for any
strict symmetric monoidal category C with a commutative comonoid (X, δ, !)
in C, there is a unique strict symmetric monoidal functor from the category
of wirings to C that preserves the commutative comonoid structure on 1.

These characterisations provide mathematical evidence of the definitive-
ness of the notion of wiring category for the action calculus. But suppose one
wants to vary the notion of wiring, for instance, using composition in the cat-
egory to model the physical linkage of wires rather than data-flow, such as one
may use in modelling CCS. Then one might have codiagonals ν : n⊗n −→ n
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and introduce : 0 −→ n, as in current work of Gordon Plotkin, Philippa Gard-
ner, and others [10,11]. One may make various choices about what axioms to
assert too: for instance, does one want to count the number of wires between
ports, or simply the connectivity? So we seek a general account of the possi-
bilities for categories of wiring, such that generalisations of the above results
hold. That provides mathematical justification for favouring some choices of
categories of wirings over others, and for asking questions such as whether
one wants a trace in the category of wirings. (In some categories of wirings,
though not in the original form of action calculi, a trace could be used to
model iteration.)

The key notion we require is that of symmetric monoidal sketch and model
of such, generalising the notion of commutative comonoid in a strict symmet-
ric monoidal category. The central result we investigate is the coincidence
between the initial strict symmetric monoidal category with a commutative
comonoid in it with the free category with finite products on 1.

3 The definition of a symmetric monoidal sketch

In this section, we define the notion of a symmetric monoidal sketch, and we
define its category of models in any strict symmetric monoidal category. The
leading example of such a category of models is the category of commutative
comonoids in a strict symmetric monoidal category as in Section 2.

Definition 3.1 A family D of diagram types is a small family of 4-tuples
of the form (ci, di, ji : ci → di, ki : di → Tci), where ci and di are finitely
presentable categories, Tci is the free strict symmetric monoidal category on
ci, and ji and ki are functors, subject to the condition that the following
diagram, dropping the subscripts, commutes:

d
k � Tc

��
�

�
�

�
j

�
�

�
�

�

ηc

�

c

where η is the unit of T .

Definition 3.2 A symmetric monoidal sketch S consists of a small category
X together with a family D of diagram types and a D-indexed family of
functors φi : di −→ X.
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We typically denote the underlying category X of a sketch S by S itself,
and we usually denote a sketch by (S, φi), not explicitly mentioning D in the
notation.

Let C be a small strict symmetric monoidal category, and let S = (S, φ)
be a symmetric monoidal sketch: we drop the subscripts on the elements of
D as they are clear.

Definition 3.3 A strict model of (S, φ) in C is a functor f : S −→ C such
that the following diagram commutes:

d
k � Tc

S

φ

�

f
� C

(fφj)∗

�

where (fφj)∗ is given by using freeness of Tc.

For this paper, we shall simply refer to these as models rather than strict
models. One can routinely define the notion of a map of models between two
models of S in a strict symmetric monoidal category C: a map of models is
a natural transformation that respects the structure of S. Models and maps
of models yield a category Mods(S, C). For small strict symmetric monoidal
categories B and C, there is a homcategory SMs(B, C) as usual. The central
result of [23] yields

Theorem 3.4 For any symmetric monoidal sketch S, there is a small strict
symmetric monoidal category Th(S) and there is a model ι of S in Th(S) such
that composition with ι induces an isomorphism of categories from SMs(Th(S), C)
to Mods(S, C).

We call Th(S) together with ι : S −→ Th(S) the generic model of S.

Example 3.5 Let CMon be the sketch for a commutative monoid. Details
appear in [17]. The category CMon has four objects X0, X1, X2, and X3, with
arrows freely generated by arrows j : X0 −→ X1, m : X2 −→ X1, ml, mr :
X3 −→ X2, s : X2 −→ X2, and jl : X1 −→ X2, subject to commutativity of
evident diagrams.

The sketch has two diagram types. The first, (c0, d0, j0, k0), has c0 as the
category with one object A and no non-trivial arrows, d0 as the category
containing four objects A0, A1, A2, A3 and with arrows generated by one non-
identity arrow c′ : A2 −→ A2. The functor j0 sends A to A1, and the functor
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k0 sends A0 to I, A1 to A, A2 to A ⊗ A, and A3 to (A ⊗ A) ⊗ A, or equally,
as Tc is the free strict symmetric monoidal category on c, A ⊗ (A ⊗ A). The
functor k0 sends c′ to the symmetry A ⊗ A −→ A ⊗ A. The rest of the data
is similar or evident.

Th(CMon) is the free strict symmetric monoidal category on a commuta-
tive monoid, which is equivalent to Setf with symmetric monoidal structure
given by finite coproduct of sets. It may also be characterised as the free
category with finite coproducts on 1.

Example 3.6 For the sketch CComon for a commutative comonoid, take the
dual of the sketch for a commutative monoid. The generic model Th(CComon)
is equivalent to Setop

f , which may be also be characterised as the free category
with finite products on 1. This is exactly Milner’s category of wirings [25,26,27].
Also observe that the construction sending a small strict symmetric monoidal
category C to the category of commutative comonoids in C gives the cofree
category with finite products on C [8].

Example 3.7 Let Zero be the sketch for an object X with a unit j : I −→ X
and a counit c : X −→ I which commute with each other in the sense that
c.j = idI . The generic model Th(Zero) is equivalent to the category of finite
sets and partial bijections. This category occurs in the Geometry of Interaction
(see [1,2] and the references therein).

Example 3.8 Let RBimon be the sketch for a relational bimonoid, i.e., an
object X together with both a commutative monoid structure on X and a
commutative comonoid structure on X that commute with each other and for
which the comultiplication followed by the multiplication gives the identity
on X, that is, m.δ = idX . The generic model Th(RBimon) is then the
category of finite sets and relations. For a proof of this, see [17]. The category
Th(RBimon) is the one Plotkin proposes to use to model wiring in CCS. It
is also being studied by Gardner [10].

Example 3.9 Let RFrob be the sketch for relational Frobenius objects, i.e.,
the same sketch as RBimon except that the monoid and comonoid structures
need not commute with each other, but rather one has commutativity of the

M. Hyland, J. Power / Electronic Notes in Theoretical Computer Science 100 (2004) 31–4638



diagram

X ⊗ X
X ⊗ δ� X ⊗ (X ⊗ X)

X

m

�

δ
� X ⊗ X

m ⊗ X

�

and m.δ = idX . The generic model Th(RFrob) is given by finite sets, and with
a map from m to n given by an equivalence relation on m + n. This category
is implicitly used by Danos and Regnier [7] in connection with the Geometry
of Interaction and is considered by Gardner in [10] for quite different reasons.

There are several variants of this example. In particular, dropping the
condition m.δ = idX yields Frobenius objects, whose generic model is char-
acterised in [4]. Further, in [10], Gardner suggested considering diagonals,
discards, and introduction morphisms, but with no codiagonals as this gives
an exact account of the π-calculus as an action calculus in the sense that the
structural congruences match.

4 The generic model as a free coalgebra on 1

We now have a notion of symmetric monoidal sketch S and we have a notion of
the generic model Th(S) of a symmetric monoidal sketch. Our leading example
has S being the sketch for a commutative comonoid, in which case Th(S) is
the category Setop

f . And Setop
f is also characterised as the free category with

finite products on 1. We generalise these phenomena in this section.

Definition 4.1 A single-sorted sketch consists of a sketch S together with an
identity on objects strict symmetric monoidal functor ι : Th(1) −→ Th(S),
where 1 is the sketch given by the unit category with no diagram types.

We usually suppress the functor ι in referring to a single-sorted sketch. The
single-sortedness condition trivially holds of all our leading examples. Th(1)
can be described explicitly: up to isomorphism, it is given by the category P
whose objects are natural numbers and whose maps are permutations. The
single-sortedness condition is essentially the same as that in the formal defi-
nition of Lawvere theory with the routine generalisation from finite products
to symmetric monoidal structure.

Given a single-sorted sketch S, for any small strict symmetric monoidal
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category C, composition with ι induces a forgetful functor

Mods(S, C) ∼= SMs(Th(S), C) −→ SMs(Th(1), C) ∼= Modss(1, C) ∼= C

for which we give the suggestive notation ev1 : Mods(S, C) −→ C.

Observe that for every small strict symmetric monoidal category C, and
for every single-sorted symmetric monoidal sketch S, the category Mods(S, C)
possesses a strict symmetric monoidal structure: it is not quite given point-
wise. Given h and h′ in Mods(S, C), define (h ⊗ h′)(1) = h1 ⊗ h′1. Now
extend the definition of h ⊗ h′ to arbitrary objects of S by induction on the
complexity of the tensor product description. Finally, define h ⊗ h′ on ar-
rows by conjugation using the canonical isomorphisms induced by induction
between (h ⊗ h′)(n) and h(n) ⊗ h′(n).

So far, we have focused on the freeness of our constructions, in particular
in considering the generic model. But freeness is quite a common phenomenon
when dealing with categories with given structure. Typically much more pro-
found, and a phenomenon that is distinctive of linear algebera as opposed to
universal algebra in general, is the situation where one has not only freeness
but also cofreeness, i.e., one has coalgebraic structure. So we explore that
now.

Definition 4.2 A copointed endofunctor on a category D consists of a functor
H : D −→ D and a natural transformation ε : H ⇒ Id. An (H, ε)-coalgebra
consists of an object X of D together with a map φ : X −→ HX such that
εX · φ = idX . A map of coalgebras is a map in D that respects the coalgebra
structure.

Coalgebras and maps of coalgebras form a category we denote by (H, ε)-
Coalg. We typically drop ε from the notation if it is clear.

The construction Mods(S,−) extends to an endofunctor on the category
SymMons of small strict symmetric monoidal categories and strict symmetric
monoidal functors. Moreover, ev1, i.e., composition with ι : Th(1) −→ Th(S),
is a natural transformation. So Mods(S,−) together with ev1 form a copointed
endofunctor on SymMons.

Example 4.3 If S is the symmetric monoidal sketch CComon for a commu-
tative comonoid, the category Mods(S,−)-Coalg may be characterised, up to
the natural 2-categorical notion of equivalence, as the category of small cate-
gories with finite products and functors that strictly preserve finite products:
an object of Mods(CComon,−)-Coalg is a small strict symmetric monoidal
category C together with, for each object x, a commutative comonoid struc-
ture on x that respects the symmetric monoidal structure of C, but that is
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exactly to give a codiagonal and a discard, which is exactly equivalent to
giving product structure for reasons we shall explain later.

We still need one final refinement of this construction in order to prove
our main theorem. The problem is that the category Mods(S, C) has too few
maps, and that stops us from making Th(S) into an object of Mods(S,−)-
Coalg: although we can readily build a function from the set of objects of
Th(S) to the set of objects of Mods(S, Th(S)), and that function respects the
monoidal structure, we cannot in general extend that function to become a
functor (although we can do so in our leading example). The most general
solution to this is to modify the definition of Mods(S,−)-Coalg.

Definition 4.4 Given a single-sorted sketch S and a strict symmetric monoidal
category C, let Mod∗

s(S, C) denote the (unique) factorisation

Mods(S, C) −→ Mod∗
s(S, C) −→ C

of ev1 : Mods(S, C) −→ C into a functor Mods(S, C) −→ Mod∗
s(S, C) that is

the identity on objects followed by a fully faithful functor Mod∗
s(S, C) −→ C.

This construction is more definitive than it may appear, and has already
proved useful in modelling the combining of notions of computation [16], as
we have the following result. We leave implicit the definition of a category of
single-sorted sketches.

Proposition 4.5 Given single-sorted sketches S and S ′, the sum S + S ′ is
characterised by

Mod∗
s(S + S ′, C) ∼= Mod∗

s(S, Mod∗
s(S

′, C))

natural in C.

The construction Mod∗
s(S, C) extends to an endofunctor on SymMons and

ev1 trivially restricts to provide a copoint ev∗
1 for the endofunctor. Thus we

have the category Mod∗
s(S,−)-Coalg of coalgebras for the copointed endofunc-

tor (Mod∗
s(S,−), ev∗

1). A right adjoint to the forgetful functor Mod∗
s(S,−)-

Coalg −→ SymMons exists for general reasons [21]. But here, our primary
interest is in characterising a left adjoint.

The copointed endofunctor Mod∗
s(S,−) is very special: for that particu-

lar copointed endofunctor, it follows from general category theory that the
forgetful functor to Cat must have a left adjoint [22]: the main point of this
section is to find conditions under which we can characterise the value of that
left adjoint on 1 by Th(S).
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Proposition 4.6 For any single-sorted symmetric monoidal sketch S, there is
a canonical strict symmetric monoidal functor σ : Th(S) −→ Mod∗

s(S, Th(S))
that splits ev∗

1, i.e., the diagram

Th(S)
σ� Mod∗

s(S, Th(S))

�
�

�
�

�
id

�

Th(S)

ev∗
1

�

commutes.

Proof. It follows from the definition that σ(1) = ι : S −→ Th(S). So σ(n)
is determined by preservation of monoidal structure. The behaviour of σ on
maps is necessarily the identity. �

Theorem 4.7 If S is a single-sorted symmetric monoidal sketch, then the
pair (Th(S), σ) is the free Mod∗

s(S,−)-coalgebra on 1.

Proof. By Proposition 4.6, using σ, one can regard Th(S) as an object of
the category Mod∗

s(S,−)-Coalg. Let (C, φ) be a Mod∗
s(S,−)-coalgebra. To

give a functor from 1 to C is equivalent to giving an object of C, which in
turn is equivalent to giving an object f : S −→ C of Mod∗

s(S, C) such that
φ(f1) = f . But to give an f : S −→ C is equivalent to giving a strict
symmetric monoidal functor f̄ : Th(S) −→ C and the condition φ(f1) = f
is equivalent to preservation of coalgebra structure: the forward direction is
a routine verification, and the reverse is given by considering the commuting
square required of a coalgebra map applied to 1. �

That constitutes the main result of this section and completes our analysis
of categories of wiring. In the final section of the paper, we give a tentative
account of how to use our category theoretic formulation of a category of
wirings as a basis on which to give a unified account of several approaches
to the modelling of concurrency, with Milner’s and Plotkin’s approaches as
leading examples for us.

5 Controls and dynamics

In the earlier sections of the paper, we have given a category theoretic founda-
tion for wiring. But concurrency involves far more than wiring. Specifically,
we need to add accounts of controls and dynamics. There are several choices
here, and it is not entirely clear to us which will prove to be definitive. But

M. Hyland, J. Power / Electronic Notes in Theoretical Computer Science 100 (2004) 31–4642



we do have several well-studied examples to guide us, specifically in [24], [27],
and [15].

In [27], it was shown that to give the underlying category of one of Milner’s
control structures is equivalent, modulo two caveats, to giving the underlying
category of an elementary control structure, which is defined as follows.

Definition 5.1 The underlying category of an elementary control structure
consists of

• Milner’s wiring category W

• a strict symmetric monoidal category C together with an identity on objects
strict symmetric monoidal functor J : W −→ C

• for each control K, a function of the form

C(k ⊗ m1, n1) × · · · × C(k ⊗ mr, nr) −→ C(k ⊗ m,n)

natural with respect to maps f : k −→ k′ in W .

In Hasegawa’s Distinguished Dissertation [15] (see also [24]), it was shown
how to use this category theoretic formulation of Milner’s control structures
to incorporate an account of recursion by use of Milner’s controls and axioms
for defining the notion of reflexive control structure. This is given as follows.

Example 5.2 For each arity k, have a control which, to each action from
k ⊗ m to k ⊗ n, yields an action from m to n. Subject these to axioms for
naturality and coherence in k, m and n, with respect to both categorical com-
position and the tensor product. Controls for a control structure are equally
controls for an elementary control structure. So the equivalent version of
Mifsud’s reflexive control structures in terms of elementary control structures
amounts to elementary control structures with what is called a trace on the
strict symmetric monoidal category C. The concepts of reflexion and trace
are studied in detail in terms of control structures in Mifsud’s thesis [24] and
in terms of elementary control structures in [15].

The significance of this example for us is that it indicates what structure
to seek in order to model controls, as we have the following category-theoretic
results.

Theorem 5.3 The category of small traced symmetric monoidal categories is
monadic over SymMons.

Theorem 5.4 The category of small traced symmetric monoidal categories is
not monadic over Cat.
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A proof of the former theorem follows readily from the work of [22], but
there appears to be no detailed account in the literature at present. One can
prove the latter result by following the definitions carefully and by character-
ising the category of algebras generated by the adjunction

F � U : Trace −→ Cat

induced by the forgetful functor: an algebra for the monad is given by a small
symmetric monoidal category C together with, for each arrow f : X −→ X in
C, a trace Trx : I −→ I, subject to coherence conditions. Again, there does
not seem to be a detailed analysis of this in the literature either.

It is routine, using [22], to verify that every class of Milner’s controls,
together with equational axioms, yields a monad TK on SymMons. So, given
a category of wirings W , a tentative general notion of control is given by a
monad TK on SymMons and a tentative notion of a model of the control TK

is given as follows.

Definition 5.5 A TK-model consists of

• a wiring category W

• a TK-algebra C together with an identity on objects strict symmetric monoidal
functor J : W −→ C

• the TK-algebra action on C.

Example 5.6 The initial control structure (= action calculus) for a version
of the π-calculus without replication has actions generated by controls

ν : 1 → p out : p ⊗ m → 1
a : m → n

box(a) : p → n

These yield a new name of arity p, output through a port, and input modelled
by means of box(idm). So one has the elementary control structure freely
generated by these controls. The actions of this elementary control structure
consist of the closed terms for a fragment of the π-calculus, together with some
closed formulae that have no computational meaning but which are generated
by the syntax of the π-calculus. For more detail of this and other variants
of the π-calculus as action calculi and hence as elementary control structures,
see [24].

Finally, for dynamics, one has at least two main choices. Milner [25,26]
modelled dynamics by means of a preorder to model reaction, which in turn
was adapted for elementary control structures [27] and which can routinely
be added here simply by insisting that every category in sight be enriched

M. Hyland, J. Power / Electronic Notes in Theoretical Computer Science 100 (2004) 31–4644



with a coherent partial order on each homset, respecting all the structure in
sight except that for the controls (one specifically wants controls to be able to
kill reaction: consider the λ-calculus or the π-calculus, both of which do not
allow reaction under some binders), subject to naturality conditions. Plotkin,
in contrast, is opting for an operational semantics, which has quite different
structure. That too can be modelled here, but in a fundamentally different
way.

let CatO denote the category of small categories and identity on objects
functors. Given a category of wirings, one must consider the slice category
W/CatO, for which an object consists of a small category C together with an
identity on objects functor J : W −→ C. This category has finite products,
which we characterise below. So we may consider a monoid M in W/CatO, and
consider an M -action on a given control category C. We have not developed
the general analysis in sufficient detail to bear reporting here, but to give an
indication of what we have in mind, consider the following proposition.

Proposition 5.7 For a fixed wiring category W , the category W/CatO has
finite products given as follows: the product JM × JC of JM : W −→ M
with JC : W −→ C has objects given by the objects of W , and with homset
(JM ×JC)(w, w′) given by M(w,w′)×C(w, w′); the terminal object is evident.

This means that an action of JM on JC is exactly as one expects, respecting
the structure of the wiring. Such an analysis accounts for CCS as Plotkin
wants, but, a priori, it is too restrictive to account for the π-calclulus, as
the latter allows reaction to alter wiring. We can, of course, extend this
formalism to account for such alteration in wiring, but the point here is that
this formalism allows us to make a precise distinction between those calculi
whose dynamics admit alteration of wiring and those calculi that do not.
There are easy theorems (see for example [3]) that show that this structure is
coherent relative to symmetric monoidal structure.
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