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Abstract

Stable partial metric spaces form a fundamental concept in Quantitative Domain Theory. I
all domains have been shown to be quantifiable via a stable partial metric.

Monoid operations arise naturally in a quantitative context and hence play a crucial role in s
applications. Here, we show that the structure of a stable partial metric monoid provides a s
framework for a unified approach to some interesting examples of monoids that appear in The
Computer Science. We also introduce the notion of a semivaluation monoid and show that
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1. Introduction

Throughout this paper the lettersR,R
+ andω will denote the set of real numbers,

nonnegative real numbers and of nonnegative integer numbers, respectively.
Matthews introduced in [14] the notion of a partial metric space as a part of the stu

denotational semantics of dataflow networks, and obtained, among other results, a
lationship between partial metric spaces and the so-called weightable quasi-metric
These structures have been applied to obtain an extensional treatment of lazy da
deadlock in [15].

Let us recall that apartial metricon a (nonempty) setX is a functionp :X × X → R
+

such that for allx, y, z ∈ X:

(i) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y);
(ii) p(x, x) � p(x, y);

(iii) p(x, y) = p(y, x);
(iv) p(x, z) � p(x, y) + p(y, z) − p(y, y).

A partial metric spaceis a pair(X,p) such thatX is a (nonempty) set andp is a partial
metric onX.

Each partial metricp onX generates aT0-topologyT (p) onX which has as a base th
family of openp-balls{Bp(x, ε): x ∈ X, ε > 0}, whereBp(x, ε) = {y ∈ X: p(x, y) < ε}
for all x ∈ X andε > 0.

Note that contrarily to the metric case, some openp-ball may be empty [14, p. 187].
The following is a simple but useful example of a partial metric space.
For each pairx, y ∈ R

+ let p(x, y) = x ∨ y. Thenp is a partial metric onR+ and thus
(R+,p) is a partial metric space.

If (X,p) is a partial metric space, then(X,�p) is clearly an ordered set, whe
x �p y ⇐⇒ p(x, x) = p(x, y).

In the sequel�p will be called theassociated(partial) order of p.
In [23] it is shown thatall domains are quantifiable via a partial metric induced

a suitable semivaluation.
We focus in the following on three well-known Computer Science examples of mo

for which the notion of a (stable) partial metric monoid will provide a unifying concep
The interval domain (or the partial real line) forms a model for a programming

guage for higher-order exact real number computation [5]. It consists of the setI (R) of all
nonempty closed and bounded real intervals ordered by reverse inclusion, together
artificial least element⊥. In [14] (see also [8,16]) a partial metricp is defined onI (R) such
that its associated order coincides with the reverse inclusion order and thus(I (R),�p) is
a meet semilattice as it is observed in [22]. We shall denote byI ([0,1]) the set of all non-
empty closed and bounded intervals contained in[0,1]. It was proved in [6] thatI ([0,1])
can be equipped with a suitable structure of monoid for which[0,1] is the neutral ele
ment. For simplicity and without essential loss of generality, we shall refer in the seq
I ([0,1]) as the interval domain.

If Σ∞ denotes the set of all finite and infinite “words” over a nonempty alphabeΣ ,
then (Σ∞,�) is a meet semilattice where� is the prefix order onΣ∞. Furthermore



950 S. Romaguera, M. Schellekens / Topology and its Applications 153 (2005) 948–962

s of

space
the
myth

space is
2].

y
ection 2
show
noids.
text of

i-

onoid
n, we
et a
e. For
id op-
ently,

main
ther

on of

do not

D for
ion
d DC
etric
there is a partial metricpΣ on Σ∞ whose associated order coincides with� [25,12,14].
The domain of words(Σ∞,pΣ) appears in a natural way by modeling the stream
information in Kahn’s model of parallel computation [10,14].

On the other hand, Schellekens introduced in [20] the complexity (quasi-metric)
to develop a topological foundation for the complexity analysis of algorithms. Via
study of its dual several quasi-metric properties of the complexity space, including S
completeness and total boundedness, were discussed in [18]. The dual complexity
a weightable quasi-metric space that is a meet semilattice for its associated order [2

In Section 3, we show that, indeed, both(I [0,1],p), (Σ∞,pΣ) and the dual complexit
space can be structured, in a natural way, as stable partial metric monoids (see S
for definitions). In Section 4 we introduce the notion of a semivaluation monoid and
that there is a bijection between stable partial metric monoids and semivaluation mo
This result provides an extension of the correspondence theorem of [22] to the con
monoids.

A natural property in the context of monoids(X, ·) is that of m-invariance. A quas
metric d on a monoid(X, ·) is m-invariant (“monoid-invariant”) whend(x · z, y · z) �
d(x, y) andd(z · x, z · y) � d(x, y), for all x, y, z ∈ X.

We reserve the adjective “m-invariant” to indicate invariance with respect to the m
operation. When we refer to invariance with respect to a (semi)lattice operatio
use the adjective “l-invariant” (“lattice-invariant”). It is of course possible to interpr
(semi)lattice operation as a monoid operation, in which case the two notions coincid
our purposes, most examples involve a semilattice equipped with an additional mono
eration. We will see that in general l-invariance and m-invariance behave quite differ
hence it is useful to clearly separate the notions.

It has recently emerged that l-invariance plays a crucial role in Quantitative Do
Theory [22,24]. Hence, it is interesting to explore the notion of m-invariance for o
monoid operations which arise naturally in Quantitative Domain Theory.

Aside from a notion of m-invariance for quasi-metrics, one can formulate a noti
m-invariance on partial metricsp as follows.

A partial metricp on a monoid(X, ·) is calledm-invariant if p(x · z, y · z) � p(x, y)

andp(z · x, z · y) � p(x, y), for all x, y, z ∈ X.
When one studies the above examples, it quickly emerges that the two notions

necessarily arise together.
We summarize our findings in Table 1, where we use the following abbreviations: I

the Interval Domain, (DW,⊕) for Domain of Words equipped with the addition operat
⊕, (DW, conc) for the Domain of Words equipped with the concatenation operation an
for the Dual Complexity Space. For each domain, we indicate whether the partial m

Table 1
m-invariance properties

ID (DW, ⊕) (DW, conc) DC

m-invariance of partial metric Yes No Yes No
m-invariance of quasi-metric No Yes No Yes
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and the associated weightable quasi-metric are m-invariant with respect to the m
operation.

In the light of Table 1 it is interesting to point out that there exists an easy example
m-invariant partial metric monoid whose associated weightable quasi-metric is m-inv
(see Remark 6 below).

A preliminary version of this paper was presented by the authors at the MFCSIT
under the title “Weightable quasi-metric semigroups and semilattices” (Electronic No
Theoretical Computer Science 40 (2001)).

2. Basic notions and preliminary results

Our basic references for quasi-metric spaces are [7,12,13].
In our context, by aquasi-metricon a setX we mean a nonnegative real valued funct

d onX × X such that for allx, y, z ∈ X:

(i) d(x, y) = d(y, x) = 0⇐⇒ x = y;
(ii) d(x, y) � d(x, z) + d(z, y).

A quasi-metric spaceis a pair(X,d) such thatX is a (nonempty) set andd is a quasi-
metric onX.

The associated(partial) order �d of a quasi-metricd on a setX is defined by
x �d y ⇐⇒ d(x, y) = 0.

Each quasi-metricd on X generates aT0-topologyT (d) on X which has as a base th
family of opend-balls {Bd(x, r): x ∈ X, r > 0}, whereBd(x, r) = {y ∈ X: d(x, y) < r}
for all x ∈ X andr > 0.

If d is a quasi-metric onX, then the functionds defined onX × X by ds(x, y) =
max{d(x, y), d(y, x)}, is a metric onX.

The following is a simple but useful example of a quasi-metric space.
For each pairx, y ∈ R let u(x, y) = (y − x) ∨ 0. Thenu is a quasi-metric onR called

the upper quasi-metric onR. Note thatus is the usual metric onR.
The weightable quasi-metric spaces were introduced by Matthews in [14]. A q

metric space(X,d) is calledweightableif there exists a functionw :X → R
+, such that

for all x, y ∈ X, d(x, y)+w(x) = d(y, x)+w(y). The functionw is said to be aweighting
functionfor (X,d) and the quasi-metricd is weightable by the functionw.

The following result provides the precise relationship between partial metric space
weightable quasi-metric spaces.

Theorem 1 [14].

(a) Let (X,p) be a partial metric space. Then, the functiondp :X × X → R
+ defined by

dp(x, y) = p(x, y) − p(x, x) for all x, y ∈ X is a weightable quasi-metric onX with
weighting functionw given byw(x) = p(x, x) for all x ∈ X. FurthermoreT (p) =
T (dp).
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(b) Conversely, if(X,d) is a weightable quasi-metric space with weighting functionw,
then the functionpd :X × X → R

+ defined bypd(x, y) = d(x, y) + w(x) is a partial
metric onX. FurthermoreT (d) = T (pd).

Observe that the restriction toR+ of the quasi-metricu defined above is weightab
with weighting function the identity function onR+.

Next we discuss the m-invariancy of partial metrics and (weightable) quasi-metr
monoids. Although the results also hold for semigroups, it suffices to our purposes h
state them in the realm of monoids. Let us recall that amonoidis a semigroup(X, ·) with
neutral element.

A (quasi-)metric monoidis a triple (X, ·, d) such that(X, ·) is a monoid andd is an
m-invariant (quasi-)metric onX.

It is well known [11] that a (quasi-)metricd on a monoid(X, ·) is m-invariant if and
only if for all x, y, a, b ∈ X: d(x · a, y · b) � d(x, y) + d(a, b).

We show that the situation is quite different for m-invariant partial metrics.

Proposition 1. Let (X, ·) be a monoid and letp be an m-invariant partial metric on X
Thenp(x · a, y · b) � p(x, y) + p(a, b) for all x, y, a, b ∈ X.

Proof. Let x, y, a, b ∈ X. Thenp(x · a, y · b) � p(x · a, y · a) + p(y · a, y · b) − p(y · a,

y · a) � p(x, y) + p(a, b). �
Remark 1. The converse of Proposition 1 does not hold in general. Indeed, consid
monoid(R+,+), where+ is the usual addition, and letp be the partial metric onR+ given
by p(x, y) = x ∨ y. Then, for allx, y, a, b ∈ R

+, p(x + a, y + b) = (x + a) ∨ (y + b) �
(x ∨ y) + (a ∨ b) = p(x, y) + p(a, b). However, it is clear that for allx, y, z ∈ R

+ with
z > 0, one hasp(x + z, y + z) > p(x, y).

Let us recall that a real valued functionf defined on a monoid(X, ·) is subadditive
provided thatf (x · y) � f (x) + f (y) for all x, y ∈ X.

Proposition 2. Let (X, ·, d) be a weightable quasi-metric monoid with weighting fu
tion w. If w is subadditive, thenpd(x ·a, y ·b) � pd(x, y)+pd(a, b) for all x, y, a, b ∈ X.

Proof. Let x, y, a, b ∈ X. Thenpd(x · a, y · b) = d(x · a, y · b) + w(x · a) � d(x, y) +
d(a, b) + w(x) + w(a) = pd(x, y) + pd(a, b). �
Remark 2. Related to Proposition 2, we note that(R+,+, u) is an example of a quas
metric monoid for which the identity function is a (sub)additive weighting function,
such that the partial metricup is not m-invariant (in fact,up is the partial metric of Re
mark 1 above).

In the light of the above propositions and remarks and for the sake of generali
propose the following notion.
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Definition 1. A partial metric monoidis a triple(X, ·,p) such that(X, ·) is a monoid and
p is a partial metric onX such that for allx, y, a, b ∈ X, p(x ·a, y ·b) � p(x, y)+p(a, b).

We clarify at this stage the relationship between weightable quasi-metric monoid
a subadditive weighting function and partial metric monoids.

From Proposition 2, it follows that every weightable quasi-metric monoid with a
additive weighting function is a partial metric monoid. (The examples which we dis
below will show that it is not the case that this partial metric monoid is necessarily m
variant.) The converse is not true, i.e. it is not the case that every partial metric mono
a corresponding weightable quasi-metric monoid, since in general the quasi-metric
m-invariant. We do obtain a subadditive weighting function however.

Let us recall that an ordered set(X,�) is a meet semilattice if every two elemen
x, y ∈ X have an infimumx � y.

As a consequence of Theorem 1(a), we have the following.

Proposition 3. Let (X,p) be a partial metric space. Then the following hold:

(1) �p =�dp onX.
(2) (X,�p) is a meet semilattice if and only if(X,�dp ) is a meet semilattice.

According to [21], aquasi-metric meet semilatticeis a quasi-metric space which is
meet semilattice for its associated order. A quasi-metric meet semilattice(X,d) is called
l-invariant if for all x, y, z ∈ X, d(x � z, y � z) � d(x, y).

Lemma 1 [22]. A quasi-metric meet semilattice(X,d) is l-invariant if and only ifd(x,

x � y) = d(x, y) for all x, y ∈ X.

Proposition 4. Let (X,p) be a partial metric space. Then(X,dp) is an l-invariant quasi-
metric meet semilattice if and only if(X,�p) is a meet semilattice such thatp(x, y) =
p(x � y, x � y) for all x, y ∈ X.

Proof. Suppose that(X,dp) is an l-invariant quasi-metric meet semilattice. By Propo
tion 3, (X,�p) is a meet semilattice. Letx, y ∈ X. From Theorem 1(a), Lemma 1 and t
fact thatx � y �p x, we obtainp(x � y, x � y) = p(x, x � y) = dp(x, x � y) + p(x, x) =
dp(x, y) + p(x, x) = p(x, y).

Conversely, by Proposition 3,(X,�dp ) is a meet semilattice. Now letx, y ∈ X. Then
dp(x, x � y) = p(x, x � y) − p(x, x) = p(x � y, x � y) − p(x, x) = p(x, y) − p(x, x) =
dp(x, y). �

A partial metric space(X,p) satisfying the conditions of Proposition 4 will be call
a stable partial metric(meet semilattice) in the sequel (cf. [26]).

Definition 2. A stable partial metric monoid is a partial metric monoid(X, ·,p) such that
(X,p) is a stable partial metric meet semilattice.
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From Proposition 4 we deduce the following relationship between the monoid ope
and the associated order for a stable partial metric monoid(X, ·,p):

p
(
(x · a) � (y · b), (x · a) � (y · b)

)
� p(x, y) + p(a, b) for all x, y, a, b ∈ X.

3. Three examples: The interval domain, the domain of words and the dual
complexity space

In this section we shall show that the interval domain, the domain of words and th
complexity space can be modelled as stable partial metric monoids.

Example 1. As a first example we discuss the interval domain of [4,6]. Recall (see
tion 1), that the interval domainI ([0,1]) consists of the nonempty closed and boun
intervals of[0,1] ordered by reverse inclusion. Letp be the partial metric onI ([0,1]) (see
[8,16]) given byp([a, b], [c, d]) = (b ∨ d) − (a ∧ c).

One can easily verify that the associated weightable quasi-metric space(I ([0,1]), dp) is
an l-invariant quasi-metric meet semilattice with a bounded weighting function (cf. [
Thus(I ([0,1]),p) is a stable partial metric meet semilattice by Proposition 4.

The interval domain forms a monoid with respect to the operation◦, defined as follows
(cf. [6]): One considers for every intervalx := [a, b] ⊆ [0,1], the unique increasing affin
map: λ → rλ + s : [0,1] → [0,1] with imagex, namely, consx(λ) = (b − a)λ + a. In
practicex is assumed to haverational end-points so that one has countably many primi
operations [6].

From [6], we know that ifM is a real PCF program of real number type, then one kn
that the value consx(M) can be regarded as a partially evaluated program with pa
resultx. Partial results can be combined via a composition operation on the unit interv
main byx ◦y = consx(y). This makes the interval domain over[0,1] into a semigroup with
neutral element[0,1]. Associativity can be expressed as consx ◦consy(λ) = consx◦y(λ).
The information order on the interval domain is recovered by a refinement pro
x ⊇ y ⇐⇒ there is somez with x ◦ z = y.

Next we show thatp is m-invariant on(I ([0,1]),◦), and thus(I ([0,1]),◦,p) will be
a partial metric monoid by Proposition 1. Indeed, letx := [a, b], y := [c, d] andz := [s, t]
be elements of the interval domain. Sincex ⊇ x ◦ z, andy ⊇ y ◦ z, it immediately follows
that p(x ◦ z, y ◦ z) � (b ∨ d) − (a ∧ c) = p(x, y). On the other handp(z ◦ x, z ◦ y) =
((t − s)(b ∨ d) + s) − ((t − s)(a ∧ c) + s) = (t − s)((b ∨ d)− (a ∧ c)) = (t − s)p(x, y) �
p(x, y).

We conclude thatp is m-invariant on(I ([0,1]),◦) and hence(I ([0,1]),◦,p) is a stable
partial metric monoid.

Remark 3. (I ([0,1]),◦, dp) is not a quasi-metric monoid. In fact, letx := [0,1], y :=
[0,1/2] andz := [s, t] with s > 0, t � 1. Thenx ◦ z = z andy ◦ z := [s/2, t/2]. Therefore
dp(x ◦ z, y ◦ z) = p(x ◦ z, y ◦ z)−p(x ◦ z, x ◦ z) = (t − s/2)− (t − s) = s/2 > 0. However
dp(x, y) = p(x, y) − p(x, x) = 1− 1= 0.

Observe also that the weighting functionw for (I ([0,1]), dp), given byw(x) = p(x, x),
is subadditive sincep(x ◦ y, x ◦ y) � p(x, x) for all x, y ∈ I ([0,1]).
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Recall that anordered monoidis a triple(X, ·,�) such that(X, ·) is a monoid and� is
an order onX such that ifx � y, thenx · z � y · z andz · x � z · y for all z ∈ X. Clearly,
if (X, ·, d) is a quasi-metric monoid, then(X, ·,�d) is an ordered monoid. In contrast
this fact,(I ([0,1],◦,�p) is not an ordered monoid because, as we have shown abov
has forx := [0,1], y := [0,1/2] andz := [s, t], with s > 0, t � 1, p(x, x) = p(x, y) but
p(x ◦ z, x ◦ z) < p(x ◦ z, y ◦ z).

Since on a meet semilattice(X,�), the operation� is associative, it clearly follows tha
for each l-invariant quasi-metric meet semilattice(X,d) with top�, the triple(X,�, d) is
a quasi-metric monoid for which� is its neutral element. In our next examples we sh
model both the domain of words and the dual complexity space as weightable quasi-
monoids that are also l-invariant quasi-metric meet semilattices, in such a way th
monoid operation naturally given to the corresponding “support” set (an “alphabet
R

+, respectively) extend to the space. In this way, the two spaces will be stable
metric monoids, of course. In particular, when the dual complexity space is equippe
the natural pointwise addition operation we obtain a weightable quasi-metric monoid
respect to this operation as well as with respect to its meet semilattice operation su
the weighting function is (sub)additive (see Example 3 below). We also explore exte
the domain of words with an operation of addition. We show that a natural operatio
be defined on this domain, which on undefined elements yields undefined and for
the domain of words forms a weightable quasi-metric monoid with subadditive weig
function.

Example 2. Let Σ be a nonempty alphabet. LetΣ∞ be the set of all finite and infinit
sequences (“words”) overΣ , where we adopt the convention that the empty sequenceφ is
an element ofΣ∞.

Denote by� the prefix order onΣ∞, i.e.,x � y ⇐⇒ x is a prefix ofy. Then(Σ∞,�)

is an algebraic complete partial order which is a Scott domain ifΣ is countable (see [25
Example 2.2]).

Now, for eachx, y ∈ Σ∞ we definex � y as the longest common prefix ofx,andy, and
for eachx ∈ Σ∞ we denote by�(x) the length ofx. Then�(x) ∈ [1,ω] wheneverx �= φ

and�(φ) = 0.
Following Example 8 of [12] (see also [14, Example 3.3]), the functiond defined on

Σ∞ × Σ∞ by d(x, y) = 2−�(x�y) − 2−�(x), is a quasi-metric onΣ∞ and (Σ∞, d) is
a weightable quasi-metric space with weighting functionw defined onΣ∞ by w(x) =
2−�(x) for all x ∈ Σ∞, where we adopt the convention that 2−ω = 0. (Other interesting
quasi-metrics defined on the domain of words can be found in [17,1], etc.)

Furthermore, the associated order�d coincides with the prefix order� on Σ∞. Thus
(Σ∞,�d) is clearly a meet semilattice. Since for eachx, y ∈ Σ∞ we haved(x, x � y) =
d(x, y), it follows from Lemma 1 that(Σ∞, d) is an l-invariant quasi-metric meet sem
lattice.

Now suppose that there exists an operation+ on Σ for which (Σ,+) is an (Abelian)
monoid with neutral elemente. We shall prove that, then,Σ∞ can be endowed with th
structure of an (Abelian) monoid(Σ∞,⊕) such thatd is m-invariant for⊕, and thus
(Σ∞,⊕, d) is a weightable quasi-metric monoid.
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Denote bye the infinite word such thate(k) = e for all k ∈ ω \ {0}. For eachx ∈ Σ∞
we definex ⊕ φ = φ ⊕ x = φ. For eachx, y ∈ Σ∞ \ φ, we definex ⊕ y as the element o
Σ∞ of length�(x ⊕ y) = min{�(x), �(y)} such that for eachk � �(x ⊕ y), (x ⊕ y)(k) =
x(k) + y(k).

It is straightforward to show that for eachx, y, z ∈ Σ∞, x ⊕ e = e ⊕ x = x, (x ⊕ y) ⊕
z = x ⊕ (y ⊕ z), andx ⊕ y = y ⊕ x whenever(Σ,+) is an Abelian monoid. Therefore
(Σ∞,⊕) is an (Abelian) monoid.

Observe that if each “letter”a of Σ ,is identified with the wordxa ∈ Σ∞ such that
�(xa) = 1 andxa(1) = a, then the restriction ofd to Σ ,is exactly the discrete metric onΣ
and the restriction of⊕ to Σ is the operation+ (cf. [1])

Next we prove that the quasi-metricd is m-invariant for⊕. Let x, y, z ∈ Σ∞. If �(z) �
�(x � y), thenx ⊕ z = y ⊕ z, whenced(x ⊕ z, y ⊕ z) = 0 � d(x, y). If �(z) > �(x � y),
then�((x ⊕ z) � (y ⊕ z)) � �(x � y). Together with�(x ⊕ z) � �(x), this implies

d(x ⊕ z, y ⊕ z) = 2−�((x⊕z)�(y⊕z)) − 2−�(x⊕z) � 2−�(x�y) − 2−�(x) = d(x, y).

The proof thatd(z ⊕ x, z ⊕ y) � d(x, y) is analogous. We conclude thatd is m-invariant
and, consequently,(Σ∞,⊕, d) is a weightable quasi-metric monoid.

Moreover, the weighting functionw is subadditive. Indeed, since for eachx, y ∈ Σ∞,
�(x ⊕ y) = min{�(x), �(y)}, it follows thatw(x ⊕ y) = max{w(x),w(y)}.

Now let pΣ the partial metric onΣ∞ induced byd (see Theorem 1). Then, by Prop
sitions 2 and 4,(Σ∞,⊕,pΣ) is a stable partial metric monoid. (Note thatpΣ(x, y) =
2−�(x�y) for all x, y ∈ Σ∞.)

One might motivate the summation⊕ defined above as follows (see [1]). If we interp
a finite list z = z1z2 · · · zn as an infinite list of which only finitely many elements are
fined, i.e.,z = z1z2 · · · zn⊥⊥⊥· · ·, where⊥ is the symbol for undefined value, then the s
makes sense: adding a defined value to an undefined one should give undefined; th
if we add a finite listz = z1z2 · · · zn⊥⊥⊥· · · with an infinite listy = y1y2 · · ·ynyn+1 · · ·,
we obtain the finite listz ⊕ y = (z1 + y1)(z2 + y2) · · · (zn + yn)⊥⊥⊥· · ·.

Remark 4. The partial metricpΣ is not m-invariant onΣ∞. Indeed, letx ∈ Σ∞ be such
that�(x) = 1, lety = x and letz = φ. ThenpΣ(x ⊕ z, y ⊕ z) = 1 andpΣ(x, y) = 1/2.

Remark 5. It is interesting to discuss in this context the domain of words(Σ∞, d) of
Example 2, equipped with the concatenation operation. ThusΣ∞ is a monoid with neutra
element the empty wordφ. Now suppose thatΣ has at least two letters. Since for ea
x, y, z ∈ Σ∞, �(xz � yz) � �(x � y) and �(zx � zy) � �(x � y), it follows that pΣ is
m-invariant with respect to concatenation, so we obtain a stable partial metric m
Howeverd is not m-invariant since fora, b ∈ Σ\{φ}, with a �= b, it suffices to takex, y, z ∈
Σ∞ such thatx := a, y := aa andz := b, to obtaind(xz, yz) = 2−1−2−2 andd(x, y) = 0.

Example 3. As a third example of a stable partial metric monoid, we mention the
complexity (quasi-metric) space (cf. [18]). Thedual complexity spaceis the quasi-metric
space(C∗, dC∗), whereC∗ = {f :ω → R

+:
∑∞

n=0 2−nf (n) < ∞}, anddC is the quasi-
metric on C defined bydC∗(f, g) = ∑∞

n=0 2−n[(g(n) − f (n)) ∨ 0], for all f,g ∈ C∗.
Furthermore(C∗, dC∗) is weightable by the weighting functionw defined onC∗ by
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w(f ) = ∑∞
n=0 2−nf (n) for all f ∈ C∗. Several quasi-metric properties of the dual co

plexity space are discussed in [18,19].
If f,g ∈ C, thenf ∨ g ∈ C∗. Thus(C∗, dC∗) is an l-invariant quasi-metric meet semila

tice, where� is here the dual order of the usual pointwise order, i.e.,f � g ⇐⇒ g � f

[22].
Since the complexity of a given program is frequently obtained by a summation of

plexity functions, we endowC with a suitable structure of monoid by the usual addit
operation+. Thus iff,g ∈ C∗, f + g ∈ C∗, and clearly we have thatdC∗(f + g,h + l) �
dC∗(f,h) + dC∗(g, l), for all f,g,h, l ∈ C∗. Therefore(C∗,+, dC∗) is a weightable quasi
metric monoid. Since the weighting functionw is (sub)additive, it follows from Propos
tion 2 that(C∗,+,pdC∗ ) is a stable partial metric monoid.

Observe that, however,pdC∗ is not m-invariant because forf,g,h ∈ C∗ with h(k) > 0
for somek ∈ ω, we clearly havepdC∗ (f + h,g + h) > pdC∗ (f, g).

In the following we shall denote bySPM the class of all stable partial metric monoid

4. Semivaluation monoids and the class SPM

In this section we characterize the spaces of the classSPM in terms of semivaluation
monoids which will be defined below. The key of such a characterization is our next r

Proposition 5. Let (X,p) be a stable partial metric monoid and letf :X → R
+ be given

by f (x) = p(x, x) for all x ∈ X. Then for eachx, y, a, b ∈ X the following condition
holds:

f
(
(x · a) � (y · b)

)
� f (x � y) + f (a � b). (∗)

Proof. Let x, y, a, b ∈ X. Taking into account Proposition 4 we obtain

f
(
(x · a) � (y · b)

) = p
(
(x · a) � (y · b), (x · a) � (y · b)

) = p(x · a, y · b)

� p(x, y) + p(a, b) = p(x � y, x � y) + p(a � b, a � b)

= f (x � y) + f (a � b). �
Condition(∗) above is a quite natural requirement in the framework of meet sem

tices, when they are equipped with some usual monoid operations.
Indeed, first note that if(X,�) is a meet semilattice and· is a monoid operation onX

such that the functionf :X → R satisfies condition(∗), thenf is subadditive, because fo
all x, y ∈ X, we obtain

f (x · y) = f
(
(x · y) � (x · y)

)
� f (x � x) + f (y � y) = f (x) + f (y).

Conversely, we have the two following results.

Proposition 6. Let (X, ·,�) be an ordered monoid such that(X,�) is a meet semilattice
Then, every decreasing subadditive function onX satisfies condition(∗).
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Proof. Let f :X → R be decreasing and subadditive and letx, y, a, b ∈ X. Then(x � y) ·
(a � b) � x · (a � b) � x · a, and, similarly,(x � y) · (a � b) � y · b. Therefore(x � y) ·
(a � b) � (x · a) � (y · b). So

f
(
(x · a) � (y · b)

)
� f

(
(x � y) · (a � b)

)
� f (x � y) + f (a � b). �

Proposition 7. Let (X,�) be a meet semilattice and let· be a monoid operation onX
such thatx � x · y for all x, y ∈ X (i.e., the monoid operation is monotone). Then, every
decreasing nonnegative real valued function onX satisfies condition(∗).

Proof. Let f :X → R be decreasing and letx, y, a, b ∈ X. Thenf ((x · a) � (y · b)) �
f (x � y). We conclude thatf satisfies condition(∗). �

The domain of words with addition operation and the dual complexity space are e
ples of spaces where Proposition 6 applies (see Examples 2 and 3). The interval dom
the domain of words with concatenation operation are examples of spaces where P
tion 7 applies (see Example 1 and Remark 5).

Remark 6. In connection with the examples of Section 3 and Propositions 6 and 7 a
we give an example of a stable partial metric monoid(X, ·,p) such that(X, ·,�) is an
ordered monoid, the monoid operation is monotone and bothp anddp are m-invariant.

Let X = [0,1] and letp be the restriction toX of the usual partial metric onR+, i.e.
p(x, y) = x ∨ y for all x, y ∈ X (see Section 1). Thendp is the upper quasi-metric onX,
i.e.dp(x, y) = (y − x) ∨ 0 for all x, y ∈ X.

For eachx, y ∈ X let x ·y = x ∧y. Obviously(X, ·) is a monoid, with neutral element
Furthermore(X,dp) an l-invariant quasi-metric meet semilattice, and(X, ·,�dp ) (equiva-
lently (X, ·,�p)) is clearly an ordered monoid. (Note thatx � y = x ∨ y for all x, y ∈ X.)
On the other hand, since for eachx, y ∈ X one hasp(x, x) = x = x ∨ (x ∧y) = p(x, x ·y),
the monoid operation is monotone. Finally, for eachx, y, z ∈ X, we havep(x · z, y · z) =
(x ∧ z) ∨ (y ∧ z) � x ∨ y = p(x, y), anddp(x · z, y · z) = [((y ∧ z) − (x ∧ z)) ∨ 0] �
[(y − x) ∨ 0] = dp(x, y). Since· is commutative, we conclude that bothp and dp are
m-invariant.

Now let (X,�) be a meet semilattice and let· be a monoid operation onX. The follow-
ing condition is referred asleft-continuity(see [4]):

(z · x) � (z · y) = z · (x � y).

We shall briefly discuss left-continuity and other related conditions due to their
vance in connection to condition(∗). Thus, condition

(x · z) � (y · z) = (x � y) · z
is referred to asright-continuity.

A more restrictive version of these conditions is the following

(x · u) � (y · v) = (x � y) · (u � v).

We refer to this condition ascontinuity.
The following assertions are easily seen:
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(i) Continuity implies left-continuity and right-continuity;
(ii) left-continuity impliesz · x � z · y wheneverx � y;

(iii) right-continuity impliesx · z � y · z wheneverx � y;
(iv) left-continuity plus right-continuity imply that(X, ·,�) is an ordered monoid;
(v) the dual complexity space and the domain of words satisfy continuity.

On the other hand, it is proved in [4] that the interval domain satisfies left-contin
However, it does not satisfy right-continuity and hence not continuity:

In fact, letx, y, z be the elements ofI ([0,1]) considered in Remark 3 above. We show
that p(x, x) = p(x, y) but p(x ◦ z, x ◦ z) < p(x ◦ z, y ◦ z). Hence, by assertion (iii), th
interval domain does not satisfy right-continuity.

Now, we show that under continuity, we have that subadditivity off is equivalent to
condition(∗). (Compare with Proposition 6.)

Indeed, assuming subadditivity off and continuity, we obtainf ((x · a) � (y · b)) =
f ((x � y) · (a � b)) � f (x � y) + f (a � b).

The converse is obvious because condition(∗) implies subadditivity as we have ob
served above.

Next we recall the definition of a valuation on a lattice(L,�). A functionf :L → R
+

is said to be avaluation if (1) f is increasing, and(2) for eachx, y ∈ L, f (x � y)+
f (x � y) = f (x) + f (y).

In case the functionf is decreasing and satisfies(2), we refer tof as aco-valuation. If
f only satisfies (2) we say thatf is modular.

Actually, there does not seem to be a consistent terminology in the literature. Valua
also called evaluations, as used in computer science (e.g., [3] or [9]) typically satis(1)

and(2) above. In the classical mathematical literature a valuation only needs to satis(2)

(e.g., [2]).
Since in our context we work with meet semilattices rather than lattices, we only

to consider meet co-valuations.
Recall that ameet co-valuation[22] on a meet semilattice(X,�) is a functionf :X →

R
+ such that for eachx, y, z ∈ X,

f (x � z) � f (x � y) + f (y � z) − f (y).

A meet co-valuationf on a meet semilattice(X,�) is called strictly decreasing if fo
eachx, y ∈ X, x ≺ y �⇒ f (y) < f (x).

A semivaluation spaceis (compare [22]) a pair(X,f ) such thatX is a meet semilattice
andf is a decreasing meet co-valuation onX.

Recall that semivaluations arise in many different contexts in Quantitative Domain
ory [22,23]. The Baire quasi-metric spaces [14], the (dual) complexity space [22] an
interval domain [4] are well-known examples of spaces that are semivaluation space

Definition 3. A semivaluation monoidis a triple (X, ·, f ) such that(X, ·) is a monoid
and(X,f ) is a semivaluation space withf a strictly decreasing meet co-valuation onX

satisfying the condition(∗) of Proposition 5.
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We denote bySVM the class of all semivaluation monoids. Our final result shows
stable partial metric monoids can be characterized as semivaluation monoids.

Theorem 2. There exists a bijectionΨ :SVM → SPM defined to be the functio
which associates to each(X, ·, f ) ∈ SVM the space(X, ·,pf ) ∈ SPM, such that for
eachx, y ∈ X, pf (x, y) = f (x � y). The inverse ofΨ is the function which to eac
(X, ·,p) ∈ SPM associates the space(X, ·, fp) ∈ SVM, wherefp(x) = p(x, x) for all
x ∈ X.

Proof. Le (X, ·, f ) ∈ SVM. Then(X, ·) is a monoid and(X,f ) := (X,�, f ) is a semi-
valuation space wheref is a strictly decreasing meet co-valuation onX satisfying(∗).
Define the functionpf onX × X by pf (x, y) = f (x � y), for all x, y ∈ X.

We first show thatpf is a partial metric onX:
Indeed, suppose thatpf (x, y) = pf (x, x) = pf (y, y). Thenf (x � y) = f (x) = f (y).

Sincef is strictly decreasing it follows thatx � y = x = y.
On the other hand, it is clear that for eachx, y ∈ X, pf (x, y) = pf (y, x).
Now letx, y, z ∈ X. Sincef is a meet co-valuation we have

pf (x, z) = f (x � z) � f (x � y) + f (y � z) − f (y)

= pf (x, y) + pf (y, z) − pf (y, y).

We have shown thatpf is a partial metric onX.
Next we show that the partial order�pf

coincides with�. Indeed, forx, y ∈ X, one
has:

x �pf
y ⇐⇒ pf (x, y) = pf (x, x) ⇐⇒ f (x � y) = f (x)

⇐⇒ x � y = x ⇐⇒ x � y.

Hence(X,�pf
) is a meet semilattice. Moreover, for eachx, y ∈ X:

pf (x � y, x � y) = f (x � y) = pf (x, y).

So(X,pf ) is a stable partial metric meet semilattice. It remains to show that(X, ·,pf ) is
a partial metric monoid. Indeed, letx, y, a, b ∈ X. By condition(∗),

pf (x · a, y · b) = f
(
(x · a) � (y · b)

)
� f (x � y) + f (a � b) = pf (x, y) + pf (a, b).

Therefore(X, ·,pf ) is a partial metric monoid. We conclude that(X, ·,pf ) ∈ SPM.
Conversely, let(X, ·,p) ∈ SPM. We shall prove that(X, ·, fp) ∈ SVM, wherefp is

the function defined on the meet semilattice(X,�p) by fp(x) = p(x, x) for all x ∈ X.
Indeed, by assumption(X, ·) is a monoid. Furthermorefp is a meet co-valuation fo

(X,�p) because forx, y, z ∈ X, we obtain

fp(x � z) = p(x � z, x � z) = p(x, z)

� p(x, y) + p(y, z) − p(y, y)

= p(x � y, x � y) + p(y � z, y � z) − p(y, y)

= fp(x � y) + fp(y � z) − fp(y).
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In additionfp is strictly decreasing because ifx �p y,we have

fp(x) = p(x, x) = p(x, y) > p(y, y) = fp(y).

Moreoverfp satisfies condition(∗) by Proposition 5, because forx, y, a, b ∈ X we have

fp

(
(x · a) � (y · b)

) = p
(
(x · a) � (y · b), (x · a) � (y · b)

) = p(x · a, y · b)

� p(x, y) + p(a, b) = p(x � y, x � y) + p(a � b, a � b)

= fp(x � y) + fp(a � b).

We conclude that(X, ·, fp) ∈ SVM.
It remains to show thatΨ is bijective. Let (X, ·, f ), (Y, �, g) ∈ SVM such that

Ψ ((X, ·, f )) = Ψ ((Y, �, g)). Then(X, ·,pf ) and(Y, �,pg) coincide. In particularX = Y .
Sincepf = pg , it follows that for eachx ∈ X, pf (x, x) = pg(x, x), i.e. f (x) = g(x),
so f = g. Thus Ψ is injective. Now let(X, ·,p) ∈ SPM. Then (X, ·fp) ∈ VPM as
we have proved above andΨ ((X, ·, fp)) = (X, ·,p) becausepfp(x, y) = fp(x � y) =
p(x �y, x �y) = p(x, y) for all x, y ∈ X. SoΨ is surjective. This completes the proof.�
Remark 7. It seems interesting to note that the unique partial metric which allows o
quantify a domain equipped with certain monoid operations, behaves in our context. I
from the notion of a quantification of a domain (cf. [23]), one can define in a natural
a quantitative monoidas a quantification of a domain equipped with a monoid opera
anordered quantitative monoidas a quantitative monoid for which the associated mon
is ordered and amonotone quantitative monoidas a quantitative monoid for which th
monoid operation is monotone.

Thus, by using the techniques of the proof of Proposition 27 of [23] in combination
Propositions 6 and 7, respectively, we can prove the following facts:

(i) each ordered quantitative monoid with a decreasing subadditive selfdistance is
tial metric monoid;

(ii) each monotone quantitative monoid is a partial metric monoid.
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