The Kakutani’s precompactness lemma

Jorge Mujica

IMECC-UNICAMP, Caixa Postal 6065, 13083-970 Campinas, SP, Brazil

Received 13 January 2004

Submitted by R.M. Aron

Dedicated to Professor John Horváth on the occasion of his 80th birthday

Abstract

In this paper we establish a theorem that extends and sharpens an old precompactness lemma due to Kakutani. We use this theorem to derive the classical Arzelà–Ascoli theorem and a theorem of Defant and Floret for families of linear operators. We also use this theorem to derive a theorem for composition operators which yields as immediate corollaries a theorem of Geue and a locally convex version of a theorem of Aron and Schottenloher.

© 2004 Elsevier Inc. All rights reserved.

1. The Kakutani’s precompactness lemma

If Z is a pseudometric space, then $B_Z(c; \varepsilon)$ denotes the open ball with center c and radius ε, and $\overline{B}_Z(c; \varepsilon)$ denotes the corresponding closed ball. We recall that a set $K \subseteq Z$ is said to be precompact if for each $\varepsilon > 0$, K can be covered by finitely many balls of radius ε. The following stronger notion of continuity will be useful.

Definition 1.1. Let X be a topological space, and let Z be a pseudometric space. A mapping $f : X \to Z$ is said to be K-continuous if for each $\varepsilon > 0$ we can write $X = U_1 \cup \cdots \cup U_m$, where each U_j is open in X and

$$d_Z(f(x), f(y)) < \varepsilon \quad \text{whenever } x, y \in U_j.$$

A family of mappings $f_i : X \to Z$ ($i \in I$) is said to be K-equicontinuous if for each $\varepsilon > 0$ we can write $X = U_1 \cup \cdots \cup U_m$, where each U_j is open in X and

$E-mail address: mujica@ime.unicamp.br.$

0022-247X/$ – see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2004.03.070
\[d_Z(f_i(x), f_i(y)) < \varepsilon \quad \text{whenever} \quad i \in I \quad \text{and} \quad x, y \in U_j. \]

\(\mathcal{C}(X; Z) \) denotes the set of all continuous mappings from \(X \) into \(Z \), and \(\mathcal{C}_K(X; Z) \) denotes the subset of all \(K \)-continuous mappings from \(X \) into \(Z \).

Since uniform spaces can be described in terms of pseudometrics, we can define \(K \)-continuous mappings from topological spaces into uniform spaces in the obvious way. In the definition of \(K \)-continuous mappings, the letter \(K \) stands for compact or precompact, and is motivated by the next proposition.

Proposition 1.2. Let \(X \) be a topological space, and let \(Z \) be a pseudometric space. Then a mapping \(f : X \to Z \) is \(K \)-continuous if and only if \(f \) is continuous and \(f(X) \) is a precompact subset of \(Z \).

Proof. (\(\Rightarrow \)) If \(f \) is \(K \)-continuous, it is clearly continuous. To show that \(f(X) \) is precompact, let \(\varepsilon > 0 \) be given. By hypothesis, we can write \(X = U_1 \cup \cdots \cup U_m \), where each \(U_j \) is open in \(X \) and \(d_Z(f(x), f(y)) < \varepsilon \) whenever \(x, y \in U_j \). If we choose \(a_j \in U_j \) for each \(j \), then \(f(U_j) \subset B_Z(f(a_j); \varepsilon) \) for each \(j \), and it follows that

\[f(X) = \bigcup_{j=1}^m f(U_j) \subset \bigcup_{j=1}^m B_Z(f(a_j); \varepsilon). \]

This shows that \(f(X) \) is precompact.

(\(\Leftarrow \)) \(f(X) \) being precompact, there are \(a_1, \ldots, a_m \in X \) such that \(f(X) \subset \bigcup_{j=1}^m B_Z(f(a_j); \varepsilon) \). Let \(U_j = f^{-1}(B_Z(f(a_j); \varepsilon)) \) for each \(j \). Since \(f \) is continuous, each \(U_j \) is open in \(X \). It follows that

\[X = \bigcup_{j=1}^m f^{-1}(B_Z(f(a_j); \varepsilon)) = \bigcup_{j=1}^m U_j \]

and \(d_Z(f(x), f(y)) < 2\varepsilon \) whenever \(x, y \in U_j \). Hence \(f \) is \(K \)-continuous. \(\Box \)

We do not know if there is a similar characterization for \(K \)-equicontinuous families of mappings. In any case, we have the following weaker result.

Proposition 1.3. Let \(X \) be a compact topological space, and let \(Z \) be a pseudometric space. Then a family of mappings \(f_i : X \to Z \) (\(i \in I \)) is \(K \)-equicontinuous if and only if it is equicontinuous.

Proof. To prove the nontrivial implication, suppose that the family \(\{f_i : i \in I\} \) is equicontinuous. Then given \(a \in X \) and \(\varepsilon > 0 \), there is an open neighborhood \(U_a \) of \(a \) such that \(d_Z(f_i(x), f_i(a)) < \varepsilon \) whenever \(x \in U_a \) and \(i \in I \). Hence \(d_Z(f_i(x), f_i(y)) < 2\varepsilon \) whenever \(x, y \in U_a \) and \(i \in I \). The open sets \(U_a \), with \(a \in X \), cover \(X \). Since \(X \) is compact, there are \(a_1, \ldots, a_m \in X \) such that \(X = U_{a_1} \cup \cdots \cup U_{a_m} \), and thus \(\{f_i : i \in I\} \) is \(K \)-equicontinuous. \(\Box \)

\(K \)-equicontinuous nets have the following nice property.
Proposition 1.4. Let $(f_i)_{i \in I}$ be a K-equicontinuous net in $C_K(X; Z)$ which converges pointwise to an $f : X \to Z$. Then $f \in C_K(X; Z)$ and $(f_i)_{i \in I}$ converges to f uniformly on X.

Proof. Given $\varepsilon > 0$, we can write $X = U_1 \cup \cdots \cup U_m$, where each U_j is open in X and $d_Z(f_i(x), f_i(y)) < \varepsilon$ whenever $x, y \in U_j$ and $i \in I$. It follows that $d_Z(f(x), f(y)) \leq \varepsilon$ whenever $x, y \in U_j$, and therefore f is K-continuous. To show uniform convergence, choose $a_j \in U_j$ for $1 \leq j \leq m$. There is $i_0 \in I$ such that $d_Z(f_i(a_j), f(a_j)) < \varepsilon$ whenever $i \geq i_0$ and $1 \leq j \leq m$. Each $x \in X$ belongs to some U_j. Hence for $i \geq i_0$ we have that

$$d_Z(f_i(x), f(x)) \leq d_Z(f_i(x), f_i(a_j)) + d_Z(f_i(a_j), f(a_j)) + d_Z(f(a_j), f(x)) < 3\varepsilon.$$

Thus $(f_i)_{i \in I}$ converges to f uniformly on X. \qed

Proposition 1.5. Let $(f_n)_{n=1}^\infty$ be a sequence in $C_K(X; Z)$ which converges uniformly to an $f \in C_K(X; Z)$. Then $(f_n)_{n=1}^\infty$ is K-equicontinuous.

Proof. Given $\varepsilon > 0$, we can write $X = U_1 \cup \cdots \cup U_m$, where each U_j is open in X and $d_Z(f(x), f(y)) < \varepsilon$ whenever $x, y \in U_j$. There is $n_0 \in \mathbb{N}$ such that $d_Z(f_n(x), f_n(y)) < \varepsilon$ whenever $x, y \in U_j$ and $n > n_0$. It follows easily that $d_Z(f_n(x), f_n(y)) < 3\varepsilon$ whenever $x, y \in U_j$ and $n > n_0$. Since $f_1, \ldots, f_{n_0} \in C_K(X; Z)$, we can easily find open sets V_1, \ldots, V_p such that $X = V_1 \cup \cdots \cup V_p$ and $d_Z(f_n(x), f_n(y)) < 3\varepsilon$ whenever $x, y \in V_j$ and $n \in \mathbb{N}$. \qed

We remark that the notion of K-equicontinuous family is closely connected with the notion of family with equal variation considered by Geue [6].

Definition 1.6. Let X and Y be arbitrary sets and let Z be a pseudometric space. A mapping $f : X \times Y \to Z$ is said to be **separately precompact** if the set $f(X \times \{y\})$ is precompact in Z for each $y \in Y$, and the set $f(X \times \{y\})$ is precompact in Z for each $x \in X$.

The following theorem extends and sharpens a precompactness lemma due to Kakutani [10]. See also Bartle [2, Theorem 3.8].

Theorem 1.7. Let X and Y be arbitrary sets, let Z be a pseudometric space, and let $f : X \times Y \to Z$ be a separately precompact mapping. Let $d_X : X \times X \to \mathbb{R}$ and $d_Y : Y \times Y \to \mathbb{R}$ be the pseudometrics defined by

$$d_X(x_1, x_2) = \sup_{y \in Y} d_Z(f(x_1, y), f(x_2, y)) \quad \text{and}$$

$$d_Y(y_1, y_2) = \sup_{x \in X} d_Z(f(x, y_1), f(x, y_2)).$$

Then the following conditions are equivalent:

1. The space (X, d_X) is precompact.
(2) The space \((Y, d_Y)\) is precompact.

(3) For each \(\varepsilon > 0\) we can write \(X = X_1 \cup \cdots \cup X_m\), where

\[
d_Z(\{f(x_1, y), f(x_2, y)\}) < \varepsilon \quad \text{whenever } x_1, x_2 \in X_j \text{ and } y \in Y.
\]

(4) For each \(\varepsilon > 0\) we can write \(Y = Y_1 \cup \cdots \cup Y_n\), where

\[
d_Z(\{f(x, y_1), f(x, y_2)\}) < \varepsilon \quad \text{whenever } x \in X \text{ and } y_1, y_2 \in Y_k.
\]

(5) For each \(\varepsilon > 0\) we can write \(X = X_1 \cup \cdots \cup X_m\) and \(Y = Y_1 \cup \cdots \cup Y_n\), where

\[
d_Z(\{f(x_1, y_1), f(x_2, y_2)\}) < \varepsilon \quad \text{whenever } x_1, x_2 \in X_j \text{ and } y_1, y_2 \in Y_k.
\]

\[\text{If, in addition, } X \text{ (respectively } Y\text{) is a topological space, and all the partial mappings } f_j : X \to Z \text{ (respectively } f_i : Y \to Z\text{) are continuous, then the sets } X_j \text{ in (3) (respectively } Y_k \text{ in (4)) may be assumed to be open. In particular, the family of mappings } f_j : X \to Z \text{ (respectively } f_i : Y \to Z\text{) is } K\text{-equicontinuous.}\]

\[\text{If, in addition, } X \text{ and } Y \text{ are topological spaces, and all the partial mappings } f_j : X \to Z \text{ and } f_i : Y \to Z \text{ are continuous, then the sets } X_j \text{ and } Y_k \text{ in (5) may be assumed to be open. In particular, the mapping } f : X \times Y \to Z \text{ is } K\text{-continuous.}\]

\textbf{Proof.} (1) \(\Rightarrow\) (3). Given \(\varepsilon > 0\), there are \(a_1, \ldots, a_m \in X\) such that \(X = \bigcup_{j=1}^m B_X(a_j; \varepsilon)\). Given \(x_1, x_2 \in B_X(a_j; \varepsilon)\) and \(y \in Y\), we see that

\[
d_Z(f(x_1, y), f(x_2, y)) \leq d_X(x_1, x_2) < 2\varepsilon,
\]

and (3) follows.

(3) \(\Rightarrow\) (1). If we choose \(a_j \in X_j\) for every \(j\), we see that

\[
d_X(x, a_j) = \sup_{y \in Y} d_Z(f(x, y), f(a_j, y)) \leq \varepsilon
\]

for every \(x \in X_j\). Thus \(X_j \subseteq B_X(a_j; \varepsilon)\) and (1) follows.

Thus (1) \(\Leftrightarrow\) (3) and, by symmetry, (2) \(\Leftrightarrow\) (4). Clearly (5) \(\Rightarrow\) (3) and (5) \(\Rightarrow\) (4).

(3) \(\Rightarrow\) (5). Given \(\varepsilon > 0\), we can write \(X = X_1 \cup \cdots \cup X_m\), where

\[
d_Z(f(x_1, y), f(x_2, y)) < \varepsilon \quad \text{whenever } x_1, x_2 \in X_j \text{ and } y \in Y.
\]

Choose \(a_j \in X_j\) for every \(j\). Since \(f([a_1] \times Y)\) is precompact in \(Z\), there are \(c_{11}, \ldots, c_{1n_1} \in Z\) such that

\[
f([a_1] \times Y) \subseteq \bigcup_{k=1}^{n_1} B_Z(c_{1k}; \varepsilon).
\]

If we set

\[
Y_k = \{y \in Y : d_Z(f(a_1, y), c_{1k}) < \varepsilon\} = f_{1n_1}^{-1}(B_Z(c_{1k}; \varepsilon))
\]

for \(1 \leq k \leq n_1\), then \(Y = Y_{11} \cup \cdots \cup Y_{1n_1}\), and

\[
d_Z(f(a_1, y_1), f(a_1, y_2)) < 2\varepsilon \quad \text{whenever } y_1, y_2 \in Y_{1k}.
\]
By applying the same argument to the precompact set \(f([a_2] \times Y_{1k}) \), for each \(k \), we can write \(Y = Y_{21} \cup \cdots \cup Y_{2m_2} \), where
\[
d_Z(f(a_j, y_1), f(a_j, y_2)) < 2\varepsilon \quad \text{whenever } 1 \leq j \leq 2 \text{ and } y_1, y_2 \in Y_{2k}.
\]
Furthermore, the sets \(Y_{2k} \) are of the form
\[
Y_{2k} = Y_{1j} \cap f_{a_j}^{-1}(B_Z(c_{2k}; \varepsilon)), \quad \text{with } c_{2k} \in Z.
\]
After applying the same argument \(m \) times, we can write \(Y = Y_{m1} \cup \cdots \cup Y_{mn} \), where
\[
d_Z(f(a_j, y_1), f(a_j, y_2)) < 2\varepsilon \quad \text{whenever } 1 \leq j \leq m \text{ and } y_1, y_2 \in Y_{mk}.
\]
Furthermore, the sets \(Y_{mk} \) are of the form
\[
Y_{mk} = Y_{m-1,j} \cap f_{a_j}^{-1}(B_Z(c_{mk}; \varepsilon)), \quad \text{with } c_{mk} \in Z.
\]
Thus, given \(x_1, x_2 \in X_j \) and \(y_1, y_2 \in Y_{mk} \), it follows that
\[
d_Z(f(x_1, y_1), f(x_2, y_2)) \leq d_Z(f(x_1, y_1), f(a_j, y_1)) + d_Z(f(a_j, y_1), f(a_j, y_2)) + d_Z(f(a_j, y_2), f(x_2, y_2))
\]
\[
\leq \varepsilon + 2\varepsilon + \varepsilon = 4\varepsilon.
\]
Thus (3) \(\Rightarrow \) (5) and, by symmetry, (4) \(\Rightarrow \) (5).

Next assume that \(Y \) is a topological space, and all the partial mappings \(f_k : Y \rightarrow Z \) are continuous. In the proof of the implication (3) \(\Rightarrow \) (5) we showed that we can write \(X = X_1 \cup \cdots \cup X_m \) and \(Y = Y_{m1} \cup \cdots \cup Y_{mn} \), where
\[
d_Z(f(x_1, y_1), f(x_2, y_2)) < 4\varepsilon \quad \text{whenever } x_1, x_2 \in X_j \text{ and } y_1, y_2 \in Y_{mk}.
\]
In particular, it follows that
\[
d_Z(f_k(y_1), f_k(y_2)) < 4\varepsilon \quad \text{whenever } x \in X \text{ and } y_1, y_2 \in Y_{mk}.
\]
Furthermore, since the partial mappings \(f_{a_j} : Y \rightarrow Z \) are continuous, the sets \(Y_{mk} \) are open by construction. Thus the family of mappings \(f_k : Y \rightarrow Z \) is \(K \)-equicontinuous.

The corresponding assertion concerning the space \(X \) and the partial mappings \(f_{a_j} : X \rightarrow Z \) is true by symmetry.

Finally, if \(X \) and \(Y \) are topological spaces, and the sets \(X_j \) in (3) and \(Y_{mk} \) in (4) are open, then it is clear that the sets \(X_j \) and \(Y_{mk} \) in (5) may be assumed to be open too. \(\square \)

The proof of Theorem 1.7 is a refinement of the elementary proof of the Kakutani’s precompactness lemma given in [11].

Corollary 1.8. Let \(X \) and \(Y \) be topological spaces, and let \(Z \) be a pseudometric space. Let \(f : X \times Y \rightarrow Z \) be a mapping such that \(f_{a_j} : X \rightarrow Z \) is \(K \)-continuous for every \(y \in Y \) and \(f_{a_j} : Y \rightarrow Z \) is \(K \)-continuous for every \(x \in X \). Then \(f : X \times Y \rightarrow Z \) is \(K \)-continuous.

Corollary 1.9. Let \(X \) and \(Y \) be compact topological spaces, and let \(Z \) be a pseudometric space. Then every separately continuous mapping \(f : X \times Y \rightarrow Z \) is continuous.

Corollary 1.10. Let \(X \) and \(Y \) be topological spaces, and let \(Z \) be a pseudometric space. If \(X \times Y \) is a \(k \)-space, then every separately continuous mapping \(f : X \times Y \rightarrow Z \) is continuous.
2. A theorem of Arzelà–Ascoli type for continuous mappings with precompact range

Let X be a topological space and let Z be a pseudometric space. The uniform topology on $C_K(X; Z)$, is the topology τ_a defined by the pseudometric

$$d(f, g) = \sup_{x \in X} d_Z(f(x), g(x)).$$

The compact-open topology on $C(X; Z)$, is the topology τ_c defined by the pseudometrics

$$d_K(f, g) = \sup_{x \in K} d_Z(f(x), g(x)),$$

where K varies among the compact subsets of X.

If X is compact, it is clear that $C(X; Z) = C_K(X; Z)$ and $\tau_c = \tau_a$ on $C(X; Z) = C_K(X; Z)$.

Now we can prove the following version of the Arzelà–Ascoli theorem for continuous mappings with precompact range.

Theorem 2.1. Let X be a topological space, let Z be a pseudometric space, and let $\{f_i: i \in I\} \subset C_K(X; Z)$. Then the following conditions are equivalent:

1. $\{f_i: i \in I\}$ is a precompact subset of $(C_K(X; Z), \tau_a)$.
2. $\{f_i: i \in I\}$ is K-equicontinuous and $\{f_i(x): i \in I\}$ is precompact in Z for each $x \in X$.
3. $\{f_i: i \in I\}$ is K-equicontinuous and $\bigcup_{i \in I} f_i(X)$ is precompact in Z.

Proof. We will apply Theorem 1.7 to the mapping $f : I \times X \to Z$ defined by $f(i, x) = f_i(x)$ for all $i \in I$ and $x \in X$. By Proposition 1.2, $f_i(X)$ is precompact in Z for each $i \in I$.

(1) \Rightarrow (2). Since $d(f, g) \geq d_Z(f(x), g(x))$ for all $f, g \in C_K(X; Z)$ and $x \in X$, it is clear that since $\{f_i: i \in I\}$ is precompact in $C_K(X; Z)$, then $\{f_i(x): i \in I\}$ is precompact in Z for each $x \in X$. Thus the mapping f is separately precompact and Theorem 1.7 applies.

Since

$$d(f_i, f_j) = \sup_{x \in X} d_Z(f_i(x), f_j(x)) = d_I(i, j),$$

$\{f_i: i \in I\}$ being precompact in $C_K(X; Z)$ means that the space (I, d_I) is precompact. By Theorem 1.7, the family $\{f_i: i \in I\}$ is K-equicontinuous.

(2) \Rightarrow (1). Since $\{f_i(x): i \in I\}$ is precompact in Z for each $x \in X$, the mapping f is separately precompact, and Theorem 1.7 applies.

Since the family $\{f_i: i \in I\}$ is K-equicontinuous, the space (I, d_I) is precompact, by Theorem 1.7. But we already know that (I, d_I) precompact means that $\{f_i: i \in I\}$ is a precompact subset of $C_K(X; Z)$.

(2) \Rightarrow (3). Since the family $\{f_i: i \in I\}$ is K-equicontinuous, for each $\varepsilon > 0$ we can write $X = U_1 \cup \cdots \cup U_m$, where each U_j is open in X and $d_Z(f_i(x), f_i(y)) < \varepsilon$ whenever $i \in I$ and $x, y \in U_j$. If we choose $a_j \in U_j$ for each j, then

$$f_i(X) = \bigcup_{j=1}^m f_i(U_j) \subset \bigcup_{j=1}^m B_Z(f_i(a_j); \varepsilon)$$
for every $i \in I$.

On the other hand, the set $\{f_i(\alpha_j): i \in I\}$ is precompact in Z for each j, and therefore the set $\{f_i(\alpha_j): j \in I, 1 \leq j \leq m\}$ is also precompact in Z. Thus there are $c_1, \ldots, c_n \in Z$ such that

$$\{f_i(\alpha_j): i \in I, 1 \leq j \leq m\} \subset \bigcup_{k=1}^{n} B_Z(c_k; \varepsilon).$$

It follows that

$$\bigcup_{i \in I} f_i(X) \subset \bigcup_{k=1}^{n} B_Z(c_k; 2\varepsilon).$$

Thus $\bigcup_{i \in I} f_i(X)$ is a precompact subset of Z.

Since the implication $(2) \Rightarrow (1)$ is obvious, the proof of the theorem is complete. □

Corollary 2.2. Let X be a compact topological space, let Z be a pseudometric space, and let $\{f_i: i \in I\} \subset C(X; Z)$. Then the following conditions are equivalent:

1. $\{f_i: i \in I\}$ is a precompact subset of $(C(X; Z), \tau_u)$.
2. $\{f_i: i \in I\}$ is equicontinuous and $\{f_i(x): i \in I\}$ is precompact in Z for each $x \in X$.
3. $\{f_i: i \in I\}$ is equicontinuous and $\bigcup_{i \in I} f_i(X)$ is precompact in Z.

Corollary 2.3. Let X be a k-space, let Z be a pseudometric space, and let $\{f_i: i \in I\} \subset C(X; Z)$. Then the following conditions are equivalent:

1. $\{f_i: i \in I\}$ is a precompact subset of $(C(X; Z), \tau_u)$.
2. $\{f_i: i \in I\}$ is equicontinuous and $\{f_i(x): i \in I\}$ is precompact in Z for each $x \in X$.
3. $\{f_i: i \in I\}$ is equicontinuous and $\bigcup_{i \in I} f_i(K)$ is precompact in Z for each compact set $K \subset X$.

Floret [5] used the Kakutani’s precompactness lemma [10] to prove the implication $(2) \Rightarrow (1)$ in the scalar-valued version of Corollary 2.2. For a variant of the Arzelà–Ascoli theorem see Geue [6, Theorem 2.1].

3. A precompactness theorem of Defant and Floret for families of linear operators

Let C be an absolutely convex subset of a real or complex vector space E. Let p_C denote the Minkowski functional of C, that is

$$p_C(x) = \inf\{\lambda > 0: x \in \lambda C\},$$

and let $[C]$ denote the seminormed space $(\operatorname{span} C, p_C)$. We say that a set A is C-precompact if A is a precompact subset of $[C]$.

Given two dual systems (E_1, E_2) and (F_1, F_2), let $\mathcal{L}((E_1, E_2), (F_1, F_2))$ denote the space of all linear mappings $T : E_1 \rightarrow F_1$ which are $\sigma(E_1, E_2)$–$\sigma(F_1, F_2)$-continuous.
For each $T \in \mathcal{L}((E_1, E_2), (F_1, F_2))$, the dual mapping $T' \in \mathcal{L}((F_2, F_1), (E_2, E_1))$ is defined by

$$\langle Tx, y' \rangle = \langle x, T'y' \rangle$$

for all $x \in E_1, y' \in F_2$.

We refer to Grothendieck [8] or Horváth [9] for the terminology from the theory of topological vector spaces.

As pointed out by Floret [5], by applying the Kakutani’s precompactness lemma to the mapping $f: A \times B \to K$ defined by $f(x, y') = \langle Tx, y' \rangle = \langle x, T'y' \rangle$, one immediately obtains the following results of Grothendieck [7,8].

Corollary 3.1. Let $\langle E_1, E_2 \rangle$ and $\langle F_1, F_2 \rangle$ be two dual systems, let $T \in \mathcal{L}((E_1, E_2), (F_1, F_2))$, and let $A \subset E_1$ and $B \subset F_2$. Then $T(A)$ is B°-precompact if and only if $T(B)$ is A°-precompact.

Corollary 3.2. Let $\langle E_1, E_2 \rangle$ be a dual system, and let $A \subset E_1$ and $B \subset E_2$. Then A is B°-precompact if and only if B is A°-precompact.

Kakutani [10] used his precompactness lemma to give a proof of the classical Schauder theorem (which follows at once from Corollary 3.1).

Given $A \subset E_1$ and $V \subset F_2$, we set

$$N(A, V) = \{ T \in \mathcal{L}((E_1, E_2), (F_1, F_2)): T(A) \subset V \}.$$

Then we can prove the following result, a slight improvement of a theorem of Defant and Floret [3].

Theorem 3.3. Let $\langle E_1, E_2 \rangle$ and $\langle F_1, F_2 \rangle$ be two dual systems, let $\{ T_i : i \in I \} \subset \mathcal{L}((E_1, E_2), (F_1, F_2))$, and let $A \subset E_1$ and $B \subset F_2$. Then the conditions (1)–(4) below are equivalent:

1. $\{ T_i : i \in I \}$ is $N(A, B^\circ)$-precompact.
2. $T_i(A)$ is B°-precompact for each $i \in I$.
3. $\{ T_i : i \in I \}$ is $N(B, A^\circ)$-precompact.
4. $T_i(B)$ is A°-precompact for each $i \in I$.

If, in addition, A is a topological space and each restriction $T_i|A : A \to [B^\circ]$ is continuous, then the conditions (1)–(4) are equivalent also to the condition (5) below:

1. The family of restrictions $T_i|A : A \to [B^\circ]$ ($i \in I$) is K-equicontinuous.
2. $\{ T_i(x) : i \in I \}$ is B°-precompact for each $x \in A$.
3. $T_i(A)$ is B°-precompact for each $i \in I$.

4. \mathcal{T}_i is K-equicontinuous.
Proof. Defant and Floret [3] derived their theorem from the Grothendieck Corollary 3.2, together with a vector-valued version of the Arzelà–Ascoli theorem. We will derive Theorem 3.3 directly from Theorem 1.7.

Defant and Floret [3] observed that the equivalence (1) ⇔ (2) follows from the identity

\[p_{N(A,B^\ast)}(T) = \sup_{x \in A} \sup_{y' \in B} \|Tx, y'\| = \sup_{x \in A} \sup_{y' \in B} \|x, T'y'\| = p_{N(B,A^\ast)}(T). \]

Clearly (3a) ⇒ (4b), and Defant and Floret [3] used Corollary 3.2 to prove that (3) ⇒ (4a). Thus (3) ⇒ (4) and, by symmetry, (4) ⇒ (3).

Since

\[p_{N(A,B^\ast)}(T) = \sup_{x \in A} \sup_{y' \in B} \|Tx, y'\| = \sup_{x \in A} p_{B^\ast}(Tx), \]

it follows that (1) ⇒ (3a) ⇒ (4b) and, by symmetry, (2) ⇒ (4a) ⇒ (3b). Thus (1) ⇔ (2) ⇒ (3) ⇔ (4).

To show that (3) ⇔ (4) ⇒ (1) ⇔ (2), we consider the mapping \(f : I \times A \to [B^\ast] \) defined by \(f(i,x) = T_i x \) for all \(i \in I \) and \(x \in A \). Then \(f(I \times \{x\}) = \{T_i x : i \in I\} \) is \(B^\circ \)-precompact, by (4b), and \(f((i) \times A) = T_i(A) \) is \(B^\circ \)-precompact, by (3a). Thus \(f \) is separately precompact, and Theorem 1.7 applies. Observe that

\[d_f(i, j) = \sup_{x \in A} \sup_{y' \in B} \|T_i x - T_j x, y'\| = p_{N(A,B^\ast)}(T_i - T_j) \quad (\ast) \]

and

\[d_A(x_1 - x_2) = \sup_{i \in I} \sup_{y' \in B} \|T_i x_1 - T_i x_2, y'\| = \sup_{i \in I} \sup_{y' \in B} \|x_1 - x_2, T_i'y'\| \]

\[= p_{\bigcup_{i \in I} T_i(B)^\ast}(x_1 - x_2). \quad (\ast\ast) \]

By (4a), \(\bigcup_{i \in I} T_i'(B) \) is \(A^\ast \)-precompact. By Corollary 3.2, \(A \) is \((\bigcup_{i \in I} T_i'(B))^{\ast\ast} \)-precompact. By \((\ast\ast), (A, d_A) \) is precompact. By Theorem 1.7, \((I, d_I) \) is precompact. By \((\ast) \{T_i : i \in I\} \) is \(N(A, B^\ast) \)-precompact, proving (1a). Since (1b) is an obvious consequence of (3a), the proof of the implication (3) ⇐ (4) ⇒ (1) ⇐ (2) is complete.

Conditions (5b) and (5c) are direct consequences of (4b) and (1b) and guarantee that the mapping \(f : I \times A \to [B^\ast] \) from the proof of the implication (3) ⇐ (4) ⇒ (1) ⇐ (2) is separately precompact. By Theorem 1.7, (5a) means that \((I, d_I) \) is precompact, and we already know that is equivalent to (1a). This completes the proof of the theorem. \(\square \)

By symmetry we can state a condition similar to (5) for the restrictions \(T'_i[B : B \to [A^\circ]] \).

By letting \(A \) and \(B \) vary over suitable subsets of \(E_1 \) and \(F_2 \), we can recover the precompactness theorems for families of linear operators obtained by several authors. See Palmer [12], Geue [6], Ruess [13], and Defant and Floret [3], and the references in those papers.
4. A precompactness theorem for composition operators

Let E and F be Hausdorff locally convex spaces, and let $\mathcal{P}_b(mE; F)$ be the space of all continuous m-homogeneous polynomials from E into F, with the topology of uniform convergence on the bounded subsets of E. The sets

$$N(A, V) = \{ P \in \mathcal{P}(mE; F): P(A) \subset V \},$$

where A varies among the bounded subsets of E, and V varies among the 0-neighborhoods in F, form a 0-neighborhood base in $\mathcal{P}_b(mE; F)$. Observe that if V is closed and absolutely convex, then the Minkowski functional of $N(A, V)$ is given by

$$p_{N(A,V)}(P) = \sup_{x \in A} p_V(P(x)).$$

If $m = 1$, then $\mathcal{P}_b(mE; F)$ coincides with the space of continuous linear mappings $L_b(E; F)$. We refer to the book of Dineen [4] for background information on the theory of polynomials between locally convex spaces.

We now use Theorem 1.7 to prove the following precompactness theorem for composition operators.

Theorem 4.1. Let E, F, G, and H be Hausdorff locally convex spaces. Let $P \in \mathcal{P}(mE; F)$ and $T \in L(G; H)$, with $P \neq 0$ and $T \neq 0$, and let Φ be the continuous linear mapping defined by

$$\Phi : S \in L_b(F; G) \to T \circ S \circ P \in \mathcal{P}_b(mE; H).$$

Then Φ maps equicontinuous sets onto precompact sets if and only if both P and T map bounded sets onto precompact sets.

Proof. We can readily verify that Φ is linear and continuous. Indeed, if A is a bounded subset of E, and W is a 0-neighborhood in H, then it is clear that

$$\Phi(N(P(A), T^{-1}(W))) \subset N(A, W).$$

(a) We first show that if both P and T map bounded sets onto precompact sets, then Φ maps equicontinuous sets onto precompact sets.

Let S be an equicontinuous subset of $L(F; G)$, let A be a bounded subset of E, and let W be a closed, absolutely convex 0-neighborhood in H. Since S is equicontinuous, there is a closed, absolutely convex 0-neighborhood V in F such that $S(V) \subset T^{-1}(W)$, and therefore $T \circ S(V) \subset W$ for every $S \in S$.

Let $f : P(A) \times S \to (H, p_W)$ be defined by $f(y, S) = T \circ S(y)$ for every $y \in P(A)$ and $S \in S$. Then $f(P(A) \times [S]) = T \circ S \circ P(A)$ is precompact in H, and therefore in (H, p_W) for every $S \in S$, and $f([y] \times S) = [T \circ S(y)]: S \in S$ is precompact in H, and therefore in (H, p_W), for every $y \in P(A)$. Thus f is separately precompact and Theorem 1.7 applies.

We claim that

$$d_{P(A)}(y_1, y_2) \leq p_V(y_1 - y_2) \quad (*)$$

and

$$d_S(S_1, S_2) = p_{N(A,W)}(\Phi(S_1) - \Phi(S_2)). \quad (**)$$
On the one hand, since $T \circ S(V) \subset W$ for every $S \in \mathcal{S}$, it follows that $p_W(T \circ S(y)) \leq p_V(y)$ for every $y \in F$, and therefore

$$d_{P(A)}(y_1, y_2) = \sup_{S \in \mathcal{S}} p_W(T \circ S(y_1 - y_2)) \leq p_V(y_1 - y_2),$$

thus proving (*). On the other hand,

$$d_S(S_1, S_2) = \sup_{y \in P(A)} p_W(T \circ S_1(y) - T \circ S_2(y))$$

$$= \sup_{x \in A} \Phi(S_1)(x) - \Phi(S_2)(x) = p_{N(A, W)}(\Phi(S_1) - \Phi(S_2)),$$

thus proving (**).

From (*) and (**) and Theorem 1.7 we see that since $P(A)$ is p_V-precompact, then $(P(A), d_{P(A)})$ is precompact, hence (\mathcal{S}, d_S) is precompact, and therefore $\Phi(\mathcal{S})$ is $N(A, W)$-precompact. Thus $\Phi(\mathcal{S})$ is precompact in $\mathcal{P}_b^m(E; H)$ for every equicontinuous set $S \subset \mathcal{L}(F; G)$. This proves (a).

(b) We next show that if Φ maps equicontinuous sets onto precompact sets, then T maps bounded sets onto precompact sets.

Let B be a bounded subset of G. Since $P \neq 0$, there is $x_0 \in E$ such that $P(x_0) \neq 0$. By the Hahn–Banach theorem, there is $y'_0 \in F'$ such that $y'_0 \circ P(x_0) = 1$. For each $z \in G$ let $S_z \in \mathcal{L}(F; G)$ be defined by $S_z(y) = y'_0(y)z$ for every $y \in F$. Then

$$\Phi(S_z)(x_0) = T \circ S_z \circ P(x_0) = T \circ z.$$

We claim that the set $\{S_z : z \in B\}$ is equicontinuous in $\mathcal{L}(F; G)$. Indeed let W be an absolutely convex 0-neighborhood in G, and let $\delta > 0$ such that $\delta B \subset W$. Let V be a 0-neighborhood in F such that $|y'_0(y)| < \delta$ for every $y \in V$. It follows that $S_z(V) \subset \delta B \subset W$ for every $z \in B$, and therefore $\{S_z : z \in B\}$ is equicontinuous in $\mathcal{L}(F; G)$. Thus $\{\Phi(S_z) : z \in B\}$ is precompact in $\mathcal{P}_b^m(E; H)$, and

$$T(B) = \{Tz : z \in B\} = \{\Phi(S_z)(x_0) : z \in B\}$$

is precompact in H. This proves (b).

(c) We finally show that if Φ maps equicontinuous sets onto precompact sets, then P maps bounded sets onto precompact sets.

Let A be a bounded subset of E, and let V be a closed, absolutely convex 0-neighborhood in F. Since $T \neq 0$, there is $z_0 \in G$ such that $Tz_0 \neq 0$. Let W be a closed, absolutely convex 0-neighborhood in H such that $p_W(Tz_0) = 1$. For each $y' \in V^\circ$ let $S_{y'} \in \mathcal{L}(F; G)$ be defined by $S_{y'}(y) = y'(y)z_0$ for every $y \in F$. We claim that the set $S = \{S_{y'} : y' \in V^\circ\}$ is equicontinuous in $\mathcal{L}(F; G)$. Indeed, let N be an absolutely convex 0-neighborhood in G, and let $\delta > 0$ such that $\delta z_0 \in N$. It follows that $\delta S_{y'}(V) \subset N$ for every $y' \in V^\circ$, and therefore S is equicontinuous. Since

$$p_W(T \circ S_{y'}(y)) = |y'(y)| \leq 1 \quad \text{for every } y \in V, y' \in V^\circ,$$

it follows that

$$T \circ S_{y'}(V) \subset W \quad \text{for every } y' \in V^\circ.$$
Let \(f : P(A) \times S \to (H, p_W) \) be defined as before by \(f(y, S) = T \circ S(y) \) for every \(y \in P(A) \) and \(S \in S \). Since \(\Phi \) maps equicontinuous sets onto precompact sets, \(T \) maps bounded sets onto precompact sets, and it follows as before that \(f \) is separately precompact, and Theorem 1.7 applies.

We claim that
\[
d_{P(A)}(y_1, y_2) = p_V(y_1 - y_2).
\]

Since \(T \circ S(y')(V) \subset W \) for every \(y' \in V^o \), it follows as before that
\[
d_{P(A)}(y_1, y_2) = \sup_{y' \in V^o} p_W(T \circ S(y_1 - y_2)) \leq p_V(y_1 - y_2).
\]

To show equality we fix \(y_1, y_2 \in P(A) \). By the Hahn–Banach theorem there is \(y' \in F' \) such that \(y'(y_1 - y_2) = p_V(y_1 - y_2) \) and \(|y'(y)| \leq p_V(y) \) for every \(y \in F \). Hence \(y' \in V^o \) and
\[
p_W(T \circ S(y_1 - y_2)) = |y'(y_1 - y_2)| = p_V(y_1 - y_2).
\]

This shows (**). Since the identity
\[
d_S(S_1, S_2) = p_N(A, W)(\Phi(S_1) - \Phi(S_2))
\]
is true as before, another application of Theorem 1.7 shows that, since \(\Phi \) is \(N(A, W) \)-precompact, then \((S, d_S) \) is precompact, hence \((P(A), d_{P(A)}) \) is precompact, and therefore \(P(A) \) is \(p_V \)-precompact. Thus \(P(A) \) is precompact in \(F \) for every bounded set \(A \subset E \). This shows (c) and completes the proof of the theorem.

Corollary 4.2. Let \(E \) and \(F \) be Hausdorff locally convex spaces. Let \(P \in P(mE; F) \), \(P \neq 0 \), and let \(P^* \) be the continuous linear mapping defined by
\[
P^* : y' \in F_b' \mapsto y' \circ P \in P(mE).
\]

Then \(P \) maps bounded sets onto precompact sets if and only if \(P^* \) maps equicontinuous sets onto precompact sets.

Proof. It suffices to apply Theorem 4.1 with \(G = H = K \) and \(T = \text{identity} \).

When \(m = 1 \) Theorem 4.1 reduces to a precompactness theorem of Geue [6, Theorem 4.1]. Corollary 4.2 is a locally convex version of a result of Aron and Schottenloher [1, Proposition 3.2].

We end this paper with a holomorphic version of Theorem 4.1. Let \(E \) and \(F \) be complex, Hausdorff locally convex spaces, and let \(\mathcal{H}_b(E; F) \) be the space of all holomorphic mappings from \(E \) into \(F \) which map bounded sets onto bounded sets, with the topology of uniform convergence on the bounded subsets of \(E \). The sets
\[
N(A, V) = \{ f \in \mathcal{H}_b(E; F) : f(A) \subset V \},
\]
where \(A \) varies among the bounded subsets of \(E \), and \(V \) varies among the \(0 \)-neighborhoods in \(F \), form a \(0 \)-neighborhood base in \(\mathcal{H}_b(E; F) \). Observe that if \(V \) is closed and absolutely convex, then the Minkowski functional of \(N(A, V) \) is given by
\[
p_{N(A, V)}(f) = \sup_{x \in A} p_V(f(x)).
\]

We then have the following holomorphic version of Theorem 4.1.

Theorem 4.3. Let E, F, G, and H be complex, Hausdorff locally convex spaces. Let $f \in \mathcal{H}_b(E; F)$ and $T \in \mathcal{L}(G; H)$, with $f \neq 0$ and $T \neq 0$, and let Φ be the continuous linear mapping defined by

$$\Phi : S \in \mathcal{L}_b(F; G) \rightarrow T \circ S \circ f \in \mathcal{H}_b(E; H).$$

Then Φ maps equicontinuous sets onto precompact sets if and only if both f and T map bounded sets onto precompact sets.

The proof of Theorem 4.3 is just a repetition of the proof of Theorem 4.1. We leave the details to the reader. We also have the following corollary.

Corollary 4.4. Let E and F be complex, Hausdorff locally convex spaces. Let $f \in \mathcal{H}_b(E; F)$, $f \neq 0$, and let f^* be the continuous linear mapping defined by

$$f^* : y' \in F'_b \rightarrow y' \circ f \in \mathcal{H}_b(E).$$

Then f maps bounded sets onto precompact sets if and only if f^* maps equicontinuous sets onto precompact sets.

Corollary 4.4 may be regarded as a variant of another result of Aron and Schottenloher [1, Proposition 3.6].

References