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A considerable amount of knowledge has been produced during the last five years on the bioenergetics of cancer
cells, leading to a better understanding of the regulation of energymetabolism during oncogenesis, or in adverse
conditions of energy substrate intermittent deprivation. The general enhancement of the glycolyticmachinery in
various cancer cell lines is well described and recent analyses give a better view of the changes inmitochondrial
oxidative phosphorylation during oncogenesis. While some studies demonstrate a reduction of oxidative
phosphorylation (OXPHOS) capacity in different types of cancer cells, other investigations revealed contradictory
modificationswith the upregulationof OXPHOS components and a largerdependency of cancer cells on oxidative
energy substrates for anabolism and energy production. This apparent conflictual picture is explained by
differences in tumor size, hypoxia, and the sequence of oncogenes activated. The role of p53, C-MYC, Oct and RAS
on the control of mitochondrial respiration and glutamine utilization has been explained recently on artificial
models of tumorigenesis. Likewise, the generation of induced pluripotent stem cells from oncogene activation
also showed the role of C-MYC and Oct in the regulation of mitochondrial biogenesis and ROS generation. In this
review article we put emphasis on the description of various bioenergetic types of tumors, from exclusively
glycolytic to mainly OXPHOS, and the modulation of both the metabolic apparatus and the modalities of energy
substrate utilization according to tumor stage, serial oncogene activation and associated or not fluctuating
microenvironmental substrate conditions. We conclude on the importance of a dynamic view of tumor
bioenergetics. This article is part of a Special Issue entitled: Bioenergetics of Cancer.
ergetics of Cancer.
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1. Cancer cell variable bioenergetics

Cancer cells exhibit profound genetic, bioenergetic and histological
differences as compared to their non-transformed counterpart. All these
modifications are associated with unlimited cell growth, inhibition of
apoptosis and intense anabolism. Transformation fromanormal cell to a
malignant cancer cell is amulti-step pathogenic processwhich includes
a permanent interaction between cancer gene activation (oncogenes
and/or tumor-suppressor genes), metabolic reprogramming and
tumor-induced changes in microenvironment. As for the individual
genetic mapping of human tumors, their metabolic characterization
(metabolic–bioenergetic profiling) has evidenced a cancer cell-type
bioenergetic signature which depends on the history of the tumor, as
composed by the sequence of oncogenes activated and the confronta-
tion to intermittent changes in oxygen, glucose andamino-aciddelivery.

In the last decade, bioenergetic studies have highlighted the
variability among cancer types and even inside a cancer type as
regards to the mechanisms and the substrates preferentially used for
deriving the vital energy. The more popular metabolic remodeling
described in tumor cells is an increase in glucose uptake, the
enhancement of glycolytic capacity and a high lactate production,
along with the absence of respiration despite the presence of high
oxygen concentration (Warburg effect) [1]. To explain this abnormal
bioenergetic phenotype pioneering hypotheses proposed the impair-
ment of mitochondrial function in rapidly growing cancer cells [2].

Although the increased consumption of glucose by tumor cells
was confirmed in vivo by positron emission tomography (PET) using
the glucose analog 2-(18F)-fluoro-2-deoxy-D-glucose (FDG), the
actual utilization of glycolysis and oxidative phosphorylation
(OXPHOS) cannot be evaluated with this technique. Nowadays,
Warburg's “aerobic-glycolysis” hypothesis has been challenged by a
growing number of studies showing that mitochondria in tumor
cells are not inactive per se but operate at low capacity [3] or, in
striking contrast, supply most of the ATP to the cancer cells [4].
Intense glycolysis is effectively not observed in all tumor types.
Indeed not all cancer cells grow fast and intense anabolism is not
mandatory for all cancer cells. Rapidly growing tumor cells rely more
on glycolysis than slowly growing tumor cells. This is why a
treatment with bromopyruvate, for example is very efficient only
on rapidly growing cells and barely useful to decrease the growth
rate of tumor cells when their normal proliferation is slow. Already
in 1979, Reitzer and colleagues published an article entitled
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“Evidence that glutamine, not sugar, is the major energy source for
cultured Hela cells”, which demonstrated that oxidative phosphor-
ylation was used preferentially to produce ATP in cervical carcinoma
cells [5]. Griguer et al. also identified several glioma cell lines that
were highly dependent on mitochondrial OXPHOS pathway to
produce ATP [6]. Furthermore, a subclass of glioma cells which
utilize glycolysis preferentially (i.e., glycolytic gliomas) can also
switch from aerobic glycolysis to OXPHOS under limiting glucose
conditions [7,8], as observed in cervical cancer cells, breast
carcinoma cells, hepatoma cells and pancreatic cancer cells [9–11].
This flexibility shows the interplay between glycolysis and OXPHOS
to adapt the mechanisms of energy production to microenviron-
mental changes as well as differences in tumor energy needs or
biosynthetic activity. Herst and Berridge also demonstrated that a
variety of human and mouse leukemic and tumor cell lines (HL60,
HeLa, 143B, and U937) utilize mitochondrial respiration to support
their growth [12]. Recently, the measurement of OXPHOS contribu-
tion to the cellular ATP supply revealed that mitochondria generate
79% of the cellular ATP in HeLa cells, and that upon hypoxia this
contribution is reduced to 30% [4]. Again, metabolic flexibility is used
to survive under hypoxia. All these studies demonstrate that
mitochondria are efficient to synthesize ATP in a large variety of
cancer cells, as reviewed by Moreno-Sanchez [13]. Despite the
observed reduction of the mitochondrial content in tumors [3,14–
19], cancer cells maintain a significant level of OXPHOS capacity to
rapidly switch from glycolysis to OXPHOS during carcinogenesis.
This switch is also observed at the level of glutamine oxidation
which can occur through two modes, “OXPHOS-linked” or “anoxic”,
allowing to derive energy from glutamine or serine regardless of
hypoxia or respiratory chain reduced activity [20].

While glutamine, glycine, alanine, glutamate, and proline are
typically oxidized in normal and tumor mitochondria, alternative
substrate oxidations may also contribute to ATP supply by OXPHOS.
Those include for instance the oxidation of fatty-acids, ketone bodies,
short-chain carboxylic acids, propionate, acetate and butyrate (as
recently reviewed in [21]).

2. Varying degree of mitochondrial utilization
during tumorigenesis

In vivometabolomic analyses suggest the existence of a continuum
of bioenergetic remodeling in rat tumors according to tumor size and
its rate of growth [22]. Peter Vaupel's group showed that small tumors
were characterized by a low conversion of glucose to lactate whereas
the conversion of glutamine to lactate was high. In medium sized
tumors the flow of glucose to lactate as well as oxygen utilization was
increased whereas glutamine and serine consumption were reduced.
At this stage tumor cells started with glutamate and alanine
production. Large tumors were characterized by a low oxygen and
glucose supply but a high glucose and oxygen utilization rate. The
conversion of glucose to glycine, alanine, glutamate, glutamine, and
proline reached high values and the amino acids were released [22].
Certainly, in the inner layers constituting solid tumors, substrate and
oxygen limitation is frequently observed. Experimental studies tried
to reproduce these conditions in vitro and revealed that nutrients and
oxygen limitation does not affect OXPHOS and cellular ATP levels in
human cervix tumor [23]. Furthermore, the growth of HeLa cells,
HepG2 cells and HTB126 (breast cancer) in aglycemia and/or hypoxia
even triggered a compensatory increase in OXPHOS capacity, as
discussed above. Yet, the impact of hypoxia might be variable
depending on cell type and both the extent and the duration of
oxygen limitation.

In two models of sequential oncogenesis, the successive activation
of specific oncogenes in non-cancer cells evidenced the need for active
OXPHOS to pursue tumorigenesis. Funes et al. showed that the
transformation of human mesenchymal stem cells increases their
dependency on OXPHOS for energy production [24], while Ferbeyre
et al. showed that cells expressing oncogenic RAS display an increase
in mitochondrial mass, mitochondrial DNA, and mitochondrial
production of reactive oxygen species (ROS) prior to the senescent
cell cycle arrest [25]. Such observations suggest that waves of gene
regulation could suppress and then restore OXPHOS in cancer cells
during tumorigenesis [20]. Therefore, the definition of cancer by
Hanahan and Weinberg [26] restricted to six hallmarks (1—self-
sufficiency in growth signals, 2—insensitivity to growth-inhibitory
(antigrowth) signals, 3—evasion of programmed cell death (apopto-
sis), 4—limitless replicative potential, 5—sustained angiogenesis, and
6—tissue invasion and metastases) should also include metabolic
reprogramming, as the seventh hallmark of cancer. This amendment
was already proposed by Tennant et al. in 2009 [27]. In 2006, the
review Science published a debate on the controversial views of
Warburg theory [28], in support of a more realistic description of
cancer cell's variable bioenergetic profile. The pros think that high
glycolysis is an obligatory feature of human tumors, while the cons
propose that high glycolysis is not exclusive and that tumors can use
OXPHOS to derive energy. A unifying theory closer to reality might
consider that OXPHOS and glycolysis cooperate to sustain energy
needs along tumorigenesis [20]. The concept of oxidative tumors,
againstWarburg's proposal, was introduced by Guppy and colleagues,
based on the observation that breast cancer cells can generate 80% of
their ATP by the mitochondrion [29]. The comparison of different
cancer cell lines and excised tumors revealed a variety of cancer cell's
bioenergetic signatures which raised the question of the mechanisms
underlying tumor cell metabolic reprogramming, and the relative
contribution of oncogenesis and microenvironment in this process. It
is now widely accepted that rapidly growing cancer cells within solid
tumors suffer from a lack of oxygen and nutrients as tumor grows. In
such situation of compromised energy substrate delivery, cancer cell's
metabolic reprogramming is further used to sustain anabolism
(Fig. 1), through the deviation of glycolysis, Krebs cycle truncation
and OXPHOS redirection toward lipid and protein synthesis, as
needed to support uncontrolled tumor growth and survival [30,31].
Again, these features are not exclusive to all tumors, as Krebs cycle
truncationwas only observed in some cancer cells, while other studies
indicated that tumor cells can maintain a complete Krebs cycle [13] in
parallel with an active citrate efflux. Likewise, generalizations should
be avoided to prevent over-interpretations.

The oncogene C-MYC participate to these changes via the
stimulation of glutamine utilization through the coordinate expres-
sion of genes necessary for cells to engage in glutamine catabolism
[30]. According to Newsholme EA and Board M [32] both glycolysis
and glutaminolysis not only serve for ATP production, but also provide
precious metabolic intermediates such as glucose-6-phosphate,
ammonia and aspartate required for the synthesis of purine and
pyrimidine nucleotides (Fig. 1). In this manner, the observed apparent
excess in the rates of glycolysis and glutaminolysis as compared to the
requirement for energy production could be explained by the need for
biosynthetic processes. Yet, one should not reduce the shift from
glycolysis to OXPHOS utilization to the sole activation of glutamino-
lysis, as several other energy substrates can be used by tumor
mitochondria to generate ATP [21]. The contribution of these different
fuels to ATP synthesis remains poorly investigated in human tumors.

In 1989, the group of Peter Vaupel proposed that tumor blood flow
was the principal modulator of oxidative and glycolytic metabolism,
and of the metabolic micromilieu of human tumor xenografts in vivo
[33]. Likewise, a recent study evidenced that the sole in vitro growth
environment generates abnormalities of lipid metabolism and
respiratory chain activity in cultured non-tumorigenic astrocytes,
similar to those associated with tumorigenicity. In particular, cultured
cells switch their metabolism toward glycolysis when placed in
culture dishes [34,35]. This seriously limits the impact of numerous
studies performed on cultured cells. Lastly, apparent changes in
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Fig. 1. Energy metabolism at the crossroad between catabolism and anabolism.
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energy metabolism could also be explained by regulatory events in
the control of apoptosis, as OXPHOS can be required for the activation
of tumor suppressors Bax and Bak [36]. Given the numerous
determinants of cancer cells energy features, a thorough description
of the biochemical pathways used for energy production and
branched anabolism in every tumor is requisite to derive adapted
metabolic anti-cancer therapies.

3. The metabolism of pre-cancer cells and its ongoing modulation
by carcinogenesis

At the beginning of cancer, there might have been a cancer stem
cell hit by an oncogenic event, such as alterations in mitogen
signaling to extracellular growth factor receptors (EGFR), oncogenic
activation of these receptors, or oncogenic alterations of downstream
targets in the pathways that leads to cell proliferation (RAS–Raf–ERK
and PI3K–AKT, both leading to m-TOR activation stimulating cell
growth). Alterations of checkpoint genes controlling the cell cycle
progression like Rb also participate in cell proliferation (Fig. 2) and
this re-entry in the cell cycle implies three major needs to fill in: 1)
supplying enough energy to grow and 2) synthesize building blocks
de novo and 3) keep vital oxygen and nutrients available. However,
the bioenergetic status of the pre-cancer cell could determine in part
the evolution of carcinogenesis, as shown on mouse embryonic stem
cells. In this study, Schieke et al. showed that mitochondrial energy
metabolism modulates both the differentiation and tumor formation
capacity of mouse embryonic stem cells [37]. The idea that cancer
derives from a single cell, known as the cancer stem cell hypothesis,
was introduced by observations performed on leukemia which
appeared to be organized as origination from a primitive hemato-
poietic cell [38]. Nowadays cancer stem cells were discovered for all
types of tumors [39–42], but little is known of their bioenergetic
properties and their metabolic adaptation to the microenvironment.
This question is crucial as regards the understanding of what
determines the wide variety of cancer cell's metabolic profile.
What is the impact of a given oncogene activation in pre-cancer
cells of different metabolic background? The analysis of the
metabolic changes that occur during the transformation of adult
mesenchymal stem cells revealed that these cells did not switch to
aerobic glycolysis, but their dependency on OXPHOS was even
increased [24]. Hence, mitochondrial energy metabolism could be
critical for tumorigenesis, in contrast with Warburg's hypothesis. As
discussed above, the oncogene C-MYC also stimulates OXPHOS [30].
Furthermore, it was recently demonstrated that cells chronically
treated with oligomycin repress OXPHOS and produce larger tumors
with higher malignancy [19]. Likewise, alteration of OXPHOS by
mutations in mtDNA increases tumorigenicity in different types of
cancer cells [43–45]. Recently, it was proposed that mitochondrial
energy metabolism is required to generate reactive oxygen species
used for the carcinogenetic process induced by the K-RAS mutation
[46]. This could explain the large number of mitochondrial DNA
mutations found in several tumors. The analysis of mitochondria in
human embryonic cells which derive energy exclusively from
anaerobic glycolysis have demonstrated an immature mitochondrial



Fig. 2. Impact of different oncogenes on tumor progression and energy metabolism remodeling.
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network characterized by few organelles with poorly developed
cristae and peri-nuclear distribution [47,48]. The generation of
human induced pluripotent stem cell by the introduction of different
oncogenes as C-MYC and Oct4 reproduced this reduction of
mitochondrial OXPHOS capacity [49,50]. This indicates again the
impact of oncogenes on the control of OXPHOS and might explain
the existence of pre-cancer stem cells with different bioenergetic
backgrounds, as modeled by variable sequences of oncogene
activation. Accordingly, the inhibition of mitochondrial respiratory
chain has been recently found associated with enhancement of hESC
pluripotency [51]. Based on the experimental evidence discussed
above, one can argue that 1) glycolysis is indeed a feature of several
tumors and associates with faster growth in high glucose environ-
ment, but 2) active OXPHOS is also an important feature of (other)
tumors taken at a particular stage of carcinogenesis which might be
more advantageous than a “glycolysis-only” type of metabolism in
conditions of intermittent shortage in glucose delivery. The meta-
bolic apparatus of cancer cells is not fixed during carcinogenesis and
might depend both on the nature of the oncogenes activated and the
microenvironment. It was indeed shown that cancer cells with
predominant glycolytic metabolism present a higher malignancy
when submitted to carcinogenetic induction and analysed under
fixed experimental conditions of high glucose [19]. Yet, if one grows
these cells in a glucose-deprived medium they shift their metabolism
toward predominant OXPHOS, as shown in HeLa cells and other cell
types [9]. Therefore, one might conclude that glycolytic cells have a
higher propensity to generate aggressive tumors when glucose
availability is high. However, these cells can become OXPHOS during
tumor progression [24,52]. All these observations indicate again the
importance of maintaining an active OXPHOS metabolism to permit
evolution of both embryogenesis and carcinogenesis, which empha-
sizes the importance of targeting mitochondria to alter this
malignant process.
4. Oncogenes and the modulation of energy metabolism

Mutations occurring in any genes along the MAPKKK/MAPK
pathways (from EGFR to m-TOR) could at least partly engage the
cell in a proliferative phase. Activation of oncogenes or inactivation of
tumor suppressors are responsible for uncontrolled cell proliferation
and tumor progression. Themaster regulators of the cell cycle, such as
p53, Rb, p21, p27 and PTEN are typically mutated in several cancers
and trigger cell cycle progression despite the presence of DNA damage
or environmental stress. The overexpression of activated oncogenes
can also overcome cell natural defenses by surpassing the capacity of
the tumor suppressors. Several oncogenes and associated proteins
such as HIF-1α, RAS, C-MYC, SRC, and p53 can influence energy
substrate utilization by affecting cellular targets, leading to metabolic
changes that favor cancer cell survival, independently of the control of
cell proliferation. These oncogenes stimulate the enhancement of
aerobic glycolysis, and an increasing number of studies demonstrate
that at least some of them can also target directly the OXPHOS
machinery, as discussed in this article (Fig. 2). For instance, C-MYC can
concurrently drive aerobic glycolysis and/or OXPHOS according to the
tumor cell microenvironment, via the expression of glycolytic genes
or the activation of mitochondrial oxidation of glutamine [53]. The
oncogene RAS has been shown to increase OXPHOS activity in early
transformed cells [24,52,54] and p53 modulates OXPHOS capacity via
the regulation of cytochrome c oxidase assembly [55]. Hence, carci-
nogenic p53 deficiency results in a decreased level of COX2 and
triggers a shift toward anaerobic metabolism. In this case, lactate
synthesis is increased, but cellular ATP levels remain stable [56]. The
p53-inducible isoform of phosphofructokinase, termed TP53-induced
glycolysis and apoptotic regulator, TIGAR, a predominant phospha-
tase activity isoform of PFK-2, has also been identified as an
important regulator of energy metabolism in tumors [57]. In non-
cancer cells TIGAR inhibits glycolysis by lowering F2,6BP levels, and
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upon mutation of p53 as occurs in several cancer cells, such inhi-
bition is released and glycolysis can proceed [58]. Yet, FDG-6P can
also be a substrate for G6PDH and PGM. Lastly, a recent study
described the role of a tumor-specific peptide (p32) that is dif-
ferentially expressed during the progression of epidermal carcinoma,
which regulates the balance between OXPHOS and glycolysis [59].
p32 sustains OXPHOS by playing a role in the synthesis of
mitochondrial-DNA-encoded genes. All the above listed studies
delineate the role of different oncogenes in OXPHOS regulation.

5. Tumor specific isoforms (or mutated forms) of energy genes

Tumors are generally characterized by a modification of the
glycolytic system where the level of some glycolytic enzymes is
increased, some fetal-like isozymes with different kinetic and
regulatory properties are produced, and the reverse and back-
reactions of the glycolysis are strongly reduced [60]. The GAPDH
marker of the glycolytic pathway is also increased in breast, gastric,
lung, kidney and colon tumors [18], and the expression of glucose
transporter GLUT1 is elevated in most cancer cells. The group of
Cuezva J.M. developed the concept of cancer bioenergetic signature
and of bioenergetic index to describe the metabolic profile of cancer
cells and tumors [18,61–65]. This signature describes the changes in
the expression level of proteins involved in glycolysis and OXPHOS,
while the BEC index gives a ratio of OXPHOS protein content to
glycolytic protein content, in good correlation with cancer prognos-
tic [61]. Recently, this group showed that the beta-subunit of the
mitochondrial F1F0-ATP synthase is downregulated in a large
number of tumors, thus contributing to the Warburg effect [64,65].
It was also shown that IF1 expression levels were increased in
hepatocellular carcinomas, possibly to prevent the hydrolysis of
glytolytic ATP [66]. Numerous changes occur at the level of OXPHOS
and mitochondrial biogenesis in human tumors, as we reviewed
previously [67]. Yet the actual impact of these changes in OXPHOS
protein expression level or catalytic activities remains to be
evaluated on the overall fluxes of respiration and ATP synthesis.
Indeed, the metabolic control analysis and its extension indicate that
it is often required to inhibit activity beyond a threshold of 70–85%
to affect the metabolic fluxes [68,69]. Another important feature of
cancer cells is the higher level of hexokinase II bound to
mitochondrial membrane (50% in tumor cells). A study performed
on human gliomas (brain) estimated the mitochondrial bound HK
fraction (mHK) at 69% of total, as compared to 9% for normal brain
[70]. This is consistent with the 5-fold amplification of the type II HK
gene observed by Rempel et al. in the rapidly growing rat AS-30D
hepatoma cell line, relative to normal hepatocytes [71]. HKII

subcellular fractionation in cancer cells was described in several
studies [72–74]. The group led by Pete Pedersen explained that mHK
contributes to (i) the high glycolytic capacity by utilizing mito-
chondrially regenerated ATP rather than cytosolic ATP (nucleotide
channelling) and (ii) the lowering of OXPHOS capacity by limiting Pi
and ADP delivery to the organelle [75,76]. Recently, at the European
Bioenergetic Conference held in Varsaw, P. Pedersen proposed a
novel therapeutic strategy aiming at the blockade of HKII supported
glycolysis with bromopyruvate [77]. Yet, the actual site of action of
this drug remains to be clarified as one study established that
OXPHOS is also a 3-bromopyruvate target [78].

All these observations are consistent with the increased rate of
FDG uptake observed by PET in living tumors which could result from
both an increase in glucose transport, and/or an increase in
hexokinase activity. However, FDG is not a complete substrate for
glycolysis (it is only transformed into FDG-6P by hexokinase before to
be eliminated) and cannot be used to evidence a general increase in
the glycolytic flux. Moreover, FDG-PET scan also gives false positive
and false negative results, indicating that some tumors do not depend
on, or do not have, an increased glycolytic capacity. The fast glycolytic
system described above is further accommodated in cancer cells by
an increase in the lactate dehydrogenase isoform A (LDH-A)
expression level. This isoform presents a higher Vmax useful to
prevent the inhibition of high glycolysis by its end product (pyruvate)
accumulation. Recently, Fantin et al. showed that inhibition of LDH-A
in tumors diminishes tumorigenicity and was associated with the
stimulation of mitochondrial respiration [79]. The preferential
expression of the glycolytic pyruvate kinase isoenzyme M2 (PKM2)
in tumor cells, determines whether glucose is converted to lactate for
regeneration of energy (active tetrameric form, Warburg effect) or
used for the synthesis of cell building blocks (nearly inactive dimeric
form) [80]. In the last five years, mutations in proteins of the
respiratory system (SDH, FH) and of the TCA cycle (IDH1,2) leading to
the accumulation of metabolite and the subsequent activation of
HIF-1α were reported in a variety of human tumors [81–83]. Recent
mechanism linking energetics and epigenetics have also been
discovered by the group of Thompson. They include the phosphor-
ylation of Histone H2B by AMPK [84]. The same group showed that
citrate also regulate energy gene expression by histone acetylation
[85]. Lastly, the group of Singh was the first to demonstrate that
changes in mitochondrial activity can influence the methylation of
nuclear DNA and to regulate gene expression [86]. All these
mechanisms describe novel and powerful mechanisms linking energy
metabolism and the regulation of gene expression.

6. Tumor microenvironment modulates cancer cell's bioenergetics

It was extensively described how hypoxia activates HIF-1α which
stimulates in turn the expression of several glycolytic enzymes such as
HK2, PFK, PGM, enolase, PK, LDH-A, MCT4 and glucose transporters
Glut 1 and Glut 3. It was also shown that HIF-1α can reduce OXPHOS
capacity by inhibiting mitochondrial biogenesis [14,15], PDH activity
[87] and respiratory chain activity [88]. The low efficiency and uneven
distribution of the vascular system surrounding solid tumors can lead
to abrupt changes in oxygen (intermittent hypoxia) but also energy
substrate delivery. The response of HeLa cells to an abrupt change in
extracellular energy source was analysed by Brand et al. [89] using a
microperfusion system. They observed that the removal of glucose, or
the inhibition of glycolysis by iodoacetate led to a switch toward
glutamine utilization without delay followed by a rapid decrease in
acid release. This illustrates once again how tumors and human cancer
cell lines can utilize alternative energy pathway such as glutamino-
lysis to deal with glucose limitation, provided the presence of oxygen.
It was also observed that in situations of glucose limitation, tumor
derived-cells can adapt to survive by using exclusively an oxidative
energy substrate [9,10]. This is typically associated with an enhance-
ment of the OXPHOS system, as observed in these two studies [9,10].
Likewise, cultivation of HepG2 hepatoma cells in a glucose-deprived
medium led to the stimulation of both mitochondrial biogenesis and
the OXPHOS systemwith a 2-fold increase in COX, an elevated level of
mt-DNA, mRNAs, mt-DNA encoded proteins, and mitochondrial
transcription factor A. Associated with this features, lactate produc-
tion was decreased and glutamine oxidation increased [90]. In
summary, cancer cells can survive by using exclusively OXPHOS for
ATP production, by altering significantly mitochondrial composition
and form to facilitate optimal use of the available substrate (Fig. 3).
Yet, glucose is needed to feed the pentose phosphate pathway and
generate ribose essential for nucleotide biosynthesis. This raises the
question of how cancer cells can survive in the growthmediumwhich
do not contain glucose (so-called “galactose medium” with dialysed
serum [9]). In the OXPHOS mode, pyruvate, glutamate and aspartate
can be derived from glutamine, as glutaminolysis can replenish Krebs
cycle metabolic pool and support the synthesis of alanine and NADPH
[31]. Glutamine is a major source for oxaloacetate (OAA) essential for
citrate synthesis. Moreover, the conversion of glutamine to pyruvate
is associated with the reduction of NADP+ to NADPH by malic
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Fig. 3. Interplay between energy metabolism, oncogenes and tumor microenvironment during tumorigenesis (the “metabolic wave model”).
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enzyme. Such NADPH is a required electron donor for reductive steps
in lipid synthesis, nucleotide metabolism and GSH reduction. In
glioblastoma cells the malic enzyme flux was estimated to be high
enough to supply all of the reductive power needed for lipid synthesis
[31]. Phospholipids can be generated in the absence of glycolysis from
the acetyl-coA generated from the citrate deviated from the Krebs
cycle. Glutamine is also used as nitrogen donor for the de novo
synthesis of both purines and pyrimidines.

The signaling pathways by which the metabolic shift toward
OXPHOS is accomplished in cancer cells must include transcription
factors that alter expression of OXPHOS components, such as PGC1α
or CREB. While the mechanisms leading to the enhancement of
glycolytic capacity in tumors are well documented, less is known
about the parallel OXPHOS changes. Both phenomena could result
from a selection of pre-malignant cells forced to survive under
hypoxia and limited glucose delivery, followed by an adaptation to
intermittent hypoxia, pseudo-hypoxia, substrate limitation and acidic
environment. This hypothesis was first proposed by Gatenby and
Gillies to explain the high glycolytic phenotype of tumors [91–93], but
several lines of evidence suggest that it could also be used to explain
the mitochondrial modifications observed in cancer cells. The
rationale for this “micro-environmental hypothesis” is supported by
the topological observation of tumors in formation that typically takes
place at a particular distance from blood vessels, at the boundary
between viable and necrotic cells, where oxygen is no longer
available. Beyond this “diffusion limit” the pre-malignant cells are
submitted to important fluctuations in oxygen delivery. This suggests
again a role for hypoxia and/or pseudo-hypoxia in tumor initiation.
7. Aerobic glycolysis and mitochondria cooperate during
cancer progression

Metabolic flexibility considers the possibility for a given cell to
alternate between glycolysis and OXPHOS in response to physiological
needs. Louis Pasteur found that in most mammalian cells the rate of
glycolysis decreases significantly in the presence of oxygen (Pasteur
effect). Moreover, energy metabolism of normal cell can vary widely
according to the tissue of origin, as we showed with the comparison of
five rat tissues [94]. During stem cell differentiation, cell proliferation
induces a switch from OXPHOS to aerobic glycolysis which might
generate ATP more rapidly, as demonstrated in HepG2 cells [95] or in
non-cancer cells [96,97]. Thus, normal cellular energy metabolism can
adapt widely according to the activity of the cell and its surrounding
microenvironment (energy substrate availability and diversity). Sup-
port for this view came from numerous studies showing that in vitro
growth conditions can alter energy metabolism contributing to a
dependency on glycolysis for ATP production [98]. Yet, Zu and Guppy
analysed numerous studies and showed that aerobic glycolysis is not
inherent to cancer but more a consequence of hypoxia [99]. They
concluded that weakness in experimental design or cell lines/tumors
comparisons brought mistaken conclusions on commonly Warburg-
oriented agreements of cancer metabolism. Moreno-Sanchez and
colleagues also demonstrated that numerous cancer cells use OXPHOS
to supply ATP [4]. Another emerging hypothesis linking metabolic
remodeling variability and tumorigenesis is the reverseWarburg effect.
The originality of this hypothesis lies on the assumption of a
cooperativity between fibroblasts and epithelial cells in tumor

image of Fig.�3
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progression. Here, epithelial cells induce aerobic glycolysis to neigh-
bouring stromal fibroblasts that then produce lactate and pyruvate that
will enter TCA cycle in epithelial cells, thereby promoting efficient ATP
production via mitochondrial oxidation [100].

Some studies have highlighted a tight cooperation among certain
oncogenes and tumor-suppressor genes in cancer progression and
metabolic remodeling which might explain the variety of metabolic
profiles observed in different tumors. For example, C-MYC and RAS
are frequent genes known to be mutated in human cancer. These
genes are also the pioneering example for oncogene cooperation
during tumorigenesis, whereby the anti-cancer effects of C-MYC
deregulation (apoptosis) and oncogenic RAS (senescence) are
antagonized and therefore cancelled out by each other [101,102].
Hahn and colleagues evidenced that human transformation from a
normal cell to a cancer cell is only possible though the coexpression of
three cooperative oncogenes, telomerase catalytic subunit (hTert),
the simian virus 40 large T and H-RAS (i.e. the so-called “Weinberg
model” [103]). Reactivation of telomerase maintains telomere length
and permits immortality of cell. SV40 large T is implicated in the
inactivation of tumor-suppressor proteins (p53 and p105), causing
the cells to leave G1 phase and enter into S phase. H-RAS is known to
procure a tumorigenic shift of transformed cells (Fig. 2). Undeniably,
multiple genetic alterations are necessary for tumorigenesis, and as
discussed above, all these event trigger the inhibition or the activation
of OXPHOS, thus possibly explaining the variety of metabolic profiles
observed in cancer cells. Surprisingly, the inactivation of a single
oncogene can induce tumor repression, a phenomenon called by
Weinstein “the oncogene addiction” [104,105]. They explained this
addiction by the often multiple roles in complex and interactive
networks played by the proteins encoded by most oncogenes.
Therefore, in cancer cells, an oncogene may play a more essential
and qualitatively different role in a given pathway compared with its
role in normal cells. One may also propose that during activation of
sequential oncogenes, the metabolism is reprogrammed at each step
as we have seen before with C-MYC, HIF and RAS for instance
(Table 1). The final metabolic steady-state is adapted to the cancer cell
requirements and suppression of one oncogene can unbalance this
bioenergetic program and lead to energy supply impairment and
tumor repression.

8. Conclusion

Energymetabolism is deviated in human tumors, so that it remains
a therapeutic target of choice. The way it is altered can differ widely
among tumor but if the metabolic profile is well established, targeting
the predominant bioenergetic pathway altered could improve
significantly the prognostic of patients. As recently pointed out by
Gogvadze and colleagues [106], combined strategies involving
modulation of both glycolytic and mitochondrial pathways might be
required for more efficient elimination of malignant cells. Therapeutic
strategies able to interfere with the specificities of cancer cell's
bioenergetics could ideally permit to reduce tumor growth [107,108].
As cancer cells present a variety of energy metabolism deviations
[2,20,67,109], pharmacological attempts to interfere with distinctive
steps of cancer energy production pathways could provide drug
specificity. The first step is the determination of cancer cell's
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bioenergetic profile to decipher the biochemical pathway primarily
used for energy production [3,4,9,10,61,62]. As discussed in this
review article, the bioenergetic type of a given tumor can vary widely
from glycolytic to oxidative, according to the oncogenes activated and
the microenvironment [13,18,20,99,110]. The typical “glycolytic” type
of cancer cells includes enhanced glycolyticmachinery confronted to a
low efficiency OXPHOS system, while the “OXPHOS” type of cancer
cells relies mainly on mitochondrial respiration to produce ATP from
glucose and glutamine oxidation [4,5,29]. It was demonstrated that
mitochondrial oxidative phosphorylation is low efficiency in glyco-
lytic tumors, notably through a reduction of the cellularmitochondrial
content [3,14,15,19,111]. Hence, a potential therapeutic strategy
might consist in the re-activation of mitochondrial oxidative
metabolism in glycolytic tumors with altered mitochondria, as
obtained by the stimulation of PDH activity with sodium-dicloroace-
tate [112] or the overexpression of frataxin [113]. Another possibility
could consist in the global stimulation of mitochondrial biogenesis in
cancer cells with a reduced mitochondrial content and OXPHOS
capacity [3]. Strategies aiming at mimicking a low-energy state in
cancer cells to trigger cell proliferation arrest and apoptosis are also
valid, and the research for identifying novel energy restriction-
mimetic agents (ERMAs) [114] capable of reducing human tumor
growth will undoubtedly benefit from a better bioenergetic charac-
terization of the different cancer cell lines, in particular for what
concern their response to challenging energy conditions, as occurs in
hypoxia and aglycemia.
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