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Abstract

A linear bi-material elastic body containing a crack at the interface and subjected to thermal loading is analyzed. The J 2

line integral, developed for mechanical loads by Khandelwal and Chandra Kishen [Khandelwal, Chandra Kishen, J.M.,
2006. Complex variable method of computing Jk for bi-material interface cracks. Engineering Fracture Mechanics 73,
1568–1580] is extended to thermal loading. This method, used in conjunction with the finite element method, is shown
to be useful in the prediction of stress intensity factors for cracks lying at the interface of two dissimilar materials and sub-
jected to any type of thermal loading.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The study of thermal stress fracture problems arising out of the local intensification of temperature gradient
is of considerable practical importance, especially, in the design of turbines, combustion chambers, nuclear
reactors, etc. Further, in technologically challenging applications such as nuclear pressure vessel and piping,
the existing cracks may be subjected to severe thermal environments. When the heat flow is disturbed by pres-
ence of the cracks, there is local intensification of thermal gradients accompanied by intensified thermal stres-
ses (Sih, 1962) which may lead to the crack propagation or eventual breakdown of the structure. Hence, to
insure the safety of structures under thermal loadings, an accurate thermal fracture mechanics analysis is
required. This requires the determination of stress intensity factors (SIFs) due to thermal loads.

To determine the stress intensity factors due to thermal effect in a homogenous elastic body, Wilson and Yu
(1979) proposed a modification to the conventional J integral. The J integral was extended to 3D thermal
problems by Shih et al. (1986). Stern (1979) used the concept of reciprocal work integral to develop an ana-
lytical solution for bi-material thermal fracture problems. Lee and Shul (1991) presented an analytical solution
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for bi-material body subjected to far field heat flux. Wilson and Meguid (1995) employed thermal J-integrals
along with the mode separation concept given by Ishikawa et al. (1979) in order to calculate thermal stress
intensity factors. Yuuki and Cho (1989) have applied the stress extrapolation method (SE) and the displace-
ment extrapolation method(DE) to an interface crack between dissimilar materials. Sun and Quin (1997) have
recommended the use of modified crack closure integral along with displacement ratio method (DR) for better
accuracy in the computation of stress intensity factors. Sun and Ikeda (2001) have modified the Virtual crack
extension method and the modified crack closure integral method for thermal problem in conjunction with the
superposition method to obtain thermal stress intensity factors.

There are different ways to calculate complex stress intensity factors. One is based on the concept of J k line
integral theory presented by Khandelwal and Chandra Kishen (2006). Alternative methods such as domain
integrals and interaction integrals are also well suited for SIF calculation. Building upon the domain integral
method, Moran and Shih (1987) and Shih and Asaro (1988) employed a domain representation of an inter-
action integral to directly extract complex stress intensity factors for interface cracks in linear elastic solid.
Shih et al. (1988), Nakamura (1991), Lo et al. (1994), and Nakamura and Kushner (1995) have extended
the above interaction integrals to 3D interface cracks, dynamically propagating cracks and cracks in compos-
ite laminates. Very recently Banks-Sills and Dolev (2004) extended conservative M1 integral or the interaction
integral into domain integral form to treat the thermo-elastic bi-material problems. The domain form of the
interaction integral circumvent the need to capture the details of the singular fields near the crack tip, enabling
the user to obtain accurate solutions even when coarse meshes are used.

However, for implementation of the domain integral method in existing finite element programs through
post-processing operations, significant amount of effort is required. Although few commercial softwares, such
as ABAQUS, Version 6.7 and WARP3D-Release 15 (2004) have built-in subroutines to compute the domain
integrals, many of the finite element analysis ðFEAÞ software do not have this capability. On the other hand,
J 2, on account of existence of J 1 integral in these FEA softwares, is much easier to implement in comparison
to the domain integral approach.

In the J k integral method, part of the computation deals with the local singular stress field near the crack
tip, and hence the accuracy of J 2 and the corresponding SIF computation is a concern. This work modifies the
concept of J k integral for thermal loads and investigates the computational error by comparing the results with
the exact solutions available in literature.

The subject of path-independent integrals (J k) of fracture mechanics has received considerable attention
from researchers (Eischen, 1987; Chang and Pu, 1997) with regard to numerical determination of the
Mixed-Mode stress intensity factors. Khandelwal and Chandra Kishen (2006) have proposed the analytical
expression for J k integral for bi-material interface problems subjected to mechanical loading. It has been
shown in Khandelwal and Chandra Kishen (2006) that this integral is path independent in a modified sense
and is useful in the determination of stress intensity factors. J k integrals are line integrals evaluated along a
counterclockwise contour enclosing and shrinking onto the crack tip. Knowles and Sternberg (1972) have
defined J k, k ¼ 1; 2 as a complex quantity given by
J ¼ J 1 � iJ 2 ð1Þ

The quantity J corresponds to the energy release rate for movement of crack edge in any direction. For homo-
geneous media with traction free crack surface, J 1 can start anywhere from the lower crack surface and end
anywhere along the upper crack surface. The same does not hold true for J 2, wherein two additional line inte-
grals along the crack surfaces are added up and causes the inclusion of a singular region in the integration.
Therefore, direct calculation of J 2 from numerical solution is not possible in a straight forward manner. Nev-
ertheless, J 2 was proven to be of great importance in fracture analysis, especially in predicting the kinking
direction for crack extension (Hellen and Blackburn, 1975). To overcome the difficulty in computing J 2, an
approximate expression have been proposed for isotropic (Eischen, 1987) and anisotropic (Chang and Pu,
1997) elastic materials. The present study shows that, in the presence of thermal stresses, the J k line integral
over a closed path, which does not enclose singularities, is not equal to zero. Instead, it is equal to an integral
taken over the area inside the closed path. A method is proposed to compute the stress intensity factors for bi-
material interface crack subjected to thermal loading by combining this area integral with the J k integral. The
proposed method is validated for benchmark problems available in the literature.
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2. Formulation

J integral for the thermal case was first given by Wilson and Yu (1979) wherein it has been assumed that the
body is subjected to thermal load without giving any consideration to body forces. It may be noted that in the
derivation of any analytical form for thermo-elastic problems from mechanical load case, the presence of body
forces also need to be considered. This is because, both, the body forces without any thermal loads and with
thermal loads, are related to each other through the body analogy concept (Boley and Weiner, 1962). In this
section, the presence of body forces is incorporated in the derivation of J k integral subjected to thermal load.
The path-independent integral J k, k ¼ 1; 2 for an elastic isothermal homogeneous material in the absence of
body forces and thermal loading can be expressed as
J k ¼ lim
q!0

G
Cq
ðW elnk � rijui;knjÞdC ð2Þ
where W el is the elastic strain energy density and in the present isothermal case is equal to the total strain en-
ergy density, W T, since both, the elastic and total strains are equal in isothermal cases. nk is the unit outward
normal of Cq (Fig. 1), ui is the displacement in the cartesian coordinate system, rij is the stress tensor and dC is
the arc length measured along the contour Cq.

Here,
W el ¼
Z �el

0

rij d�el
ij ð3Þ

W T ¼ W el ¼ 1

2
rij�ij ð4Þ
where �ij is the total strain and in the present case is equal to elastic strain �el
ij . rij may be represented as
rij ¼ k�kkdij þ 2l�ij ð5Þ
where dij is the Kronecker delta function defined as follows
dij ¼
1 when i ¼ j

0 when i 6¼ j

�
ð6Þ
l is shear modulus and k is Lame’s constant which is given by
k ¼ mE
ð1þmÞð1�2mÞ for plane strain

k ¼ mE
ð1�m2Þ for plane stress

ð7Þ
ni

Γ

A0

y

x
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ρ
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Fig. 1. Integration path Cq for conservative integral J k in a homogenous body.
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Here E is the modulus of elasticity and m the Poisson’s ratio. In the presence of thermal loads, the stress field is
modified and can be written in the Duhamel Neumann contitutive equation as
rij ¼ k�kkdij þ 2l�ij � bhdij i; j ¼ 1; 2 ð8Þ

If a be the coefficient of thermal expansion then b is defined as
b ¼ Ea
ð1�2mÞ for plane strain

b ¼ Ea
ð1�mÞ for plane stress

ð9Þ
It may be mentioned here that, in the presence of body forces and thermal loads, the total strain energy density
W T is still related to the stress and strain tensors as given by Eq. (4). However, in this case, the elastic strain
energy density W el of the system is different from total strain energy density W T. W el and W T are related by
W el ¼ 1

2
rijð�ij � ahdijÞ ¼ W T � 1

2
ahrii ð10Þ
Substituting for rii from Eq. (8), we obtain
W el ¼ W T � bh
2
�kk þ bah2 for plane stress

W el ¼ W T � bh
2ð1þmÞ �kk þ bah2 for plane strain

ð11Þ
The line integral of Eq. (2) which is conservative in form, when applied to an arbitrary closed integral path C,
enclosing a portion of the solid free of any material and geometric discontinuity, can be converted into an area
integral using the Divergence theorem and is given by
J k ¼
Z

A0

oW el

oxk
� o

oxj
rij

oui

oxk

� �� �
dA ð12Þ
where A0 is the area enclosed by the closed path C. Here, if the body is free from any thermal and body forces
then Eq. (12) reduces to zero (Knowles and Sternberg, 1972).

In the presence of body forces and mechanical loads, the strain energy can be represented solely as a func-
tion of the strain components. Using the chain rule of differentiation it can be written as,
oW el

oxk
¼ oW el

o�ij

o�ij

oxk
¼ rij

o

oxk

oui

oxj

� �
ð13Þ
Using the equilibrium equations in the presence of body force fi and switching indices, Eq. (13) can be re-writ-
ten as
oW el

oxk
¼ o

oxj
rij

oui

oxk

� �
þ fi

oui

oxk
ð14Þ
From Eqs. (12) and (14), we obtain
J k ¼
Z

A0

fi
oui

oxk
dA ð15Þ
Eq. (15) is the resulting equation for J k in the presence of body forces. This implies that for the J k integral
defined by Eq. (2) to be zero around any closed path in the presence of body forces, the above area integral
should be subtracted from it. Thus, the modified J k integral around a closed path in the presence of body
forces would be
G
C
ðW elnk � rijui;knjÞdC�

Z
A0

fi
oui

oxk
dA ¼ 0 ð16Þ
However, the objective of the present study is to obtain the expression for J k when thermal loading is pres-
ent. To obtain the thermal-elastic expression, the body force analogy (Boley and Weiner, 1962) has been used.
According to this analogy, the total strains and displacements of a body subjected to thermo-elastic forces are
identical to those of the same body without thermal loads but subjected to the corresponding body forces and
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tractions. As shown in Fig. 2, let h be the change in temperature, fi, T i and rij are the body force components,
applied tractions and stress tensor in the presence of thermal loads while ~f i, eT i and ~rij are the corresponding
quantities in the absence of thermal loads. The analogous relationship between the two field parameters are
given by
~f i ¼ fi � bh;i
~rij ¼ rij þ bhdijeT i ¼ T i þ bhni ð17Þ
where, b is as defined in Eq. (9), ni is the component of the unit normal in the xi direction.
In an isothermal case, the total strain (~�ij) is equal to the elastic strain (~�el

ij) and since the body analogy
method keeps the total strain in the isothermal (~�ij) and non-isothermal (�ij) cases equal, Eq. (16) can be re-
written as,
G
C

1

2
~rij�ijnk � ~T iui;k

� �
dC�

Z
A0

~f i
oui

oxk
dA ¼ 0 ð18Þ
Replacing the field parameters in the above equation with a corresponding analogous body subjected to ther-
mal loads by making use of Eq. (17), we obtain
G
C

1

2
rij�ijnk � T iui;k

� �
dCþ G

C

1

2
bh�iink � bhniui;k

� �
dC�

Z
A0

fi
oui

oxk
dAþ

Z
A0

b
oh
oxi

oui

oxk
dA ¼ 0 ð19Þ
Making use of the divergence theorem, the second integral of Eq. (19) can be reduced and written as
G
C

1

2
bh�iink � bhniui;k

� �
dC ¼

Z
A0

� b
2
ðh�iiÞ;k þ b�iih;k � bui;kh;i

� �
dA ð20Þ

G
C
ðW Tnk � rijuj;kniÞdC�

Z
A0

ðfiui;kÞdA� b
Z

A0

1

2
ðh�iiÞ;k � �iih;k

� �
dA ¼ 0 ð21Þ
In the absence of body forces Eq. (21) can be written as,
G
C
ðW Tnk � rijuj;kniÞdC� b

Z
A0

1

2
ðh�iiÞ;k � �iih;k

� �
dA ¼ 0 ð22Þ
Considering two elastic half planes of different materials bounded together as shown in Fig. 3, C1 and C2 are
closed contours taken arbitrarily in the anticlockwise direction with the contact points on crack surface and
interface at the same distance from the crack tip. The inner paths, Cq1 and Cq2 are semi-circular anticlockwise
contours having the same radius q about the crack tip. Now, C can be written as C ¼ C1 þ C2, where n = 1, 2
and C2 ¼ C�c þ C2 þ C�l � Cq2 and C1 ¼ Cþl þ C1 þ Cþc � Cq1.

The plane defined by x < 0 and y ¼ 0 is unbounded and represents a crack. The material occupying y > 0
has Young’s modulus E1, Poisson’s ratio m1 and thermal expansion coefficient a1 whereas that occupying y < 0
f i σijui if i ijσu
~ ~ ~

θ = 0 θ = 0

Fig. 2. Analogous bodies with and without thermal loads.
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has the respective values as E2, m2 and a2. Application of the conservation law given in Eq. (22) to the upper
and lower closed loops C1 and C2 (Fig. 3), separately results in
G
Cþl þC1þCþc �Cq1

ðW Tnk � rijuj;kniÞdC� b1

Z
A1

1

2
ðh�iiÞ;k � �iih;k

� �
dA ¼ 0

G
C�c þC2þC�l �Cq2

ðW Tnk � rijuj;kniÞdC� b2

Z
A2

1

2
ðh�iiÞ;k � �iih;k

� �
dA ¼ 0 ð23Þ
where A1 and A2 represent the area enclosed within the upper and lower closed loops C1 and C2, respectively.
For the sake of simplicity in writing of equations, let us define,
L ¼ W Tnk � rijuj;kni
Combining the integrals along C1 and C2 into one term C0 and also the integrals along Cq1 and Cq2 into Cq and
rewriting Eqs. (23)
G
Cq
ðW Tnk � rijuj;kniÞdC ¼

Z
Cþc þC�c

ðLÞdCþ
Z

Cþl þC�l

ðLÞdCþ G
C0
ðLÞdC

�
X2

m¼1

bm

Z
Am

1

2
ðh�iiÞ;k � �iih;k

� �
dA

ð24Þ
J k integral is defined with its first part in terms of elastic strain energy density W el. Converting W T of left hand
side of the Eq. (24) to W el using Eq. (10) and taking limit q! 0
lim
q!0

G
Cq
ðW elnk � rijuj;kniÞdC ¼

Z
Cþc þC�c

ðLÞdCþ
Z

Cþl þC�l

ðLÞdCþ G
C0
ðLÞdC� lim

q!0

X2

m¼1

1

2
amG

Cqm
hriinkdC

�
X2

m¼1

bm

Z
Am

1

2
ðh�iiÞ;k � �iih;k

� �
dA ð25Þ
The first term of the area integrand of Eq. (25) can be transformed back to line integral using Green’s theorem
and can be clubbed together along with integrands of different integrals along the parts of the complete path C.
Rewriting Eq. (25) by making use of Eq. (2)
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J k ¼
Z

Cþc þC�c

ðL1ÞdCþ
Z

Cþl þC�l

ðL1ÞdCþ G
C0
ðL1ÞdCþ

X2

m¼1

bm

Z
Am

�iih;k dA

� lim
q!0

X2

m¼1

G
Cqm

am

2
hrii �

bm

2
h�ii

� �
nk dC ð26Þ
where L1 is defined as
L1 ¼ W T � b
2

h�ii

� �
nk � rijuj;kni ¼ W F nk � rijuj;kni
The last integral on the right hand side of the Eq. (26) tends to zero as q! 0 and hence can be neglected. Also,
the conditions along straight crack surface and interface which are parallel to x-axis requires the following
conditions to be satisfied:

1. n1ds ¼ dy ¼ 0
2. n2 ¼ þ1 for C�c and C�l
3. n2 ¼ �1 for Cþc and Cþl
4. For traction free crack surfaces rijni ¼ 0
5. Continuity conditions of displacements and tractions across the interface requires ½j uj j� ¼ 0 and
½j rj2 j� ¼ 0

For the limit case consisting in Cq!0 the left hand side of Eq. (26) can be reduced to the well known J inte-
gral (J 1 in present case) for k ¼ 1. Further for k ¼ 2, Eq. (26) does not converge to some fixed value and is
defined for some very small value of q lying within the singularity dominated zone and is defined here as
the J 2q integral whose analytical expression has been given in Khandelwal and Chandra Kishen (2006).
J 1 ¼ G
C0
ðW F n1 � rijuj;1niÞdCþ

X2

k¼1

bk

Z
Ak

h;1�ii dA ð27Þ

J 2q ¼ G
C0
ðW F n2 � rijuj;2niÞdCþ

Z
Cþc þC�c

W F n2dCþ
Z

Cþl þC�l

ðW F � rj2uj;2Þn2 dCþ
X2

k¼1

bk

Z
Ak

h;2�ii dA ð28Þ
The expressions for J 1 and J 2 integrals or the limiting case of the left hand side of Eqs. (27) and (28) for the
limit as Cq!0 can be written as (Khandelwal and Chandra Kishen, 2006)
J 1 ¼
ð1þ j1Þ

16l1

þ ð1þ j2Þ
16l2

� �
ðK2

1 þ K2
2Þ ð29Þ

J 2q ¼ �
1

32pe
ð1þ j1Þ

l1

ð1� e�2peÞ þ ð1þ j2Þ
l2

ðe2pe � 1Þ
� �

ðK2
1 � K2

2Þ sin 2e logðqÞ þ 2K1K1 cosð2e log qÞ
� �

ð30Þ
where lj is the shear modulus of material j, jj ¼ ð3� mjÞ=ð1þ mjÞ for plane stress and jj ¼ 3� 4mj for plane
strain. mj is Poisson’s ratio of material j and e is the bi-materials constant defined by
e ¼ 1

2p
ln

j1l2 þ l1

j2l1 þ l2

� �
ð31Þ
2.1. Computation of bi-material stress intensity factors

The main objective of this work is to compute the stress intensity factors for bi-material interface cracks
when subjected to thermal loads and this is done using the above definitions of J 1 and J 2q.

Eqs. (29) and (30) can be written in the form
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ðK2
1 þ K2

2Þ ¼ B1J 1 ð32Þ
ðK2

1 � K2
2ÞC1 þ 2K1K2C2 ¼ J 2q ð33Þ
where
1

B1

¼ ð1þ j1Þ
16l1

þ ð1þ j2Þ
16l2

� �

C1 ¼ �
1

32p�
ð1þ j1Þ

l1

ð1� e�2p�Þ þ ð1þ j2Þ
l2

ðe2p� � 1Þ
� �

sinð2� log qÞ

C2 ¼ �
1

32p�
ð1þ j1Þ

l1

ð1� e�2p�Þ þ ð1þ j2Þ
l2

ðe2p� � 1Þ
� �

cosð2� log qÞ
Elimination of K2 from Eqs. (32) and (33) results in
K4
1ð4C2

1 þ 4C2
2Þ � 4K2

1 J 1B1ðC2
1 þ C2

2Þ þ J 2qC1

� �
þ ðJ 1B1C1 þ J 2qÞ2 ¼ 0 ð34Þ
Hence, K1 can be obtained by solving the above equation. Substituting for K1 in Eq. (32), we can compute K2.
The sign of K1 and K2 are determined by monitoring the magnitude of the crack opening displacement near

the crack tip. The crack opening displacement may be defined as
Du ¼ uþ � u� ð35Þ
Dv ¼ vþ � v� ð36Þ
where the + and � sign refers to the upper and lower crack faces, respectively. The signs of K1 and K2 cor-
respond to the signs of Du and Dv.

3. Validation

In order to validate the above formulation, three benchmark problems of plane stress, one under uniform
temperature and other two under thermal flow are considered. Finite element analysis are performed using the
program ANSYS (2005) with eight-noded isoparametric elements, PLANE82 for elastic analysis and
PLANE77 for thermal analysis. The line integral calculation of both, J 1 and J 2q have been computed using
a newly developed post-processing macro in the finite element program. The area integral part of J 1 and
J 2q have been computed using the Gauss point average values by summing up the Gauss point quantities
for each element, averaged and multiplied by the elemental area.

A convergence study is performed for the problems considered in order to determine the sensitivity of mesh
refinement on the results. Based on this study, an optimized mesh size is used for computation of the J k inte-
grals. Mesh refinement is done in the region surrounding the crack tip for the body subjected to thermal loads.
In the region away from the crack tip an uniform mesh is used.

3.1. Dissimilar semi-infinite plate with double edge crack subjected to uniform temperature change

A jointed dissimilar semi-infinite plate with double edge crack subjected to uniform temperature change of
100 �C (Sun and Ikeda, 2001) is analyzed under plane stress conditions. The geometry of the plate is as shown
in Fig. 4. Due to symmetry in geometry and loading about the Y-axis, only the left half is analyzed. The
dimensions of the plate are taken as 200 units by 400 units with the jointed interface of 1 unit length. The
material properties used in the analysis are shown in Table 1 and are assumed to be independent of temper-
ature variation.

Results of the convergence study on this problem is shown in Fig. 5. For a value of q = 7.46e�3, it is shown
that with increasing mesh density, calculated J 2q using FE, converges to analytically obtained value. It has
been observed that for mesh using 18,000 to 25,000 number of elements, there is little variation in calculated
J 2q. The variation in computed J 1 is found to within 1% of the analytical value for all the mesh sizes consid-
ered in this study. As a tradeoff between solution accuracy and computation time, a FE mesh of 20,494 eight-
noded elements with 62,245 nodes have been used for subsequent analysis. Figs. 6 and 7 show the finite ele-
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Fig. 4. Jointed dissimilar semi-infinite plate under constant uniform temperature of 100 �C.

Table 1
Material properties used in the analysis

Properties Material-1 Material-2

Young modulus (Pa) 1000e9 100e9
Poisson ratio 0.3 0.3
Temperature (�C) 100 100
Coefficient of thermal expansion (/�C) 1.0e�06 1.0e�07
Coefficient of heat conduction (W=m �C) 100 100
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Fig. 5. Influence of mesh refinement on J 2q for jointed dissimilar semi-infinite plate with double edge crack (q = 7.46e�3).
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ment mesh along with the contours used and displacement boundary condition, respectively. The same finite
element mesh is used for thermal analysis too. The analytical solution in terms of the stress intensity factors
for this problem was given by Erdogan (1965) as



Fig. 6. A typical FE mesh and shape of the contour path used for all the problems.
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Fig. 7. Displacement boundary condition for jointed dissimilar semi-infinite plate with double edge crack under uniform temperature
load.
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K1 ¼� 2�r0ða2g2 � a1g1ÞDT
ffiffiffiffiffiffi
pb
p
ð2bÞ�i�

K2 ¼r0ða2g2 � a1g1ÞDT
ffiffiffiffiffiffi
pb
p
ð2bÞ�i� ð37Þ
where, gi ¼ 1 for plane stress and gi ¼ 1þ mi for plane strain case, r0 is defined as



Table
Result

J1

Case s
Case s
Case s

Table
Case s

q

5.87e�
7.83e�
9.29e�
1.13e�
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r0 ¼
4l1l2 coshðepÞ

ðl1 þ l2j1 þ l1j2 þ l2Þ
ð38Þ
where a1 and a2 are the coefficients of linear thermal expansion for material 1 and 2, respectively. DT is the
temperature excursion.

Let K0 ¼ r
ffiffiffiffiffiffi
pb
p

, where r ¼ r0ða2g2 � a1g1ÞDT . The normalized complex stress intensity factors is defined
as
eK ¼ KLi�

r
ffiffiffiffiffiffi
pa
p ð39Þ
where L and a are length parameters and r is stress. For the present case, normalized stress intensity factors
with L ¼ 2a and a ¼ b can be written as
eK 1 ¼ �2eeK 2 ¼ 1 ð40Þ
Since the body is subjected to uniform temperature distribution, the area integral part in Eq. (27) becomes zero
and the right hand side of this equation reduces to the line integral. Similarly, in Eq. (28), the area integral
vanishes.

The J 1 and J 2q integrals have been computed using a newly developed post-processing macro in the
finite element program ANSYS (2005). The J 1 integral is obtained using the outer contour (C1 and C2

in Fig. 3) only, whereas J 2q integral is computed along the outer contour (C1 and C2) along with material
interface and crack surface (Cþl , C�l , Cþc and C�c in Fig. 3). Three different contour paths are considered to
demonstrate the path-independent nature of the J 1 integral. The results of the J 1 integral obtained for the
three different paths along with the analytical results are shown in Table 2. It is seen that the error in the
average of all the three paths of the J 1 integral is far less than one percent. Further, the variation in the
computed J 1 values for the three different paths do not vary much, thus demonstrating the path
independence.

Table 3 shows the results of J 2q computed for four different values of the radius of inner circle, q, and also
for three different integration paths. It is seen that the results, computed using the proposed approach, are in
close agreement with the analytical results. In addition, the results do not vary much for the three different
paths, again indicating the path independence even for the J 2q integral.

Table 4 shows the normalized Mode I and Mode II stress intensity factors for four different values of q
together with the analytical solutions as given by Erdogan (1965). It is seen that there is good agreement in
the computed solution with an average error of 2.05% in K1 and 0.002% in K2.
2
s of the J 1 integral for all the three case studies

Analytical Path1 Path2 Path3 Average % Error

tudy 1 299.3406 303.19 298.56 295.78 299.178 0.054
tudy 2 7746.746 7744.94 7740.2 7732.391 7739.18 �0.097
tudy 3 6.9698e7 6.9705e7 6.9715e7 6.9712e7 6.971e7 �0.018

3
tudy 1: Results of J 2q for different values of q

Analytical Numerical J 2q Average % Error

J 2q Path1 Path2 Path3 J2q

3 �160.53 �165.03 �162.38 �156.52 �161.32 �0.49
3 �150.48 �151.97 �149.2 �147.67 �149.62 0.58
3 �144.26 �149.59 �146.7 �142.19 �146.1 �1.27
2 �137.18 �143.2 �140.6 �132.9 �138.9 �1.25



Table 4
Case study 1: Normalized Mode I and Mode II stress intensity factors for different values of q

q eK 1
eK 2

5.87e�3 �0.1197 1.0100
7.83e�3 �0.1242 1.0095
9.29e�3 �0.1172 1.0103
1.13e�2 �0.1176 1.0103

Average �0.1196 1.010
Erdogan’s solution �0.12219 1.0100
% Error 2.05 �0.002
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Fig. 8. Jointed dissimilar semi-infinite plate with non-insulated double edge crack under uniform thermal flow.
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3.2. Jointed dissimilar semi-infinite plates with double edge cracks subjected to uniform thermal flow

In this case study, a semi-infinite bi-material plate with double edge cracks and subjected to constant heat
flux of q ¼ 105 W=m2 in the negative Y-direction is considered (Fig. 8). The material properties are same as
those considered in the previous case study as depicted in Table 1. Since the geometry of this plate and the
one considered in the previous case study are the same, the same finite element mesh is used here with plane
stress conditions. Fig. 9 shows left half of the geometry with displacement and thermal boundary conditions.
No thermal insulation is assumed along the cracks. This is achieved by making the coincident nodes on the
crack surfaces to coincide in the thermal analysis. Only during the mechanical load analysis the constraints
on the nodes lying on the crack surfaces were removed.

Sun and Ikeda (2001) have solved this problem numerically using the virtual crack extension method along
with the superposition principle and Banks-Sills and Dolev (2004) have solved it using the M1 integral concept.
Brown and Erdogan (1968) have presented the exact solution for the thermal stress intensity factors asffiffiffiffiffiffip
K1 ¼
r0ða2g2k1 � a1g1k2Þqb pb½1� 4�2�

2k1k2

ð2bÞ�i�

K2 ¼
r0ða2g2k1 � a1g1k2Þqb

ffiffiffiffiffiffi
pb
p
ð2�Þ

k1k2

ð2bÞ�i� ð41Þ
where g1, g2 are as defined in the previous case study, k1 and k2 are coefficients of heat conduction, and q is the
heat flow.
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Fig. 9. Displacement and thermal boundary conditions for jointed dissimilar semi-infinite plate with non-insulated double edge crack
under uniform thermal flow.

Table 5
Case study 2: Results of J 2q for different values of q

q Analytical Numerical J2q Average % Error

J 2q Path1 Path2 Path3 J 2q

2.68e�3 3006.105 3098.12 3071.45 2980.64 3050.07 1.46
4.17e�3 2539.04 2515.5 2495.17 2492.38 2501.02 �1.49
6.33e�3 2082.02 2048.4 2032.74 2024.34 2035.16 �2.25
9.56e�3 1618.04 1692.11 1676.23 1583.28 1650.54 2.00

2988 R. Khandelwal, J.M. Chandra Kishen / International Journal of Solids and Structures 45 (2008) 2976–2992
Since the crack surfaces are not insulated i.e., the presence of crack does not influence the temperature dis-
tribution, the effect of far field flux on the body in negative Y direction will cause linear variation in temper-
ature as a function of Y. Therefore, the area integral part of Eq. (27) vanishes and the whole expression on the
right hand side reduces to the line integral. On the other hand, in Eq. (28) the whole area integral exist as such
with temperature gradient in Y direction attaining a constant value.

The J 1 and J 2q integrals have been computed as in the previous case study. Table 2 again shows the results
of the J 1 integral computed for the three different paths along with analytical results.

It is seen that the error in the average of all the three paths of the J 1 integral is far less than one percent.
Further, the variation in the computed J 1 values for the three different paths do not vary much, thus demon-
strating the path independence.

Table 5 shows the results of J 2q computed for four different values of the inner circle of radius q and also for
three different integration paths. It is seen that the computed results are in close agreement with the analytical
ones. In addition, the results do not vary much for the three different paths indicating the path independence
of J 2q integral.
Table 6
Case study 2: Normalized Mode I and Mode II stress intensity factors for different values of q

q eK 1
eK 2

2.68e�3 0.4939 0.1536
4.17e�3 0.4928 0.1572
6.33e�3 0.4927 0.1576
9.56e�3 0.4937 0.1543

Average 0.4933 0.1557
Erdogan’s solution 0.4885 0.1558
% Error 0.048 0.066
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Table 6 shows the normalized Mode I and Mode II stress intensity factors for four different values of q
together with the analytical values as given by Brown and Erdogan (1968). It is seen that there is good agree-
ment in the computed solution with an average error of 0.05% in K1 and 0.06% in K2.

3.3. An infinite body with insulated central crack subjected to uniform thermal flow

In this case study, analysis is done on an infinite body with central insulated crack subjected to constant
heat flux of q ¼ 105 W=m2 in the negative Y-direction under plane stress conditions as shown in Fig. 10. Both
mechanical and thermal properties are considered to be the same as in the previous examples. The dimensions
of semi-infinite plate is taken as 80 units by 160 units with a crack length of 4 units. Taking advantage of the
symmetry in geometry and loading, only the right half of this bi-material infinite plate is modeled using
ANSYS (2005).

Results of the convergence study on this problem are shown in Fig. 11. For a value of q = 7.63e�3, it is
shown that with increasing mesh density, FE calculated J 2q converges to analytically obtained value and
for FE mesh using 25,000 to 30,000 number of elements there is little variation in it. As a result, FE mesh
of 25,824 elements with 78,287 nodes have been used for subsequent analysis. The finite element mesh and
contour path used for this problem is of the same type as shown in Fig. 6. Fig. 12 shows right half of the geom-
etry with displacement and thermal boundary conditions. In this example, all the integrals in Eqs. (27) and
(28) are non-zero and contribute to J 1 and J 2 integrals, thereby increasing the complexity of computations.

As in the previous two cases, Table 2 shows the results of J 1 integral obtained for the three different paths
together with the analytical results. The analytical values shown in table for this case is obtained from com-
putational approach of M1 integral (Banks-Sills and Dolev, 2004).

It is seen that the error in the average of all the three paths of the J 1 integral is far less than one percent.
Further, the variation in the computed J 1 values for the three different paths do not vary much, thus demon-
strating the path independence.

Table 7 shows the results of J 2q computed for four different values of the inner circle of radius q and also for
three different integration paths. It is seen that the computed results are in close agreement with the analytical
ones. In addition, the results do not vary much for the three different paths indicating the path independence
of J 2q integral.

Table 8 shows the normalized Mode I and Mode II stress intensity factors for four different values of q
together with the analytical values obtained from the M1 integral (Banks-Sills and Dolev, 2004). It is seen that
there is good agreement in the computed solution with an average error of 0.02% in eK 1 and 1.33% in eK 2.
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Fig. 10. Semi-infinite bi-material plate with insulated central crack under uniform thermal flow.
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Fig. 12. Displacement and thermal boundary conditions for semi-infinite bi-material plate with insulated central crack subjected to
uniform thermal flow.

Table 7
Case study 3: Results of J 2q for different values of q

q Analytical Numerical J 2q Average % Error

J2q Path1 Path2 Path3 J2q

4.846e�3 5.309e7 5.38e7 5.36e7 5.33e7 5.358e7 0.93
7.63e�3 5.125e7 5.12e7 5.086e7 5.076e7 5.094e7 �0.603
9.68e�3 5.014e7 4.99e7 4.96e7 4.945e7 4.9635e7 �0.99
1.18e�2 4.913e7 4.915e7 4.890e7 4.892e7 4.899e7 �0.291
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Table 8
Case Study 3: Normalized Mode I and Mode II stress intensity factors for different values of q

q eK 1
eK 2

4.846e�3 �4.037 0.5017
7.63e�3 �4.0462 0.4229
9.68e�3 �4.0475 0.4107
1.18e�2 �4.0445 0.4386

Average �4.044 0.4435
M-integral �4.043 0.4495
% Error �0.021 1.33

R. Khandelwal, J.M. Chandra Kishen / International Journal of Solids and Structures 45 (2008) 2976–2992 2991
4. Conclusions

For a homogeneous crack problem, closed form expression for J 2 is available and it is physically identified
as the energy release rate due to crack tip advancing normal to its original orientation. However, the same is
not true for bi-material interface crack problems since it is shown to be non-existent. In the present study, it is
shown that, in the presence of thermal stresses, the J k line integral over a closed path, which does not enclose
singularities, is not equal to zero, instead, it is equal to an integral taken over the area inside the closed path. A
method is proposed to compute the stress intensity factors for bi-material interface crack subjected to thermal
loading by combining this area integral with the J k integral. The proposed approach has been validated using
the benchmark problems with known analytical solutions and the results are found to be in very good
agreement.

In order to properly characterize the near tip behavior, the cut-off radius q should be small enough so that
the integration contour for J 2q is inside the region dominated by singularity zone. It is seen that the results of
K1 and K2 are insensitive to different selections of q.
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