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Abstract

The CP-violating parameterε′/ε is computed using the low-energy dynamics of the chiral theory supplemented by
resonances. The divergent contributions coming from strongπ–π scattering are tamed by vector–meson exchange terms.
amounts to softening the fast growing high-energy behaviour ofπ–π scattering. The final result forε′/ε shows a smooth
dependence on the cut-off where low energy dynamics is matched with that of QCD.
 2004 Elsevier B.V.
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1. Introduction

The decaysK → ππ are best described by a low energy effective Hamiltonian

(1)H = GF√
2
ξu

{
8∑

i=1

(
zi

(
q2,µ2) + τyi

(
q2,µ2))Qi

}

with zi(q
2,µ2) andyi(q

2,µ2) being the Wilson coefficients andξq = V ∗
qsVqd , τ = ξt /ξu. Qi ’s are 4-quark opera

tors. For the definition of the operators and other notations, see Ref.[1] which we closely follow. Matrix element
for two of these operators,Q6 andQ8, are most important for the evaluation ofε′/ε:

(2)Q6 = −2
∑

q=u,d,s

s̄(1+ γ5)qq̄(1− γ5)d, Q8 = −3
∑

q=u,d,s

eq s̄(1+ γ5)qq̄(1− γ5)d,
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Fig. 1. Feynman diagram forK → ππ with strong final state interac-
tions.

Fig. 2. Feynman diagram forK → ππ with a vector–meson ex-
change.

whereeq = (2/3,−1/3,−1/3). The QCD corrections included in the Wilson coefficients represent the shor
tance terms computed in perturbative QCD. They depend on[ln(Q2/µ2)]γ /β and to next-to-leading order (NLO
corrections in a more complicated way. The numerical values have been tabulated by various groups[2,3]. Com-
parisons of the results show that the various groups agree with each other but values for the coefficients depen
the renormalization scheme. Theµ-dependence in the coefficients is expected to be cancelled by the scale dep
dence of the matrix elements of the operators introducedthrough the upper cut-off in the integrals, and the runn
strange quark mass.

The matrix elements of the form〈ππ |Q6|K〉 and 〈ππ |Q8|K〉 include tree level contributions and loop co
rections. These are low energy processes which must be dealt with by methods other than QCD. Our m
to use the low energy chiral theory for calculating tree and loop diagrams and then match the results
short distance contribution, i.e., the QCD scaleµ is matched with the upper cut-offΛc appearing in the chira
loops. An important criterion for the success of the calculation is smooth (and weak) dependence of the result
µ = Λc.

In the largeNc approach factorizable and non-factorizable amplitudes are treated separately[4] with the factor-
izable amplitudes defining the renormalized coupling constants. In a Dortmund–Fermilab Collaboration[1], it was
shown that toO(p0/Nc) the divergences in the matrix elements of theQ6 andQ8 operators are logarithmic an
occur in non-factorizable diagrams.

The numerical results of this approach atO(p0/Nc) were presented in Table I of Ref.[1], which we also adop
in the present article. The results of the diagrammatic method were reproduced in the background-field met
[5]. Let us denote the nonet of pseudoscalar meson by the matrixΠ = Paλ

a , whereλa ’s are the usual Gell-Man
matrices; then it was shown that toO(p0/Nc)

(3)
π0

f
= πr

Fπ

and
K0

f
= Kr

FK

,

where(π0,K0) and f are the bare pion and kaon fields and decay constants, while(πr,Kr) and Fπ , FK are
renormalized fields and decay constants, respectively.

A large correction in the earlier calculation[5] originates from rescattering of the pions, i.e.,K → ππ → ππ1

where the first step involves the weak operatorsQ6 or Q8 to O(p2/Nc) and the second process is the stro
pion–pion scattering as shown inFig. 1. The large dependence of the cut-off resides on the contactπ–π scattering
which is known to have a bad high-energy behaviour violating unitarity and needs to be moderated by som
amplitudes which restore unitarity.

A standard prescription to restore unitarity is to introduce vector–meson exchange diagrams. For theππ → ππ

scattering we shall use the contact and theρ exchange diagrams. We accomplish this by using a chiral Lagrangia
for pseudo scalars and enlarged by the introduction of vector mesons[6–8]. We extend the calculation of the on
loop diagrams with a strong vertex with the addition of aρ-exchange diagram. Theρ is included to represent th
effects of even heavier vector mesons (likeK∗). In addition the pions are inI = 0 orI = 2 states and the exchan
of ρ-mesons appears only in thet-channel, seeFig. 2.

1 The initial state interactions are expected to give smaller contributions, which we will present in a future publication[9].



258 A. Kundu et al. / Physics Letters B 596 (2004) 256–264

d the
ctly if the

s
rgy

d-

-
l result,

y both

cay

ugh

e

In order to restore unitarity we shall demand thatquadratic divergences cancel between the contact an
ρ-exchange diagrams. It is indeed heartening to note that they come with opposite signs, and cancel exa
following relation is satisfied

(4)
h2

m2
ρ

= 1

3f 2 .

Hereh is theρππ coupling strength andf is the pion decay constant (≈ 92 MeV). The logarithmic divergence
still remain and should be matched to the QCD logarithms. This is our proposal for moderating the high ene
growth ofπ–π scattering.

Thus, we calculate the one-loopK → ππ amplitudes with both contact andρ-exchange diagrams, deman
ing that the quadratic divergences cancel between these two sets. The value ofh � 4.8 obtained from Eq.(4) is
slightly smaller than the one obtained from theρ decay width, but remember thatρ is only a symbolic repre
sentation of all possible vector resonances. Since only logarithmic divergences will be present in the fina
the variation ofε′/ε with the cut-offΛ is expected to be weak. As the weak vertex (withQ6 or Q8) is common
to both the contact and theρ-exchange diagrams, the cancellation of quadratic divergences is respected b
operators.

2. Framework

The effective Lagrangian for pseudoscalar mesons relevant forK → ππ decay up toO(p4) is given by[10]:

Leff = f 2

4

(〈
∂µU†∂µU

〉 + α

4Nc

〈
lnU† − lnU

〉2 + r
〈
MU† + UM

〉) + r2H2
〈
M2〉

(5)+ rL5
〈
∂µU†∂µU

(
MU + U†M

)〉 + r2L8
〈
MUMU + MU†MU†〉,

with 〈A〉 denoting the trace ofA andM = diag(mu,md,ms), f andr are free parameters related to the pion de
constantFπ and to the quark condensate, respectively, withr = −2〈q̄q〉/f 2.

The matrixU is given by

(6)U = exp(iΠ/f ),

where the pseudoscalar meson nonetΠ is given by

(7)Π = λaPa =




π0 + 1√
3
aη +

√
2√
3
bη′ √

2π+ √
2K+

√
2π− −π0 + 1√

3
aη +

√
2√
3
bη′ √

2K0

√
2K− √

2K̄0 −2
3bη +

√
2√
3
aη′




whereλ’s are the usual Gell-Mann matrices,Pa are the pseudoscalar fields, and

(8)a = cosθ − √
2sinθ, b = 1√

2
sinθ + cosθ,

θ being theη–η′ mixing angle. We includeη andη′ contributions in our calculation. It is easy to see that tho
the operatorQ6 vanishes at tree-level due to the unitarity ofU , it still has non-zero contributions at theO(p0/Nc)

level. The loop expansion of the matrix elements is a series in 1/f 2 ∼ 1/Nc, which follows from the short-distanc
expansion in terms ofαs/π ∼ 1/Nc.
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There have been numerous calculations ofε′/ε which try to improve various steps[11]. The expression ofε′/ε
can be written in a compact notation as

(9)
ε′

ε
= GF

2

ω

|ε|ReA0
Im ξt

[
Π0 − 1

ω
Π2

]
(ω = 1/22)

with

(10)Π0 =
∣∣∣∣∑

i

yi(µ)〈Qi〉0

∣∣∣∣(1− Ωη+η′), Π2 =
∣∣∣∣∑

i

yi(µ)〈Qi〉2

∣∣∣∣.
The isospin breaking effect(mu 
= md) is taken into account byΩη+η′ .

Our aim is to introduce vector mesons in terms of a Lagrangian which satisfies the low energy current
One consistent method is in terms of a non-linear chiral Lagrangian with a hidden local symmetry[6]. In this
theory the vector mesons emerge as dynamical vector mesons. The three point vector-pseudo scalar inte
given by

(11)
ih

4

〈
Vµ

(
P∂µP − ∂µPP

)〉
,

whereh stands for the vector-pseudoscalar coupling. Some typical vertices ofρ ’s to pseudoscalar mesons are

π+(p1)π
−(p2)ρ

0: h(p1 − p2)µεµ,

π+(p1)π
0(p2)ρ

−: h(p1 − p2)µεµ,

(12)K+(p1)K̄
0(p2)ρ

−:
h√
2
(p1 − p2)µεµ, etc.,

which is directly related to theρ decay width:Γ (ρ) = h2(|pπ |)3/(6πm2
ρ), wherepπ is the momentum of final stat

pions in theρ rest frame. WithΓ (ρ) = 149.2 MeV, we findh = 5.95. We note in passing that the Kawarabayas
Suzuki–Riazuddin–Fayyazuddin relation gives the valueh = mρ/(

√
2fπ )[12]. Thus the value ofh in Eq. (4) and

the two values in this paragraph differ by small amounts(∼ 19%). The strong four-point vertices involving pion
are obtained from the first two terms of Eq.(5). The weak vertices are obtained from the definitions ofQ6 andQ8.
In the numerical work we shall use the value ofh from Eq.(4) and alsoh = 5.95 obtained from the decay width

We repeated the renormalization procedure and found the following results. For the self energies
pseudoscalars, momentum independent terms combine with the bare masses to define the physical mas
mentum dependent term is included in the wavefunction renormalization and is the same forπ and K. The
renormalization ofFπ andFK is the same as in Ref.[1], i.e., there is noh2 contribution, which leads to the sam
value forL5, similarly the value forL5 − 2L8 is again very small. The quadraticdivergences of the factorizab
diagrams for〈Q6〉0, 〈Q6〉2 and〈π0π0|Q8|K〉 cancel out, what remains of them are small corrections because
O(p0) these matrix elements vanish. The quadraticdivergence from the factorizable diagrams of〈π+π−|Q8|K〉
cancel against the corresponding diagrams with vector meson exchanges when we invoke the condition in Eq(4).
The surviving term is small in comparison with theO(p0) contribution of〈π+π−|Q8|K〉.

We use the following numerical inputs:

mπ = 0.137 GeV, mK = 0.495 GeV, mρ = 0.771 GeV,

(13)f ≡ Fπ = 0.0924, ms(mc) = 0.115 GeV, αS(mZ) = 0.117.

The strange quark mass has an error of 0.020 GeV[13]. The average quark massm̂ is given bym̂ = ms/24.4. We
also useL̂5 = 2.07× 10−3, L̂8 = 1.09× 10−3, Im(ξt ) = (1.31± 0.10) × 10−4 [1] and the isospin breaking facto
of Ωη+η′ = 0.15 [14].
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One can extractΛ(4)
QCD from αS(mZ) at either the continuum upper limit[15] (m̄b(m̄b) = 4.5 GeV,m̄c(m̄c) =

1.4 GeV) or the continuum lower limit (̄mb(m̄b) = 4.0 GeV,m̄c(m̄c) = 1.0 GeV):

(14)Λ
(4)
QCD = 0.279± 0.029 (upper limit), Λ

(4)
QCD = 0.275± 0.029 (lower limit).

We take, as a conservative estimate,Λ
(4)
QCD = 0.277± 0.031 GeV (i.e., between 0.246 and 0.308 GeV).

The Wilson coefficients were tabulated[5] for various renormalization schemes and the values ofΛ
(4)
QCD as

functions of the renormalization scaleµ. The values show a convergence among the schemes asµ increases and
approaches the value ofµ = 1 GeV. This is as expected since QCD is valid at higher momenta.

A second issue is the matching of the coefficients in the various schemes to the cut-off scale of chira
A method for relating the two scales was suggested in[16]. The method introduces

(15)1= q2

q2 − m2 − m2

q2 − m2

and uses the first term as the infrared regulator of QCD and the second term as the cut-off for the chira
This approach provides a matching of the two scalesΛc andµ. Recalculation of the evolution of the coefficien
[16] brings the values of the HV scheme closer to NDR, which are anyway close to the leading order res
this motivates us to use the values of the NDR scheme. We shall use values forΛ

(4)
QCD = 0.245 GeV, however, we

check that interpolation toΛ(4)
QCD = 0.277± 0.031 GeV changes the values ofε′/ε at most 8%. Althernative way

for matching the two theories have also been introduced in other articles[17].

3. Results

As mentioned already, a previous work demonstrated that renormalization of physical quantities (wave fun
tions, masses and decay constants) render the factorizable contribution to〈Q6〉0,2 and〈Q8〉0,2 to O(p0/Nc) finite.
There are loop corrections introduced by the non-factorizable diagrams which to orderp0/Nc were found to be
logarithmic. Going one step further corrections of orderp2/Nc were studied[5], arising from the contact term
which have a quadratic dependence on the cut-off scaleΛ2

c . We combine the contact terms with the vector me
exchange diagrams and cancel the quadratic divergence.

We present in this section the results for the contact terms and vector meson exchange diagrams to ordp2/Nc

in terms of integrals which are summarized inAppendix A. In order to make the reading easier we give in
text explicit formulas for the decayK0 → π0π0 where the results are shorter. For the decay ofK0 → π+π− we
collected the results inAppendix B. In both reactions we included theπ+π− andπ0π0 intermediate states.

The contact terms forK0(pK) → π+π− → π0π0 give

iM00
con1= i

2r2

3
√

2f 3

[
AI9(mπ,mπ,pK,pK) + BI11(mπ,mπ,pK,pK,pK)

− AI10(mπ ,mπ,pK) − BI12(mπ,mπ,pK,pK)

(16)+ ACI8(mπ,mπ,pK) + BCI9(mπ,mπ,pK,pK)
]

with A = −8L5m
2
K , B = 8L5, C = (χ1 + χ2)/4+ m2

K − m2
π andχi = rmi .

The contact term forK0(pK) → π0π0 → π0π0 is

(17)iM00
con2= i

r2

4
√

2f 3
C′[AI8(mπ,mπ,pK) + BI9(mπ,mπ,pK,pK)

]
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Table 1
The contact term and theρ-exchange contributions toO(p2/Nc) for the matrix elements of〈Q6〉 and〈Q8〉 (in units of r2 · MeV) as well as
ε′/ε as functions of the cut-off scalesΛc . The value ofh is taken from the cancellation condition of Eq.(4)

Λc = 0.7 GeV Λc = 0.8 GeV Λc = 0.9 GeV Λc = 1.0 GeV

i〈Q6〉con
0 −14.8 −17.5 −20.4 −23.4

i〈Q6〉ρ0 6.5 8.9 11.6 14.6

i〈Q6〉sum
0 −8.3 −8.6 −8.8 −8.8

i〈Q8〉con
2 6.24 7.43 8.7 10.1

i〈Q8〉ρ2 −2.30 −3.15 −4.11 −5.17

i〈Q8〉sum
2 3.94 4.28 4.59 4.93

Total ε′/ε (10−3) 2.23 1.84 1.53 1.2

with C′ = (χ1 +χ2). The functionsIi(mj ,mk,p, . . .), etc. represent four-dimensional integrals which we defin
theAppendix A. The notation with the numbers as subscripts follow the convention introduced in two Ph.D.
at Dortmund University[18], where explicit formulas for the functional forms after integration are included.

Theρ-exchange diagram forK0(pK) → π+π− → π0π0 is

iM00
exch1= (−i)

2h2r2
√

2f

{
− 1

m2
ρ

[
AI3(mρ,p1) + BI4(mρ,p1,pK)

]
+ AI8(mπ,mρ,p1) + BI9(mπ,mρ,p1,pK)

+ 2AI30(mπ,mπ,mρ,pK,p1,p1) + 2BI31(mπ,mπ,mρ,pK,p1,pK,p1)

(18)+ 2
(
m2

K − m2
π

)[
AI29(mπ ,mπ,mρ,pK,p1) + BI30(mπ,mπ,mρ,pK,p1,pK)

]}
.

Finally theρ-exchange diagram forK0(pK) → π0π0 → π0π0 is zero

(19)iM00
exch2= 0,

because theπ0π0ρ vertex does not exist.
Including the vector mesons with the condition in Eq.(4) eliminates the quadratic dependence on the cut

This is our method for regularizing the integrals in terms of physical particles and interactions which prese
symmetries. The remaining logarithmic dependence of the cut-off will be matched with the lnµ dependence of th
QCD.

We give inTable 1, the contributions toO(p2/Nc) from the contact and theρ exchange terms for〈Q6〉0 and
〈Q8〉2 in unit of r2 · MeV as a function ofΛc in the intervalΛc = 0.7 GeV toΛc = 1.0 GeV. The cut-off scale
must be larger than the mass ofρ and the first column is given only as a point of reference. We note tha
dependence of〈Q6〉sum

0 and〈Q8〉sum
2 on Λc is very small. Since the value ofh from Eq. (4) is smaller than the

value obtained from theρ → ππ decay width, we repeated the calculation forh = 5.95 in Table 2, corresponding
to the coupling fromρ decays. The values forε′/ε are slightly smaller and the variation of the matrix elements w
the cut-off is larger. For the calculation ofε′/ε we use, for the tree and factorizable contributions the values from
Table I of Ref.[1], which are primarily responsible for the remainingΛc dependence ofε′/ε. The results reporte
in this article present a complete calculation of the matrix elementsQ6 andQ8 to orderp2/Nc . The presence o
the vector mesons restores to a large extent the unitarity of the theory and acts as an upper cut-off for the
Our results suggest that a non-linear chiral Lagrangian with a hidden local symmetry may be a more suit
energy limit for QCD.

As mentioned already, the values of the matrixelements are very stable. The calculation ofε′/ε uses the co
efficient functions of NDR atΛ(4)

QCD = 0.245 GeV andms(1 GeV) = 0.125 GeV. We found an improved stabili
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Table 2
The contact term and theρ-exchange contributions toO(p2/Nc) for the matrix elements of〈Q6〉 and〈Q8〉 (in units of r2 · MeV) as well as
ε′/ε as functions of the cut-off scalesΛc . The value ofh is taken to be the physical oneh = 5.95

Λc = 0.7 GeV Λc = 0.8 GeV Λc = 0.9 GeV Λc = 1.0 GeV

i〈Q6〉con
0 −14.8 −17.5 −20.4 −23.4

i〈Q6〉ρ0 9.93 13.6 17.7 22.3

i〈Q6〉sum
0 −5.36 −3.9 −2.7 −1.1

i〈Q8〉con
2 6.24 7.43 8.7 10.1

i〈Q8〉ρ2 −3.51 −4.80 −6.27 −7.89

i〈Q8〉sum
2 2.73 2.63 2.43 2.21

Total ε′/ε (10−3) 2.03 1.57 1.19 0.8

of the values forε′/ε which are consistent with the experimental results[19,20]. The main conclusion is that th
presence of vector mesons improves the calculation of the matrix elements by making them more stable f
of the cut-off.

We demonstrated that the chiral theory enlarged by the introduction of vector mesons can eliminate q
divergences toO(p2/Nc). The improved stability ofε′/ε is encouraging to extent the calculation to the initial st
interactions. We expect the changes to be small, but we plan to complete them and present them in a long
[9]. The extension of the method to the amplitudesA0 andA2 will involve additional operatorsQ1,Q2, . . . with
considerable increase in the computational work. It will be interesting, however, to find out whether vector
make these amplitudes also more stable.

Note added in proof

For an overview of the experimental status of CP-violation inK meson decays we recommend the book
K. Kleinknecht, Uncovering CP-Violation, Springer-Verlag, Berlin-Heidelberg, 2003.
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Appendix A. Four-dimensional integrals

Several integrals have been used in this article and we try to define then in a compact notation. The inteI3,
I4 have the same denominator but have different numerators separated from each other with semicolons

(A.1)I3;4 = i

(2π)4

∫
d4q

{1; (p · q)}
(q − k)2 − m2

.

The integralsI8, I9, I10, I11 andI12 have again the same denominator but have different numerators separate
each other with semicolons

(A.2)I8;9;10;11;12= i

(2π)4

∫
d4q

{1; (p · q);q2; (p1 · q)(p2 · q);q2(p · q)}
(q2 − m2)[(q − k)2 − m2] .
1 2
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The same notation is used in the integralsI29, I30 andI31,

(A.3)I29;30;31 = i

(2π)4

∫
d4q

{1; (p1 · q); (p1 · q)(p2 · q)}
(q2 − m2

1)[(q − k)2 − m2
2][(q − p)2 − m2

3]
.

Among these integralsI3, I4, I10, I11 andI12 have quadratic divergences in the cut-off regularization scheme. Th
quadraticlly divergent parts are given by

I3(m, k)|Λ2
c div = 1

(4π)2
Λ2

c,

I4(m, k,p)|Λ2
c div = (k · p)

2(4π)2
Λ2

c,

I10(m1,m2, k)|Λ2
c div = 1

(4π)2Λ2
c,

I11(m1,m2, k,p1,p2)|Λ2
c div = (p1 · p2)

4(4π)2 Λ2
c,

(A.4)I12(m1,m2, k,p)|Λ2
c div = (k · p)

2(4π)2Λ2
c .

Using the quadratic divergences and the formulas inthis article the reader can verify the cancellations.

Appendix B. K → π+π− decay amplitudes at O(p2/Nc)

The contact term forK0(pK) → π+π− → π+(p1)π
−(p2) is given by

iM+−
con1= −i

r2

3
√

2f 3

[
AI10(mπ,mπ,pK) + BI12(mπ,mπ,pK,pK)

− 2AI9(mπ ,mπ,pK,2p2 − p1) − 2BI11(mπ,mπ ,pK,pK,2p2 − p1)

(B.1)− ACI8(mπ,mπ,pK) − BCI9(mπ,mπ,pK,pK)
]

with C = (χ1 + χ2) + (m2
K − m2

π).
The contact term forK0(pK) → π0π0 → π+(p1)π

−(p2) is

iM+−
con2= −i

r2

3
√

2f 3

[
AI10(mπ,mπ,pK) + BI12(mπ,mπ,pK,pK)

− AI9(mπ,mπ,pK,pK) − BI11(mπ,mπ,pK,pK,pK)

(B.2)− AC′I8(mπ,mπ ,pK) − BC′I9(mπ ,mπ,pK,pK)
]
.

Theρ-exchange diagram throughπ+π− loop gives

iM+−
exch1= (−i)

h2r2

√
2f

{
− 1

m2
ρ

[
AI3(mρ,p1) + BI4(mρ,p1,pK)

]
+ AI8(mπ,mρ,p1) + BI9(mπ,mρ,p1,pK)

+ 2AI30(mπ,mπ,mρ,pK,p1,p1) + 2BI31(mπ,mπ,mρ,pK,p1,pK,p1)

(B.3)+ 2
(
m2

K − m2
π

)[
AI29(mπ ,mπ,mρ,pK,p1) + BI30(mπ,mπ,mρ,pK,p1,pK)

]}

with C′ = (χ1 + χ2)/4+ (m2
K − m2

π).



264 A. Kundu et al. / Physics Letters B 596 (2004) 256–264
Theρ-exchange diagram throughπ0π0 loop gives the same contribution, i.e.,

(B.4)M+−
exch2=M+−

exch1.

It is straightforward to verify that the cancellation condition of Eq.(4) also holds forK → π+π−.
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