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a b s t r a c t

A subset F ⊂ V (G) is called an R2-vertex-cut of G if G− F is disconnected and each vertex
u ∈ V (G)− F has at least two neighbors in G− F . The cardinality of a minimum R2-vertex-
cut of G, denoted by κ2(G), is the R2-vertex-connectivity of G. In this work, we prove that
κ2(Sn) = 6(n− 3) for n ≥ 4, where Sn is the n-dimensional star graph.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Let G = (V , E) be a finite graph without loops and parallel edges. We follow [3] for terminology not given here.
It is well known that the underlying topology of a computer interconnection network can be modeled by a graph G, and

the connectivity κ(G) of G is an important measure for fault tolerance of the network. In general, the larger κ(G), the more
reliable the network. However, κ(G) is a worst case measure and thus underestimates the resilience of the network [9]. To
overcome such shortcoming, Harary [5] introduced the concept of conditional connectivity by placing some requirements on
the components of G− F . The Rk-vertex-connectivity follows this trend.
A subset F ⊂ V (G) is called an Rk-vertex-set of G if each vertex u ∈ V (G) − F has at least k neighbors in G − F . An

Rk-vertex-cut of a connected graph G is a Rk-vertex-set F such that G − F is disconnected. The Rk-vertex-connectivity of G,
denoted by κk(G), is the cardinality of a minimum Rk-vertex-cut of G. The idea behind this concept is that the probability
that the failures concentrate around a vertex is small. For example, suppose G is a graph of order n which has t vertices of
minimum degree k. If there are k faulty vertices in G, then the probability that these k vertices are exactly the neighbor set
of some vertex is t/

( n
k

)
, which is very small when n is large; while in the definition of the Rk-vertex-set, the requirement

that there are at least k good neighbors around each vertex takes such resilience into account.
In [8], Latifi et al. proved that κk(Qn) = (n− k)2k, where Qn is the n-dimensional hypercube. In [7], Hu and Yang proved

that κ1(Sn) = 2n− 4, where Sn is an n-dimensional star graph, the definition of which is given in the following.
Let X be a group and S be a subset of X . The Cayley digraph Cay(X, S) is a digraph with vertex set X and arc set

{(g, gs) | g ∈ X, s ∈ S}. The arc (g, gs) is labeled by s. Denote by Σn the group of all permutations on {1, . . . , n}. An n-
dimensional star graph Sn is the Cayley graph Cay(Σn, S) with S = {(1i) | 1 < i 6 n}. It is well known that Cay(X, S) is
strongly connected if and only if S is a generating set of X . If S = S−1, where S−1 = {s−1 | s ∈ S}, then Cay(X, S) is an
undirected graph. In particular, if all elements of S are involutions, as is the case for the star graph, Cay(X, S) is undirected.
Furthermore, Sn is (n−1)-regular (since Cay(X, S) has degree |S|), bipartite (with the two parts of the bipartition containing
even and odd permutations respectively), vertex transitive (since it is a Cayley graph) and edge transitive (see for example
[6] Corollary 11).
The hypercube is an important network topology which has already been put into practice. The star graph is another

popular topology which has many advantages over the hypercube. As can be seen from the following table (see [1,2,4]), if a
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hypercube and a star graph have almost the samenumber of vertices, the star graphmay have smaller degree (which reduces
the production cost of the components), smaller diameter (which reduces the transmission delay), and higher connectivity
(which increases the fault tolerance).

Graph Dimension Vertices Degree Diameter Connectivity
n-cube n 2n n n n
n-star n n! n− 1 b

3
2 (n−1)c n− 1

In this work, we study the fault tolerance measured by κk, and prove that κ2(Sn) = 6(n− 3) for n ≥ 4.

2. Preliminaries

For a vertex v ∈ V , N(v) is the set of vertices adjacent to v in G. For a subset U ⊆ V (G), N(U) = (
⋃
u∈U N(u)) − U ,

and G[U] is the subgraph of G induced by U . Sometimes, we use a graph itself to represent its vertex set, for instance, N(G1)
means N(V (G1))where G1 is a subgraph of G. Denote by g(G) the girth of G, that is, the length of a shortest cycle of G. A cycle
with length l is called an l-cycle.
The following notation should be distinguished: elements of Σn acting on the vertices of Sn are given in cycle format,

for example (i1i2i3) or (i1i2), while vertices of Sn are given as a reordering (i1, i2, . . . in) of (1, 2, . . . , n), which is called
the label. Moreover, the transposition (ij) means exchanging the ‘positions’ of the ith and jth elements in the label of
a vertex (not exchanging element i and element j). That is, if a vertex u is labeled as (p1, . . . , pi, . . . , pj, . . . , pn), then
u(ij) = (p1, . . . , pj, . . . , pi, . . . , pn).
Observe that two vertices u, v ∈ V (Sn) are adjacent if and only if there exists some (1i) ∈ S such that v =

u(1i). That is, u, v have the form u = (p1, . . . , pi, . . . , pn) and v = (pi, . . . , p1, . . . , pn). For an integer i ∈
{1, 2, . . . , n}, denote by S in−1 the (n − 1)-dimensional sub-star graph of Sn induced by vertex set {(p1, p2, . . . , pn−1, i) |
(p1, . . . , pn−1) ranges over all permutations of {1, . . . , n} \ {i}}. Observe that Sn can be decomposed into n copies of Sn−1’s,
namely S1n−1, S

2
n−1, S

3
n−1, . . . , S

n
n−1. For u ∈ V (S

i
n−1), denote by u

′
= u(1n) the unique neighbor of u in Sn − S in−1, called the

outside neighbor of u. For an R2-vertex-set F of G, vertices in F are said to be faulty and vertices in V (G)− F are called good.
The following lemma can be found in [7].

Lemma 1. κ1(Sn) = 2n− 4.

Lemma 2. The girth of Sn is 6. Any 6-cycle in Sn has the form u1, u2, u3, u4, u5, u6, u1 where u2 = u1(1i), u3 = u2(1j),
u4 = u3(1i), u5 = u4(1j), u6 = u5(1i), u1 = u6(1j) for some i, j with i 6= j.

Proof. It is well known that the girth of Sn is 6. In the following, we show the second part of the lemma. Note that each
vertex v at distance 3 from umay have only two forms: either v = u(1i)(1j)(1k) = u(1kji) for three different integers i, j, k,
or v = u(1i)(1j)(1i) = u(ij) for two different integers i, j. Since the way to decompose (1kji) into the form (1i1)(1i2)(1i3) is
unique, namely, (1kji) can only be decomposed into (1i)(1j)(1k), we see that there is exactly one path of length 3 from u to
u(1kji). Hence, if u and v are in a 6-cycle, then v can only have the form u(ij). Since there are exactly twoways to decompose
(ij) into the form (1i1)(1i2)(1i3), namely, (ij) = (1i)(1j)(1i) = (1j)(1i)(1j) (note that (ij) = (ji)), we have two (u, v)-paths
of length 3, which form a 6-cycle as described in the lemma. �

Lemma 3. For any path P = u0u1u2u3 which is in some S`n−1,
(1) u′0, u

′

1 and u
′

2 are in three different S
k
n−1’s;

(2) u′0, u
′

1, u
′

2 and u
′

3 are in four different S
k
n−1’s unless u3 = u0(1i)(1j)(1i) for some i 6= j, in which case u

′

0 and u
′

3 are in the
same Skn−1.

Proof. Suppose u1 = u0(1i) (i 6= n), u2 = u1(1j) (j 6= i, n), u3 = u2(1r) (r 6= j, n). We assume, without loss of generality,
that the path P is in S1n−1, and i < j.Write u0 = (p1, . . . , pi, . . . , pj, . . . , pn−1, 1). Then u1 = (pi, . . . , p1, . . . , pj, . . . , pn−1, 1),
u2 = (pj, . . . , p1, . . . , pi, . . . , pn−1, 1). The first part follows since u′0 ∈ S

p1
n−1, u

′

1 ∈ S
pi
n−1, u

′

2 ∈ S
pj
n−1. If u3 = u0(1i)(1j)(1i),

then u3 = (p1, . . . , pj, . . . , pi, . . . , pn−1, 1) and thus u′3 ∈ S
p1
n−1. Otherwise, u

′

3 ∈ S
pr
n−1 for r 6= i, j. �

Lemma 4. N(S jn−1) (j = 1, . . . , n) is an independent set of cardinality (n− 1)!, and |N(S
j
n−1) ∩ V (S

k
n−1)| = (n− 2)! for k 6= j.

Proof. For each vertex u = (i1, i2, . . . , j) in S
j
n−1, u has a unique neighbor u

′ outside of S jn−1 with the form u
′
=

(j, i2, . . . , i1). Note that no two vertices in S
j
n−1 have the same outside neighbor, and no outside neighbors of two dif-

ferent vertices of S jn−1 can be adjacent (since they have the same first element j); the first part of the lemma follows
from the observation that |V (S jn−1)| = (n − 1)!. For each vertex u ∈ V (S jn−1), its outside neighbor u

′
∈ V (Skn−1)

if and only if u has the form (k, p2, . . . , pn−1, j). So, N(S
j
n−1) ∩ V (S

k
n−1) = {(j, p2, . . . , pn−1, k) | (p2, . . . , pn−1)

ranges over all permutations of {1, . . . , n} \ {j, k}}. The second part follows. �
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3. Main result

Theorem 3.1. For any integer n ≥ 4, κ2(Sn) = 6(n− 3).

Proof. First, we show that κ2(Sn) ≤ 6(n− 3). Let F = N(G1), where G1 is a sub-star graph of dimension 3, say the subgraph
of Sn induced by {(i1, i2, i3, 4, 5, 6, . . . , n) | (i1, i2, i3) ranges over all permutations of {1, 2, 3}}. Then Sn−F is disconnected,
and |F | = 6(n− 3) (since g(Sn) = 6, no two vertices in G1 have a same neighbor in F ). Furthermore, every vertex in Sn − F
has at least two good neighbors. This is true for vertex in G1 because G1 is 2-regular. For every vertex v = (p1, p2, p3, . . . pn)
in Sn − G1 − F , suppose v(1i) ∈ F . If i ≥ 4, then {p2, p3} ⊆ {1, 2, 3}, and thus v ∈ F , a contradiction. So, i = 2 or 3. If
v(12) and v(13) are both in F , then {p1, p2, p3} = {1, 2, 3}, contradicting that v 6∈ G1. So, v is adjacent to at most one good
neighbor in F . Since the regularity of Sn is n − 1 > 3, v has at least two good neighbors. It follows that F is a R2-vertex-cut
and thus κ2(Sn) 6 |F | = 6(n− 3).
Next we show that κ2(Sn) ≥ 6(n− 3). For this purpose, we show that for any R2-vertex-set F with |F | < 6(n− 3), Sn− F

is still connected. Write Fi = F ∩ S in−1. We consider two cases.
Case 1. |Fi| ≤ 2n− 7 for all i.
Note that Fi is an R1-vertex-set of S in−1. Since κ

1(Sn−1) = 2(n − 1) − 4 = 2n − 6 by Lemma 1, we see that S in−1 − Fi is
connected for every i. Suppose there are two vertices u, v ∈ V (Sn − F) which are disconnected by F . Then u, v belong to
different copies of S in−1, say u ∈ S

j
n−1 and v ∈ S

k
n−1 for j 6= k.

Note that N(S jn−1 − Fj) ∩ V (S
k
n−1) ⊆ Fk, since otherwise S

j
n−1 − Fj could be connected with S

k
n−1 − Fk through a vertex in

N(S jn−1− Fj)∩V (S
k
n−1− Fk). By Lemma 4, we have (n−2)!− (2n−7) ≤ (n−2)!− |Fj| ≤ |Fk| ≤ 2n−7, which is impossible

for n ≥ 6. So, n = 4 or 5. In both cases, the above inequalities become equalities. In particular, |Fk| = |Fj| = 2n − 7,
N(S jn−1 − Fj) ∩ V (S

k
n−1) = Fk and N(S

k
n−1 − Fk) ∩ V (S

j
n−1) = Fj (notice the symmetry of j and k). So vertices in Fj have the

form (k, . . . , j) and vertices in Fk have the form (j, . . . , k). Let i be an integer different from j, k. Then the (n− 2)! vertices in
N(S in−1)∩V (S

j
n−1) are all good. Since |N(S

i
n−1)∩V (S

j
n−1)| = (n− 2)!> 2n− 7 ≥ |Fi|, we see that S

j
n−1− Fj and S

i
n−1− Fi are

connected. Similarly, Skn−1 − Fk and S
i
n−1 − Fi are connected. But then u is connected to v through S

i
n−1 − Fi, a contradiction.

Case 2. |Fi| ≥ 2n− 6 for some i.
Define I = {i | |Fi| ≥ 2n− 6}. Since |F | < 6(n− 3), we have |I| ≤ 2. Note that for any j 6∈ I , S

j
n−1 − Fj is connected.

First we claim that the subgraph of Sn− F induced by
⋃
j6∈I(V (S

j
n−1)− Fj), denoted by G̃, is connected. Suppose this is not

true. Then there exist two indices j, k 6∈ I and two vertices u ∈ S jn−1−Fj and v ∈ S
k
n−1−Fk, such that there is no path from u to

v in Sn−F . Like in the deduction of Case 1, this is possible only for n = 4 or n = 5, and |Fk| = |Fj| = 2n−7. If there is an index
` 6∈ I such that ` 6= j, k, then also by an argument similar to that in Case 1, u and v are connected through the connected
subgraph S`n−1 − F`. So, we may assume that n = 4 and |I| = 2. But then |F | ≥ 2(2n− 6)+ 2(2n− 7) = 6(n− 3) > |F |, a
contradiction.
Next, we show that any connected component C of Sn[

⋃
i∈I(V (S

i
n−1) − Fi)] is connected to G̃. If there is a good vertex

v ∈ N(C), then v ∈ V (G̃) and we are done. So, suppose N(C) ⊆ F .
For simplicity of notation, suppose I = {1} if |I| = 1, and I = {1, 2} if |I| = 2.
First, consider the case where C is completely contained in, say, S1n−1 − F1. By the assumption N(C) ⊆ F , every outside

neighbor v′ of a vertex v ∈ V (C) is faulty, and thus all good neighbors of v are in C . It follows that δ(C) ≥ 2, and hence
C has a cycle D. By Lemma 2, the length of D is at least 6. Let u1, . . . , u6 be six vertices on D, sequentially. Since g(Sn) = 6
and Sn is bipartite (so there is no odd cycle in Sn), the only pairs of vertices that may have a common neighbor are {u1, u5}
and {u2, u6}. It follows that among {u′1, . . . , u

′

6}, only u
′

1 may coincide with u
′

5, or u
′

2 may coincide with u
′

6, in which case a
6-cycle goes through them. But by the structure of 6-cycles in Lemma 2, this is impossible. Hence u′1, . . . , u

′

6 are all distinct,
and thus F ′ = F − {u′1, . . . , u

′

6} satisfies |F
′
| ≤ 6(n − 3) − 1 − 6 = 6n − 25. Also by Lemma 2, if u1, u5 have a common

neighbor, then u2, u6 do not have, and vice versa. So, X = (N(u1)∩N(u5))∪ (N(u2)∩N(u6)) satisfies |X | ≤ 1. Furthermore,
if u1 is adjacent to u6, then |X | = 0. Write Y = N({u1, . . . , u6}) ∩ V (S1n−1). Then |Y | ≥ 6n − 24 > |F

′
|. So there is at least

one good vertex v in Y whose outside neighbor v′ is also good (note that the correspondence between outside neighbors
and the vertices in Y is one to one), a contradiction.
Next, suppose V (C) ∩ (V (S in−1) − Fi) 6= ∅ holds for i = 1, 2. In this case, we can find a path u1u2...u6 in C with

u1, u2, u3 ∈ V (S1n−1) − F1, u4, u5, u6 ∈ V (S
2
n−1) − F2, and {u

′

1, u
′

2, u
′

5, u
′

6} ⊆ F . In fact, let u3u4 be an edge of Sn with
u3 ∈ V (S1n−1) ∩ V (C) and u4 ∈ V (S

2
n−1) ∩ V (C). Let u2 be another good neighbor of u3. Then u2 ∈ V (S

1
n−1) ∩ V (C). By

Lemma 3(1), u′2 6∈ V (S
2
n−1); hence u

′

2 ∈ N(C) is faulty. Let u1 be another good neighbor of u2 different from u3. Also by
Lemma 3(1), u1 ∈ V (S1n−1) ∩ V (C) and u

′

1 ∈ F . Similarly, u5 and u6 can be found as required.
Let X1 = N({u1, u2, u3})∩V (S1n−1), X2 = N({u4, u5, u6})∩V (S

2
n−1), and X = X1∪X2. By Lemma 3(2), at most one outside

neighbor of X1 may be in S2n−1, and at most one outside neighbor of X2 may be in S
1
n−1. Define F

′
= F − {u′1, u

′

2, u
′

5, u
′

6}. Then
|F ′| ≤ 6(n− 3)− 1− 4 = 6n− 23 < 6n− 22 = 2(3(n− 2)− 4)− 2 = |X | − 2. So, there is at least one good vertex v ∈ X
whose outside neighbor v′ ∈ V (Sn) −

⋃
i=1,2 V (S

i
n−1) is also good. Since v

′
∈ N(C), we have arrived at the contradiction

that N(C) ⊆ F . �



M. Wan, Z. Zhang / Applied Mathematics Letters 22 (2009) 264–267 267

4. Conclusion

In this work, we have proved that the κ2-vertex-connectivity of the n-dimensional star graph is κ2(Sn) = 6(n− 3). Note
that this value is exactly |N(S3)|. Combining this with the observation that κ0(Sn) = n−1 = N(S1) and κ1(Sn) = 2(n−2) =
|N(S2)|, we may guess that κk(Sn) = (k+ 1)!(n− 1− k) = |N(Sk+1)|.
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