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ABSTRACT 

Linear programming is formulated with the vector variable replaced by a matrix 
variable, with the inner product defined using trace of a matrix. The theorems of 
Mot&n, Farkas (both homogeneous and inhomogeneous forms), and linear- 
programming duality thus extend to matrix variables. Duality theorems for linear 
programming over complex spaces, and over quatemion spaces, follow as special cases. 

1. INTRODUCTION 

Denote by [w m x r the vector space of all real m X r matrices, equipped with 
the usual inner product: (X, Y) =Tr(XrY), where Tr denotes the trace of a 
square matrix. Various theorems of mathematical programming, including the 
Farkas and Motzkin theorems and linear-programming duality, extend to 
problems where the space Iw” of variables is replaced by IWmXr. Results for 
programming over complex, or quatemion, spaces follow as special cases. 

Any linear functional L on Y = 02 mxr can be represented by some HEY, 

by 

(VYEY) L(Y)= i 5 HiiYii=Tr(HTY). 
i=r j=r 

(I) 
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The isomorphism 8:aBmX’+IW”‘defined by 8(Y)=(Y,,,...,Y,,,Y,,,...,Y,,) 
preserves the trace; thus Tr( Hr Y) =( @ZZ)r( 8Y ). Correspondingly [lo], the 
inner product (f?(ZZ),B(Y)) =Tr(HrY) and (AXR)=(A@Br)0(X), where 
G3 denotes Kronecker product. Let S be a closed convex cone in Y= Iw mXr. 
An inequality AX-KES, where XE[W”~‘, AEIW~~“, KE[W*~*, can be 
expressed as A%(X) - e(K) E t9( S), where A# E Iw mrXnr has components ATj Ut 
=SuiAit, where SUi is the Kronecker delta, the indices i, i label rows of A*, 
and t, u label columns of A#. The (positive) dual cone of S is the set S* of all 
linear functionals P on Y such that P(Y )a0 for each YES. It follows from (1) 
that 

S*={PEY:(VYtS)Tr(PrY)aO}. (2) 

In what follows, I, (or Z) denotes the unit matrix in Rrxr; [w + = [0, cc); 
symbols X, S, . . . denote sets (vector spaces or cones), whereas X, S, . . . denote 
matrices. Let U={XZ,: XER +}; then U*={Z~RrXr:Tr(Z)~O}. Also let 
u, = {AI,: XER} and V, = {XI, : X E [w }. The orthogonal complement of a 
subspace X is denoted by XI. Let V={hZ,: h~lW +}. 

The Mot&n alternative theorem for cone inequalities in finitedimensional 
spaces (see [4, Lemma 21 or [S, Theorem 2.5.21) translates by isomorphism e 
to the following theorem for matrix variables. 

THEOREM 1. Let AE~B”‘~~, BE[WqX”, CEIWrXS. Let SC(wmx’ be u 
convex cone with interior; let T C [w q xT and H C Iw nXs be closed convex cones; 
let the cones BT(T*) and H*CT -{WCT: WEH*} be closed. Then exactly 
one of the following systems has a solution (X or (P, Q, R), respectively): 

(3X) AXEintS, BXET, XCEH; (3) 

(~QET*, REH*, O#PES*) PTA+QTB+CRT=O. (4) 

A direct corollary is the following matrix version of Farkas’s theorem. 

THEOREM 2. Let X be a subspace of IWnxr; let AEIW”‘~“, MEOB’~“, 
B, EIwnx’; let KC[WmX’ and LClw nXs be convex cones, such that the cones 
AT(K*)+X1 and L*MT +X1 are closed in IWnXr. Z’hen 

[( AXEK, XMEL, XEX) * Tr(B,?‘X)aO] 

w [(~cEK*, DEL*, NEXT) (R,+N)~=c~A+MD~]. (5) 

The closed-cone hypothesis is fulfilled if AT(K*) and L*MT are closed in X. 
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The cones in Theorems 1 and 2 need not be polyhedral. A more restrictive 
sufficient hypothesis [ 121 is that AX, lint K and X,M~int L for some 
X, EX. Ben-Israel has given another matrix Farkas theorem [2]: 

[AXB=C, X>O] w [ArUBraO, Tr(UrC)aO], (6) 

in which the cone considered is, however, a nonnegative orthant, and the 
subspace X is the whole space. The system (5) (with N=O) is obtainable from 

(6) by the replacements 

AT+ A [ 1 1, ’ 
BT+=[Z,, M], C+B. 

Another version of Farkas’s theorem, involving the trace inner product, was 
given in [6], Theorem 11. 

The study of minimization problems with matrix variables was suggested 
to the authors by the matrix quadratic programs in [8] and [ll]. 

2. NONHOMOGENEOUS FARKAS THEOREM FOR MATRIX SPACES 

THEOREM 3. Let AER”‘~“, DERmXr, BERnXr, cell. Let KCRmX’ 

be a closed polyhedral cone. Assume that AX, - DEK for some X, E Iwnx’. 

Then 

[AX-DEK + Tr(BTX)>c (xEIw~~~)] 

w [(3CEK*) BT=CTA, Tr(DrC)ac]. (8) 

Proof The system 

[t ;f’][i]~[E] = Tr([BT,--cr-‘Z,][~])20 (9) 

is equivalent, by Theorem 2, to the system 

(XEIC*, NEIJ*)[L~~, -cr-lz,] =[cT, NT] t I 1 I” . (10) * 
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Substituting for U* shows that (10) is equivalent to Br = CrA, DrC- CT -‘I, 
EU*, for some CEK*. Hence (9) is equivalent to the right side of (8). 

Suppose that the right side of (8) does not hold. Then (9) does not hold; so 
there exist Y’ and A’ satisfying AY’- DA’ E K, A’ E U, Tr( BrY’- cr -‘A’) < 0, 
and A’=/3Z, for some /I 2 0. If p > 0, then X = p -‘Y’ satisfies AX-D EK, 
Tr(BTX)<c. If p=O, then AY’EK, Tr(BTY’)<O. For o>O, 

but 

A(X,+aY’)-D=(AXO-D)+oAY%K+oKcK; (II) 

Tr{BT(X,,+cuY’)}=Tr(Z3rXo)+aTr(BTY’)<c 

for sufficiently large 01> 0, since Tr( BTY’) < 0. In either case, the left side of 
(8) is contradicted. Hence the left side of (8) implies the right side. 

Conversely, let the right side of (8) hold. If AX- DEK, then 

Tr(BTX)=Tr(CTAX)aTr(CrD)=Tr(DTC)>c; 

hence the left side of (8) holds. n 

REMARK. If K is a closed convex cone, not polyhedral, then the result of 
Theorem 3 remains valid, provided that the convex cone 

(12) 

is assumed closed. Bellman and Fan [l] have given a nonhomogeneous Farkas 
theorem for positive semidefinite Hermitian matrices only. 

4. LINEAR PROGRAMMING FOR MATRIX VARIABLES 

Let X be a subspace of IWnX’, CEOBnX’, AE[W~~‘, JEIWnXS, BEaBmXr, 
MEIW’~“. Let KcRmX’ and LCRnX” be closed convex cones, not neces- 
sarily polyhedral. Consider the pair of programming problems: 

Min&ize Tr( C TX ) subject to AX--BEK, XM-JEL; 03) 

Ma$n$ze Tr(BTZ)+Tr(JWT) 

subject to ZEK*, WEL*, CT=ZTA+MWT. (14) 
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The problems (13) and (14) h ave linear objective functions, and linear 
constraints with convex cones. The unconventional restriction of X to a 
subspace has later application. Linear programs with matrix variables are 
applicable when a conventional linear program has nr variables, which may 
relevantly be arranged as a nXr matrix. For example, in a transportation 
problem, the constraints are e:X = B, Xe, =_I, X 3 0, where e,, e,, are columns 
of ones, and (13) extends this to more general weighting matrices. The 
following theorem proves duality for (13) and (14). 

THEOREM 4. Let (13) reach a minimum at X =_f; let Q= A% B and 
R = TM-J; assume that the cones 

[: gT[::] and {[:][r :]‘:[z]#:]J Q5) 
are closed (in particular, K and L may be polyhedral). Then (14) reaches a 
maximum at some Z = Z, W= W, and 

Tr(CrX)=Tr(BrZ)+Tr(JWr); 

CT-ZTA+MWT EXI, Tr( zr(A&B))=O, 

Tr(( XM-])WT)=O. 06) 

Also Tr(CTX)>Tr(BTZ)+Tr(JWT) h w enever X is feasible for (13) and 
z, w for (14). 

Proof. Let X and Z, W satisfy the constraints of (13) and (14) respec- 
tively. Then 

Tr(CTX)-[Tr(BTZ)+Tr(JWT)]=Tr[ZT(AX-B)] 

+Tr[(XM-J)WT] 30. (17) 

Now let YEX, h=XZ, EU,, E=<Z, EV, satisfy 

[; ;I[: #[; .,:q 

(18) 
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If Y=O, then Tr(CrY)>O. If Y#O, then for some KEK and LEL, 

A(%+cuY)-B=(l-ah)Q+aKEK, 

(X+cuY)M-J=(l-a[)R+(YLEL 

whenever (Y E R + is sufficiently small. Since x minimizes (13), Tr[ C’( x+ Y )] 
> Tr(Cr%). So, in either case, (18) implies that 

Tr(CrY)=Tr{[ T i][ i :]}>O. 

From Theorem 2, given that the cones (15) are closed, there follows 

for some matrices 

and 

Since NEU* I?( -U)*, Tr(N)=O; similarly Tr(S)=O. Hence (20) gives CT + 
E = zTA + MWT, E E X I, together with Tr( Z’TQ) = 0 = Tr( R WT ). Therefore 

Tr( CT_%) - [Tr( BTZ) +Tr( ./@‘)I =Tr( ZrAx) +Tr( MWT%) 

-Tr(BTZ)-Tr(JWr) 

=Tr[ZT(A%B)]+Tr[(%M--J)@T]=O, 

(21) 
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-- 
using Tr(MWTX)=Tr(%MWT). This, with (17), proves that (2, W) maxi- 
mizes (14). 0 

5. COMPLEX AND QUATERNION LINEAR PROGRAMMING 

A vector in complex space C n can be represented isomorphically by a 
column of n real submatrices 

xj Yj I 1 -Yj xi 
(j=1,2 )...) 12; xi,yi Ella), (22) 

and thus by a 2nX2 real matrix. Theorem 5 may be applied, taking X as the 
subspace of such matrices. The complex inner product (z, w ) = Re(zrw) 
differs only by a constant factor from Tr( ZTW), where Z, W E IW2”x2 repre- 
sent z, w EC n. Programming in quatemion spaces may be handled similarly, 
representing each quatemion q=aI+bi+cj+dk by a real 4X4 matrix 

a b c d 

-b a -d c 

-C d a b 

-d -c -b a 

(23) 

If quatemion vectors 9, r are thus represented by real matrices 0, R, then the 
inner product bTr(QTR) represents the scalar part of 9r, where 9 denotes the 
conjugate of 9 (thus aI-bi-cj-dk). (The scalar part of 9 is a.) 

Denote by (e;) h t e inner product, for either complex or quatemion 
n-space. Denote by W either C, or quatemion space; let M: W” + W” be a 
linear map; let b, c E W”; let S c W” be a closed convex cone; denote by H 
the orthogonal complement of IF8 in W. Consider the pair of linear programs 
(considered as either in complex or in quatemion space) 

Minimize (c, x ) 
XEW” 

subject to Mx- b ES; (24) 

Maximize (b, z ) 
ZEW”’ 

subject to ,-ES*, MTz=c. (25) 

THEOREM 5. If x and z satisfy the constraints of (24) and (25) respec- 
tively, then (c, x) 2 (b, z) . Zf (24) reaches a minimum at x= 2, and the 
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convex cone 

[ “0” M?;b]‘[ s;] 
(26) 

is closed, then (25) reaches a maximum at some Z, where (c, X) = (b, z) . 

Proof Apply Theorem 4. n 

For linear programming in complex spaces, with vector variables, see [9] 
and [7]. 

The authors thank two referees for several references and amendments. 
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