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Dislocations mobility and stability in the carbon nanotubes (CNTs)-reinforced metal matrix nanocompos-
ites (MMNCs) can significantly affect the mechanical properties of the composites. However, current pro-
cessing techniques often lead to the formation of coated CNT (amorphous interphase exists between the
reinforcement and metal matrix), which have large impact upon the image force exerting on dislocations.
Even though the importance of the interphase zone formed in metal matrix composites has been demon-
strated by many studies for elastic properties, the influence of interphase on the local elastoplastic behav-
ior of CNT-reinforced MMNCs is still an open issue. This paper puts forward a three-phase composite
cylinder model with new boundary conditions. In this model, the interaction between edge dislocations
and a coated CNT incorporating interface effect is investigated. The explicit expressions for the stress
fields and the image force acting on an edge dislocation are proposed. In addition, plastic flow occurring
around the coated reinforcement is addressed. The influences of interface condition and the material
properties of coated CNT on the glide/climb force are clearly analyzed. The results indicate that the inter-
face effect becomes remarkable when the radius of the coated reinforcement is below 10 nm. In addition,
different from the traditional particles, the coated CNT attracts the adjacent edge dislocations, causing
pronounced local hardening at the interface between the interphase and the metal matrix under certain
conditions. It is concluded that the presence of the interphase can have a profound effect on the local
stress field in CNT-reinforced MMNCs. Finally, the condition of the dislocations stability and the equilib-
rium numbers of dislocations at a given size grain are evaluated for considering the interface effect.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Carbon nanotubes (CNTs) have attracted tremendous expecta-
tion as reinforcements to improve the mechanical performance
of monolithic materials due to their extraordinary mechanical
properties as compared with pure metal (Treacy et al., 1996).
Numerous research studies have been undertaken on synthesis
and characterization of CNT/metal matrix composites since the
first article appeared in 1998 on CNT/Al composite (Kuzumaki
et al., 1998). Recently, Bakshi et al. (2010) have presented a review
summarizing the research work carried out in the field of carbon
nanotubes reinforced metal matrix nanocomposites (MMNCs),
which elucidated the influence of CNT volume concentration,
dispersion, strengthening mechanisms, and CNT-matrix interfacial
conditions on the overall elastic and plastic behavior of the
composites.

However, compared with CNT-reinforced polymer matrix com-
posites (PMCs) (Fisher et al., 2003; Odegard et al., 2003; Odegard
et al., 2004; Coleman et al., 2006; Namilae and Chandra, 2006;
Wang et al., 2008; Jia et al., 2011; Tehrani et al., 2011) and ceramic
matrix composites (CMCs) (Flahaut et al., 2000; Rul et al., 2004; Xia
et al., 2004; Yamamoto et al., 2008; Ahmad et al., 2010; Liu et al.,
2011a), studies on MMNCs reinforced by CNT are comparatively
fewer, and the improvement of the mechanical properties of bulk
CNT/metal matrix composites is not commensurate with the
expectation. This is mainly because of difficulties in uniformly dis-
tributing CNT in most metallic matrices and weak interfacial issues
between the reinforcements and matrices. Agglomeration of CNT
could lead to premature failure of the composites, and various
processing techniques have been adopted to avoid such a highly
undesirable condition. In addition, the interfaces between CNT
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and metal matrix are also critical to the pursuit of enhanced
mechanical properties of the composites, even when CNT are uni-
formly dispersed. The most possible phenomenon may be the for-
mation of nanosize carbides on the interfaces between CNT and
matrix and this may affect the load transfer condition between
them (Ci et al., 2006; Deng et al., 2007; Esawi et al., 2010). These
particles are likely to be the by-products of chemical reactions be-
tween the metal powders and amorphous carbon atoms around
pristine CNT and found to be closely attached to the surfaces of
the reinforcement. Moreover, Kim et al. (2008) have observed
many oxygen-rich regions existing near the CNT or on their sur-
faces. The good agreement of yield strength and elastic modulus
between the measured values and the ones calculated by both
the shear-lag and the Eshelby model, demonstrating that oxygen
atoms presenting at the CNT/Cu interface play a significant role
in accommodating the load transfer between matrix and reinforce-
ment. Besides, the amorphous interphase was revealed to form
around CNT in CNT/Cu composites after hydrogen reduction and
consolidation (Cho et al., 2012), which was composed of amor-
phous carbon atoms and oxygen atoms. Similarly, Balani and
Agarwal (2008) also observed that the molten metal spread
uniformly on the surfaces of CNT and formed thin layers (about
20–25 nm) without any cracks. In fiber-reinforced composites,
coatings on fibers are widely employed to improve the bonding
conditions between fibers and matrix (Hashin, 2002; Gao et al.,
2008). A coating layer can control the delamination of the interface
and inhibit cracks initiated external to the reinforcement from
damaging the matrix. Recently, Yang et al. (2013) have proposed
a nonlinear multiscale modeling approach to characterize the elas-
toplastic behavior of CNT-reinforced PMCs with considering the
interphase. The study focused on the identification of local elastic
and plastic behavior of the interphase region from the well known
elastoplastic properties of the nanocomposites. In a word, the pres-
ence of interphase around CNT in CNT-reinforced MMNCs can sig-
nificantly affect the local stress field distribution and greatly
change the load transfer conditions between reinforcement and
matrix. Even though the importance of the interphase zone has
been demonstrated by many investigations for elastic properties
(Shen and Li, 2003; Mogilevskaya and Crouch, 2004; Mogilevskaya
et al., 2010), studies on the influence of interphase on the local
elastoplastic behavior of CNT-reinforced MMNCs is still an open is-
sue. We expected to look into the issue in this paper.

Up until now, three strengthening mechanisms have been devel-
oped to predict the yield strength of CNT-reinforced MMNCs, two
among them, namely Orowan strengthening and thermal mis-
match, containing the dislocation effect (George et al., 2005; Li
et al., 2009). Dislocations are the carriers of plasticity in crystalline
materials and their mobility and stability around inclusions in the
matrix can affect the mechanical behaviors of composites. CNT-
reinforced MMNCs are often prepared under severe conditions,
such as high temperature and high pressure (Xu et al., 1999; Kwon
et al., 2009). Residual stresses will build up during the cooling pro-
cess due to the significant coefficient of thermal expansion (CTE)
and the elastic-plastic properties mismatch between CNT and ma-
trix. The stresses around the reinforcement are large enough to
cause plastic deformation in the matrix, especially in the interface
region, and then generate small defects such as a high density of
dislocations in the vicinity of nanosized particles (Hiratani et al.,
2003; Aghababaei and Joshi, 2013). Ashby (1966) proposed that
the stress concentration around a particle in a second-phase parti-
cle/matrix system was relieved by the nucleation and movement of
prismatic loops along a secondary slip system. When the magnitude
of the local resolved shear stress exceeds a certain value, dislocation
loops (the pairs of opposite-signed edge dislocations) will be nucle-
ated at random sites along the slip planes and punched out into the
matrix (Taya et al., 1991; Shibata et al., 1992; Lubarda, 2011). The
ductility improvement of CNT/Mg composites was observed to be
the result of the initiation of prismatic slip and the activation of
the basal slip system, and one of the main hardening reasons of
the composites was identified to be the formation of sessile forest
dislocations (Goh et al., 2008). These studies have shed significant
insights into the generation and movement of dislocations in
CNT-reinforced MMNCs, but none has touched upon the interaction
between dislocations and amorphous interphases encircled CNT.
The interactions between dislocations and nearby second phase
or misfit stress field are of great importance, which can modify
the overall yield behavior of the composites (Qaissaunee and
Santare, 1995; Hu et al., 2004; Khraishi et al., 2004; Wang et al.,
2010). In view of this importance, the problem has received much
attention in the last decades, and is often simulated by employing
the three-phase composite cylinder model (Dundurs and Mura,
1964; Luo and Chen, 1991; Ru, 1999; Xiao and Chen, 2001; Sudak
et al., 2002; Wang and Shen, 2002; Fang et al., 2009a; Wang and
Pan, 2011). In addition, it is well known that in the classical disloca-
tions-particles analysis, dislocations are repelled from second
phase when the shear moduli of the inclusions are higher than
those of the matrices. However, when interface bonding is modified
by imperfect interface boundary conditions or diffusional relax-
ations, these interactions may be completely reverse (Gao, 1992).

In recent years, to deeply address the size-dependent elastic
and plastic fields created by nanoscale inclusions, the surface/
interface stress model has been extensively developed on account
of the rapid development of nanotechnology (Fang and Liu, 2006;
Lim et al., 2006; Zhang et al., 2010; Bakhshayesh et al., 2012;
Gutkin et al., 2013). Jiang et al. (2006) has developed a cohesive
law for CNT/polymer interfaces to estimate the surface effect by
employing the atomistic model. Since atoms near and between
the interfaces have different energies from those in the interior
of the inclusions or matrix, surface/interface stress appears. In gen-
eral, when the matrix with large grain size, the volume ratio of the
interface region to the bulk material is small, the effect of the inter-
face stress is insignificant. However, for fine-scaled materials,
especially for nanocrystalline composites, with a large ratio of
the interface region to the matrix, the interface plays a very impor-
tant role in affecting the elastic-plastic deformation behaviors of
the composites (Yassar et al., 2007). A lot of theories (Liu et al.,
2009; Liu et al., 2010) give us some hints that the difference of
the plastic deformation behavior between nanostructured materi-
als and coarse-grained materials is essentially size-dependent. In
the present study, we pay close attention to the impact of interface
stress upon the mobility and stability of dislocations.

In addition to the role of interphase and interface, it is also
important to consider the influence of the matrix grain size on the
stresses experienced by dislocations and their stability. Compared
with the coarse grains, the activity of conventional dislocation
sources is inhibited in nanoscale grains. In that situation, amor-
phous intergranular boundaries (AIBs) are expected to become the
sources for lattice dislocation nucleation in deformed nanocompos-
ites (Bobylev et al., 2009). In addition, atomic simulations Wang
et al. (2007) demonstrated that the amorphous crystalline inter-
faces (ACIs) exhibited unique inelastic shear transfer characteristics,
different from those of grain boundaries (GBs). Dislocations can be
emitted from ACIs or from GBs or ACIs-GBs intersections and ab-
sorbed at the opposite ACIs. However, if grain size is relatively small
(of the order of nanometers), the dislocations emitted from ACIs
usually be retarded at the opposite GBs and impede further disloca-
tions emission, the ductility is often reduced dramatically. As a re-
sult, the addition of nanoscale amorphous layers may offer great
benefits in constructing the plasticity of crystalline composites,
and opening new approaches for improving their strength and duc-
tility. However, the micromechanism of dislocations emitted from
the interface between interphase and matrix is unclear. Such a
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micromechanism is of significance for understanding the essentials
of plastic flow and its transfer from amorphous interphase to near-
est crystalline in MMNCs (Bobylev et al., 2009).

To address the effect of amorphous interphase on the plastic
flow occurring around the reinforcement and the interaction be-
tween edge dislocations and a coated mutli-walled carbon nano-
tube (MWCNT) with interface effect, a three-phase composite
cylinder model combined with new boundary conditions is devel-
oped in Section 2. By means of the typical analytical continuation
technique of complex potentials, the stress fields within the matrix,
the amorphous interphase and MWCNT are also derived in this Sec-
tion. The plastic flow occurring around the reinforcement and the
emission of dislocations from amorphous interphase are addressed
in Section 3. In addition, a two-phase composite model is also intro-
duced for comparison. In Section 4, based on the stress distribution
in the matrix, the image force acting on dislocations is discussed in
detail. Then the stability of edge dislocations at a given size grain
and equilibrium numbers of dislocations are evaluated in terms of
the total force balance equations in this section. These formulations
automatically include the effect of the size (radius) and elastic con-
stants of MWCNT, amorphous interphase and interface effect. In
this way, the influences of MWCNT, amorphous interphase and
interface conditions on edge dislocations can all be assessed, and
compared with some available experimental results, theories and
computer simulations to validate the applicability of the proposed
three-phase composite cylinder model. Finally, Section 5 provides
a summary and a discussion of some extensions of this paper.
2. Description on the model of amorphous interphase in CNT-
reinforced composite

2.1. Morphology of the CNT-reinforced MMNCs

A typical schematic of the interaction between a coated
MWCNT and an edge dislocation in an infinite elastic plane
subjected to remote biaxial loading is presented (see Fig. 1). We
consider a solitary MWCNT with an outer radius R1 bonded to an
infinite elastic matrix through a coaxial circular interphase in a
Fig. 1. A solitary coated MWCNT in deformed nanocomposites subjected to remote
biaxial loading: (a) General view of CNT-reinforced MMNCs; (b) The magnified inset
emphasizes the emission of dislocations from the interface between amorphous
interphase and matrix; (c) An edge dislocation near the coated MWCNT in the
three-phase cylinder composite model.
triple junction. The thickness of the coating phase is R2 � R1. Let
S1, S2 and S3 denote the MWCNT, the interphase and the surround-
ing matrix, respectively. Without loss of generality, the subscripts
1, 2 and 3 are adopted to identify the respective holomorphic func-
tion in the region S1, S2 and S3. In addition, an edge dislocation with
Burger’s vector B ¼ bx þ iby is assumed to be located at an arbitrary
point z0 in the matrix S3, and the three-phase composite system
model is subjected to remote uniform loadings r111 and r122.

2.2. Basic formula and problem statement

The hexagonal distribution of carbon atoms and the hollow nat-
ure of the tube make the overall elastic properties of CNT trans-
versely isotropic (Shen and Li, 2004, 2005; Barai and Weng,
2011). CNT will be considered to only deform elastically in this pa-
per. In order to deal with the transversely isotropic elastic response,
it is convenient to adopt Hill’s stress-strain relations (Hill, 1964). So
the explicit form can be written in the polar coordinates

ðrrr þ rhhÞ ¼ 2kðerr þ ehhÞ þ 2lezz; ð1Þ

rzz ¼ lðerr þ ehhÞ þ qezz; ð2Þ

ðrhh � rrrÞ ¼ 2mðehh � errÞ; ð3Þ

rrh ¼ 2merh;rhz ¼ 2pehz;rrz ¼ 2perz: ð4Þ

where k, l, q, m and p are the plane-strain bulk modulus for lateral
dilatation, associated cross modulus, axial modulus for longitudinal
uniaxial strain, the transverse shear modulus and axial shear mod-
ulus, respectively. Then, in Walpole’s scheme (Walpole, 1969;
Walpole, 1981), due to its diagonally symmetric and positive defi-
nite, the tensor of transversely isotropic elastic modulus L can be
expressed as

L ¼ ð2k; l; q;2m;2pÞ: ð5Þ

In terms of the traditional engineering constants, L is equivalent
to

L ¼ ð2jrh;Crz;Czz;2lrh;2lrzÞ: ð6Þ

with direction z as the axial direction and plane r � h isotropic, the
major Poisson ratio and longitudinal Young’s modulus are given by
mrz ¼ l=2k and Ezz ¼ q� l2

=k.
For the interaction of edge dislocations with coated CNT, the

interface boundary conditions are important factors that affect
the stress fields and image forces acting on the dislocations.
Although the amorphous interphase has a tight contact with
CNT, the interphase is imperfectly bonded to matrix along the
curve C2 due to the big difference of the surface tensions between
the two materials (Nuriel et al., 2005; So et al., 2011). The inter-
phase can assumed to be perfectly adhered to the MWCNT without
slipping along the curve C1, while only displacement is continuous
across the imperfect interface C2. In view of this, according to the
theory proposed by Gurtin and Murdoch (1975) and Sharma et al.
(2003), for an isotropic elastic plane in the absence of body force,
the following elastic field equations and constitutive relations for
interface C1 can be established respectively.

rrr � irrh½ �½ � ¼ 0; ur þ iuh½ �½ � ¼ 0; z 2 C1; ð7Þ

And the interface condition along C2 can be written in the form

rrr � irrh½ �½ � ¼ r0
hh

R2
þ i

1
R2

@r0
hh

@h
; ur þ iuh½ �½ � ¼ 0; z 2 C2: ð8Þ

where the brackets �½ �½ � ¼ ð�Þ2 � ð�Þ1 or ð�Þ3 � ð�Þ2 denote the jump
of the said quantity across Ckðk ¼ 1;2Þ, respectively. The superscript
0 represents the interface region, and z 2 Ck ðk ¼ 1;2Þ denotes the
points on the circular arc surfaces Ckðk ¼ 1;2Þ.
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In addition, the interface region C2 can be characterized by an
additional constitutive equation (Tian and Rajapakse, 2007)

r0
hh ¼ s0 þ 2ðl0 � s0Þe0

hh þ ðk
0 þ s0Þðe0

hh þ e0
zzÞ: ð9Þ

where k0 and l0 are the interface elastic constants, s0 is the residual
interface stress. It is well known that the interfaces between differ-
ent phases can be incoherent, semi-coherent or coherent (Romanov
et al., 1998; Zbib et al., 2011). Coherent interfaces are commonly
presented within materials under a wide range of conditions (Duan
et al., 2005), and to the extent when an interface is coherent, the
interfacial strain e0

hh ¼ ehh2, e0
zz ¼ ezz2, where ehh2 is the associated

tangential strain in the adjacent bulk materials, i.e., amorphous
interphase. As mentioned above, the amorphous interphase is clo-
sely attached to the surface of MWCNT and its tangential strain
can be supposed to equal to the elastic strain ehh1 and ezz1 of
MWCNT. Here we restrict our attention to coherent interfaces and
take interface C2 as a coherent one.

In what follows, our study is confined to the plane deformation
of transversely isotropic elastic materials. The problem of an infi-
nite elastic plane containing a coated circular inclusion is usually
analyzed by employing the classical complex potential method
(Muskhelishvili, 1953). For a region bounded by a circle of radius
R, its stress components and displacement fields can be expressed
by two complex potentials gðzÞ and hðzÞ

2lðu0x þ iu0yÞ ¼ iz jgðzÞ þ g
R2

z

 !
� z

z

R2 �
1
z

� �
hðzÞ

" #
; ð10Þ

rrr þ rhh ¼ 2½gðzÞ þ gðzÞ�; ð11Þ

rrr þ irrh ¼ gðzÞ � g
R2

z

 !
þ z

z

R2 �
1
z

� �
hðzÞ: ð12Þ

where z ¼ xþ iy ¼ reih is the complex variable, u0x ¼ @ux=@h,
u0y ¼ @uy=@h. For the plane deformation of isotropic materials,
j ¼ 3� 4m , while j ¼ 1þ 2lrz=Krh for the plane deformation prob-
lem of transversely isotropic materials; and lrz and Krh are the
in-plane shear modulus and the plane-strain bulk modulus of trans-
versely isotropic materials; l and m are the in-plane shear modulus
and the Poisson’s ratio, respectively. In addition, in order to deal
with the boundary conditions on the interfaces, the analytical con-
tinuation is introduced and defined as (Luo and Chen, 1991)

hðzÞ ¼ R2

z2 gðzÞ þ g
R2

z

 !
� zg0ðzÞ

" #
: ð13Þ

Since CNT have large aspect ratio, we suppose that the tube
walls of CNT bear most of loads under the given condition, rather
than playing the role of bridging on the cracks in MMCs. So deb-
onding can be assumed to occur at the ends of the reinforcements.
Considering the constitutive relations (1)-(4) for CNT, one can ob-
tain the expressions of the elastic strain ehh1 and ezz1 in terms of
r33 ¼ 0

ehh1 ¼
q

4kq� 4l2 �
1

4m

 !
rrr1 þ

q

4kq� 4l2 þ
1

4m

 !
rhh1; ð14Þ

ehh1 þ ezz1 ¼ 1� 2l
q

� �
ehh1 þ

l
2mq

ðrhh1 � rrr1Þ: ð15Þ

To derive the stress fields around coated MWCNT, the mission
now is simplified to determine the complex analytical functions
g1ðzÞ, h1ðzÞ, g2ðzÞ, h2ðzÞ, g3ðzÞ and h3ðzÞ within the region R < R1

(the MWCNT), region R1 < R < R2 (the nanoscale interphase) and
region R > R2 (the matrix) under the boundary conditions,
respectively.
2.3. Stress fields of three-phase composite model with amorphous
interphase

2.3.1. The boundary conditions on the interior interface C1

According to Eqs. (11) and (12), the continuity conditions of
traction and displacement across the interface C1, i.e., Eq. (7) can
be expressed into a useful form

½g1ðtÞ þ g2ðtÞ�
þ ¼ ½g1ðtÞ þ g2ðtÞ�

�
; ð16Þ

1
2l1
½j1gþ1 ðtÞ þ g�1 ðtÞ� ¼

1
2l2
½j2g�2 ðtÞ þ gþ2 ðtÞ�; jtj ¼ R1: ð17Þ

where the superscripts ‘‘+’’ and ‘‘�’’ represent the values obtained as
z approaches to the interface from the inner Cþk or outer side
C�k ðk ¼ 1;2Þ of the contour, respectively.

According to the given boundary conditions, the expressions of
complex analytical functions h1ðzÞ within the MWCNT and h2ðzÞ in
the nanoscale interphase are obtained as follow (the detailed cal-
culations are listed in Appendix A.)

h1ðzÞ ¼
R2

1

z2

b
a
Xþ1
n¼1

A�n
z

R2
1

 !n

� b
Xþ1
n¼1

Anðn� 1Þzn

" #
; jzj < R1; ð18Þ

h2ðzÞ ¼
R2

1

z2

1� a
1� aþ b

ðA0 þ A0Þ �
Xþ1
n¼1

Anðn� 1Þzn þ
Xþ1
n¼1

A�n
z

R2
1

 !n"

þð1� bÞ
Xþ1
n¼1

An
R2

1

z

 !n

þ 1� b
a

� �Xþ1
n¼1

A�nðn� 1Þz�n

#
;

R1 < jzj < R2: ð19Þ
2.3.2. The boundary conditions on the exterior interface C2

The stress discontinuity conditions at the interface C2 in Eq. (8)
can be written with the aid of Eq. (9) as

rþrr2ðzÞ � r�rr3ðzÞ ¼ �
s0

R2
� 2ðl0 � s0Þ

R2
ehh2 �

k0 þ s0

R2
ðehh2 þ ezz2Þ;

ð20Þ

rþrh2ðzÞ � r�rh3ðzÞ ¼
1
R2

@s0

@h
þ 2ðl0 � s0Þ

R2

@ehh2

@h
þ k0 þ s0

R2

@ðehh2 þ ezz2Þ
@h

;

ð21Þ

It is convenient to rewrite the above equations as follows

½rrr2 þ irrh2�þ � ½rrr3 þ irrh3�� ¼ ½rþrr2 � r�rr3� þ i½rþrh2 � r�rh3�

¼ � s0

R2
� 2ðl0 � s0Þ

R2
ehh2

� k0 þ s0

R2
ðehh2 þ ezz2Þ þ i

1
R2

� @s0

@h
þ i

2ðl0 � s0Þ
R2

@ehh2

@h

þ i
k0 þ s0

R2

@ðehh2 þ ezz2Þ
@h

; ð22Þ

From Eqs. (11) and (12), it is found that

rhh2 þ rrr2 ¼ 2½g2ðzÞ þ g2ðzÞ�; ð23Þ

rhh2 � rrr2 ¼ g2ðzÞ þ g2ðzÞ þ g2
R2

2

z

 !
þ g2

R2
2

z

 !

� z
z

R2
2

� 1
z

 !
h2ðzÞ � z

z

R2
2

� 1
z

 !
h2ðzÞ; ð24Þ
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Substituting Eqs. (12), (14), (15), (23), and (24) into Eq. (22), and
considering nðn=R2

2 � 1=nÞhðnÞ ¼ 0, we can obtain the following
expression:

g2ðnÞ þ g3
R2

2

n

 !
þ ð2aþ bÞ½g2ðnÞ þ g2ðnÞ�

( )þ

� g3ðnÞ þ ð1� bÞg2
R2

2

n

 !
� bg2

R2
2

n

 !( )�

¼ � s0

R2
; jnj ¼ R2; ð25Þ

where

a ¼ ð2l0 þ k0 � s0Þq� 2ðk0 þ s0Þl
R2ð4kq� 4l2Þ

; b ¼ 2l0 þ k0 � s0

4mR2
:

For the current problem, the complex potentials g3ðzÞ and h3ðzÞ
in the infinite matrix can be taken in the following series forms in
accordance to Luo and Chen (1991)

g3ðzÞ ¼
c

z� z0
þPþP0R2

2

z2 þ g�3ðzÞ; jzj > R2 ð26Þ

h3ðzÞ ¼
c

z� z0
þ cz0

ðz� z0Þ2
þPþP0R2

2

z2 þ h�3ðzÞ; jzj > R2 ð27Þ

where c ¼ l3
pð1þj3Þ

ðby � ibxÞ, g�3ðzÞ and h�3ðzÞ denote the results from
the interaction of an edge dislocation with the interphase interface.
P and P0 characterize the remote principal stress field, given as fol-
lows in view of Eqs. (11) and (12)

4P ¼ r111 þ r122; 2P0 ¼ r122 � r111 þ 2ir112; ð28Þ

where r111, r122 and r112 are the far-field stresses and assumed to be

r111 ¼ r0; r122 ¼ gr0; r112 ¼ 0: ð29Þ

here, g is the biaxial ratio characterizing the loading ratio r122=r111.
In view of Eq. (10), the displacement continuity condition on

the exterior circular interface can be written as

j2

l2
g2ðnÞ �

1
l3

X3ðnÞ
� �þ

¼ j3

l3
g3ðnÞ �

1
l2

X2ðnÞ
� ��

; jnj ¼ R2; ð30Þ

where X3ðzÞ and X2ðzÞ are introduced to be

X3ðzÞ ¼ g3ðzÞ �
R2

2

z
1
z
� z

R2
2

 !
h3

R2
2

z

 !
; jzj < R2; ð31Þ

X2ðzÞ ¼ g2ðzÞ �
R2

2

z
1
z
� z

R2
2

 !
h2

R2
2

z

 !
; jzj > R2; ð32Þ

Taking the complex conjugate of Eqs. (31) and (32) and combin-
ing with Eq. (13), we can achieve the expression as

hðzÞ ¼ R2

z2 gðzÞ þX
R2

z

 !
� zg0ðzÞ

" #
; ð33Þ

By virtue of Eqs. (31) and (32), Eq. (30) can be written as

j2

l2
g2ðzÞ �

1
l3

X3ðzÞ ¼ NðzÞ; z 2 Cþ2 ðjzj < R2Þ; ð34Þ

j3

l3
g3ðzÞ �

1
l2

X2ðzÞ ¼ NðzÞ; z 2 C�2 ðjzj > R2Þ; ð35Þ

In the above equations,

NðzÞ¼j3

l3

c
z�z0

þPþP0R2
2

z2

" #
þ 1

l3

c
z�z�

�c
z
þ c

z0

z�ðz� �z0Þ
ðz�z�Þ2

" #
þD;
and z� ¼ R2
2=z0. With the aid of Eqs. (32) and (35), the unknown con-

stant D can be obtained:

D ¼ � 1
l2

g2ð0Þ; ð36Þ

Note that the complex potential g2ðzÞ and X2ðzÞ in the inter-
phase can have the following expansions:

g2ðzÞ ¼ B0 þ
X1
n¼1

Bnzn; R1 < jzj < R2; ð37Þ

X2ðzÞ ¼ C0 þ
X1
n¼1

C�nz�n; jzj > R2; ð38Þ

Substituting Eqs. (37), (38) and the results derived from Eqs.
(34), (35) into Eq. (25) and comparing the coefficients corre-
sponding to the same power terms, the unknown coefficients
on the above equations can be evaluated and h2ðzÞ will be ob-
tained with the aid of Eqs. (33), (37), and (38). In addition, in or-
der to satisfy the displacement continuity conditions at the
interfaces jzj ¼ R1 and jzj ¼ R2 simultaneously, the functions
g2ðzÞ and h2ðzÞ must be compatible, respectively. So the un-
known coefficients on the right-hand of Eqs. (37) and (38) can
be given

C0�B0¼
ð1�aÞðR2

1�R2
2Þ

R2
2ð1�aþbÞð2aþbÞ

�s0

R2
� l3

j3l2

c
z0
þcz0

R2
2

þcðz� �z0Þ
R2

2

 !" #
;

ð39Þ

B0 ¼ ð2aþ bþ 1Þ s0

R2
þ l3

j3l2

c
z0
þ cz0

R2
2

þ cðz� � z0Þ
R2

2

 !" #
; ð40Þ

C�1 ¼ �
l2j3c
l3

; C�2 ¼
l2

l3

cz�ðz� � z0Þ
z0

þ l2

l3
cz� þ l2j3

l3
P0R2

2;

C�n ¼ 0 ðn P 3Þ; ð41Þ

Bn ¼ �
l3

j3l2R2n
2

C�n �
c
j3

d1n þ
P0

1� b
d2n ðn P 1Þ; ð42Þ

Bn ¼ �
2aþ b

2aþ bþ 1
Bn; ð43Þ

here dij is the Kronecker delta.
The expressions of the complex potentials g3ðzÞ and h3ðzÞ can be

easily calculated from Eqs. (33)–(38)

g3ðzÞ ¼
c

z� z0
þPþP0R2

2

z2 þ
l3

j3l2
ðC0 � B0Þ þ

l3

j3l2
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n¼1

C�nz�n

þ 1
j3

c
z� z�

� c
z
þ c
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z�ðz� � z0Þ
ðz� z�Þ2

" #
; jzj > R2; ð44Þ

h3ðzÞ¼
R2

2
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j3l2
ðC0�B0Þþ

ðj2�1Þl3

l2
B0þð1�j3ÞP

�

�j3P
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2

þ3P0R2
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� cz�
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z0z
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)
; jzj>R2: ð45Þ



Fig. 2. Generation of an edge dislocation at ACI is accompanied by the emission of a
partial dislocation into a nearest crystalline grain in a deformed MMNCs
(schematically). (a) Generation of an edge dislocation at the interface; (b) The
magnified inset of the part in the wireframe presented in (a); (c) Splitting of the
dislocation results in formation of both a mobile partial dislocation that glides in a
nearest grain and a residual immobile dislocation. The glide of the partial
dislocation is followed by the formation of stacking fault (wavy line).

1154 S. Dong et al. / International Journal of Solids and Structures 51 (2014) 1149–1163
3. The plastic flow occurring around the reinforcement and an
analysis of the dislocation emission

As mentioned in the introduction, very large stresses may arise
in the interface when CNT-reinforced MMNCs fabricated by cur-
rent processing techniques, as a result of a ‘‘misfit’’ between matrix
and CNT due to significant thermal expansion, material properties
or microstructural mismatch. In most cases, these stresses may be
relaxed by the generation and motion of dislocations in the matrix.
Since the activities of conventional dislocation sources are sup-
pressed in nanoscale grains, AIBs or ACIs may possible to become
the sources that emit lattice dislocations in deformed MMNCs.
However, the micromechanism of dislocations emitted from AIBs
or ACIs is unclear. At the same time, such a micromechanism is
of importance for understanding the essentials of plastic flow
and its transfer from amorphous interphase to adjacent crystalline
in MMNCs (Bobylev et al., 2009). In this paper, in order to analyze
the effect of coated CNT on the edge dislocations and discuss the
plastic flow occurring around the reinforcement, particular atten-
tion only paid on the dislocations nucleated at ACIs, i.e., the inter-
face of the amorphous interphase with the metal matrix. Within
the theoretically model (Bobylev et al., 2009) and atomic simula-
tion (Wang et al. (2007)), we consider a typical fragment of CNT-
reinforced MMNCs consisting of one MWCNT and grains divided
by AIBs and ACIs, schematically shown in Fig. 2. When the remote
biaxial load is applied, plastic shear initially occurs in ACIs along
the plane with h relative to x-axis (Lubarda, 2011). The plastic flow
is assumed to be carried by local shear events occurring in the
amorphous interphase. The local shear events are the shear trans-
formations of local atomic clusters, which can act as carriers of
plastic flow in amorphous materials (Demkowicz and Argon,
2005). In this case, edge dislocations are generated at ACIs, accord-
ing to the theory of dislocations (Hirth and Lothe, 1982). The Bur-
gers vector magnitudes of the dislocations gradually increase with
the growth of the magnitude of the plastic shear under the remote
biaxial load. In particular, one dislocation can split into a residual
immobile dislocation that retains at the amorphous interphase
and a mobile lattice dislocation that glides into the adjacent grain
(Fig. 2c). The glide of the partial dislocation is followed by the for-
mation of stacking fault (wavy line). However, the evaluations of
the critical stress for the generation of the dislocations and the
direction of the dislocations emission are beyond the scope of this
paper. Below, we will investigate mobility and stability of the par-
tial mobile dislocations, because computer simulations demon-
strate partial dislocations emitted from ACI in nanocrystalline
ceramics (Szlufarska, 2005).

With the case of crystalline materials having grain size d P 20
nm at room temperature, emission of lattice dislocations from ACIs
is expected to be the dominant micro-mechanism to accommodate
plastic deformation (Kumar et al., 2003). In contrast, in the case of
grain size d < 20 nm, GB sliding (Bobylev et al., 2010), rotational
deformation (Liu et al., 2011b) and diffusional creep (Ovid’ko,
2005) should be taken into consideration when analyzing such
problems. So our model only focuses on the metal materials with
grain size d P 20 nm. A dislocation model has been proposed to
describe the formation and slip of a prismatic circular dislocation
loop along the interface between the fiber and the matrix (Gutkin
and Ovidko, 2008a,b). So the attention only paid on the disloca-
tions emitted from the amorphous interphase, parallel to the axis
of the nanotube and glides along the plane that intersects the
nanotube cross-section. In addition, since GBs can act as obstacles
to lattice dislocations slip, the dislocations emitted from ACIs are
retarded and pile-up at the opposite GBs (see Fig. 1b), which send
a back stress and impede further dislocation emission (Wolf et al.,
2005; Dao et al., 2007; Kochmann and Le, 2008). For a given
applied load and grain size, there exists an equilibrium number
Ne of dislocations in the pile-ups (Mao and Li, 1999; Wang et al.,
2011).

The first dislocation stops at the opposite GB at a distance d
(grain size) from the centre of MWCNT. The equilibrium positions
and equilibrium numbers of the subsequent dislocations can be
calculated by the force balance equations Fi ¼ 0, where i ¼ 2, � � �,
N and Fi is the total force acting on the i th dislocation and can
be rewritten in the form of Fi ¼ bre

ruðri;uÞ (Ovid’ko and
Sheinerman, 2009). The effective stress re

ruðri;uÞ is expressed as

re
ruðri;uÞ ¼ ra

ruðri;uÞ þ rf
ruðri;uÞ þ rim

ruðri;uÞ

þ
XN

j¼1;
j–i

rd
ruðri; rj;uÞ; ð46Þ

where ra
ruðri;uÞ is the shear stress created by the applied macro-

scopic load; the friction stress rf
ruðri;uÞ is a material property whose

magnitude depending on the atomic structure; the image stress
rim

ruðri;uÞ is associated with the presence of the amorphous phase
surface and corresponds to the image force generated by the coated
MWCNT; and the stress rd

ruðri; rj;uÞ is the force exerting on the i th
dislocation and created by the j th dislocation at the point ðri;uÞ.

In the absence of climb, a prismatic dislocation loop is assumed
to glide along its glide cylinder direction. As an interstitial loop
moves away from the surface of the inclusion, the lattice friction
stress opposes its motion. In the subsequent calculation, the ampli-
tude of lattice friction stress rf

ruðri;uÞ is set equal to 0:001l3.
If the applied remote stress around the inclusion is a biaxial ten-

sion r111 ¼ r122ði:e:;g ¼ 1Þ, its contribution to the glide force acting
on the dislocation is specified by Fa ¼ bra

r/ðri;/Þ. According to
transformation formula given by Lubarda (2011), the shear stress
ra

ruðri;uÞ along the slip plane can be expressed by the stress com-
ponents rrr3 and rhh3 as

ra
i ¼

1
2
ðrhh3 � rrr3Þ sin 2ðu� hÞ; ð47Þ

where the polar coordinates u and h are given in Fig. 1b and c. By
substituting the expression of rhh3 � rrr3 obtained from Eqs. (11)
and (12) into the above equation, we can achieve
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ra
i ¼

1
2

sin 2ðu� hÞ g3ðzÞ þ g3ðzÞ þ g3
R2

2
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 !
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R2
2

z

 !"

�z
z

R2
2

� 1
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 !
h3ðzÞ � z

z

R2
2

� 1
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 !
h3ðzÞ

#
; ð48Þ

To be emitted from the ACIs, all dislocations have to overcome
the interface attraction zone associated with the existence of the
image force rim

ruðri;uÞ. For the case of only one single dislocation
with Burgers vector B ¼ bx þ iby located at the point z0 in the ma-
trix, the image force can be calculated according to the Peach-
Koehler formula (Hirth and Lothe,1982; Fang and Liu, 2006), and
can be rewritten as

fx � ify ¼
l3ðb

2
y þ b2

x Þ
pð1þ j3Þ

g�3ðz0Þ þ g�3ðz0Þ
c

þ z0g�03 ðz0Þ þ h�3ðz0Þ
c

" #
; ð49Þ

where fx and fy are the image force in the x and y direction, respec-
tively. g�3ðz0Þ and h�3ðz0Þ are the perturbation complex potentials in
the matrix, which may be calculated as follows:

g�3ðz0Þ ¼
l3

j3l2
ðC0 � B0Þ þ
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n¼1
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: ð52Þ

Now, the explicit expressions of the image force for the case of
one single edge dislocation located in the infinite matrix can be ob-
tained by Eq. (49) together with Eqs. (50)–(52). Moreover, when
the total force is larger enough, more dislocations will be punched
out into the matrix. To gain the image force exerting on the leading
dislocation by the latter one, we can further employ the superpo-
sition of Green’s functions to construct the expressions of more
parallel edge dislocations in the matrix. Suppose that two parallel
edge dislocations with the same Burgers vectors ðbx; byÞ are located
in points z0 and z1, respectively. The image force acting on the dis-
locations z0 by the dislocation z1 can be given by Eq. (49), but for
this situation, according to Fang et al. (2009b), the perturbation
complex potentials may be rewritten as

g�3ðz1�0Þ ¼ PþP0R2
2

z2
0

þ l3

j3l2
ðE0 � D0Þ þ

l3

j3l2

X1
n¼1
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þ 1
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z1

z�1
z0 � z�1

� �
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z0 � z1
; ð53Þ

g�03 ðz1�0Þ ¼ �
2P0R2

2

z3
0

� l3

j3l2

X1
n¼1

nE�nðz0Þ�n�1
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; ð54Þ
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� c1z�1
ðz0 � z�1Þ

2 þ
c1

z1

z�1ðz0 þ z�1Þ
ðz0 � z�1Þ

2

" #
� c1z0

R2
2

þ c1

R2
2

z0z1

z0 � z1

þ c1

R2
2

z2
0ðz�1 � z1Þ
ðz0 � z1Þ2

)
; jzj > R2: ð55Þ

where c1 ¼
l3

pð1þj3Þ
ðb1y � ib1xÞ and z�1 ¼ R2

2=z1, substituting c1, z1

and z�1 into Eqs. (39)–(43) and replacing c, z0 and z�, then generat-
ing E0 � D0, D0, E�n, Dn and Dn corresponding to C0 � B0, B0, C�n, Bn

and Bn.
To clearly demonstrate the effect of amorphous interphase on

the mobility and stability of dislocations, the image force acting
on an edge dislocation without amorphous interphase will also
be evaluated, for comparison. The formulas for the stress fields of
two-phase composite model are adopted in terms of Fang and
Liu (2006) and Fang et al. (2007). The interface conditions also em-
ploy Eq. (8). Note that in Eq. (49), the complex potentials g�3ðz0Þ and
h�3ðz0Þ in the matrix can have the following series expansions:

g�3ðz0Þ ¼
X1
n¼1

M�nðz0Þ�n
; ð56Þ

g�03 ðz0Þ ¼ �
X1
n¼1

nM�nðz0Þ�n�1
; ð57Þ
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þ cðz0z0 � R2
2Þ

R2
2z0

þ 2cz0

R2
2

#
� 2c

z0
� cz0

z2
0

ð58Þ

The unknown coefficients in the right hand side of Eqs. (56)–
(58) can be obtained:

M�n¼
ðaþbÞðn�1Þþc2

c1

cR2n
2

ðz0Þnþ1þ
ðn�a�1Þþc3

c1

� cðz�Þn�1�cd1n�
cz�ðz0�z�Þðn�1Þðz�Þn�2

z0

" #
; nP1; ð59Þ

Nn ¼
c5

c4

c
ðz0Þnþ1 þ

aþ anþ c6

c4

� cðz�Þn�1

R2n
2

� cd1n

R2n
2

� cz�ðz0 � z�Þðn� 1Þðz�Þn�2

z0R2n
2

" #
; n P 1; ð60Þ

where

a ¼ ð2l0 þ k0 � s0Þq� 2ðk0 þ s0Þl
R2ð4kq� 4l2Þ

; b ¼ 2l0 þ k0 � s0

4mR2
;

c1 ¼ 1þ ðaþ bÞðn� 1Þ þ aðaþ bÞð1þ nÞð1� nÞ
1þ aþ na

;

c2 ¼
að1� nÞ½ðaþ bÞð1þ nÞ � 1�

1þ aþ na
;

c3¼
a2ð1þnÞð1�nÞ

1þaþna
; c4¼1þaðnþ1ÞþaðaþbÞð1þnÞð1�nÞ

1þðaþbÞðn�1Þ ;
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c5 ¼ ðaþ bÞðnþ 1Þ � 1þ ðaþ bÞ2ð1þ nÞðn� 1Þ
ðaþ bÞð1� nÞ � 1

;

c6 ¼
ðaþ bÞð1þ nÞð1þ a� anÞ

1þ ðaþ bÞðn� 1Þ :

and dij is the Kronecker delta.
Then, the detailed expressions of the image force for the two-

phase composite model can also be gained by Eq. (49) together
with Eqs. (56)–(60).

Now the primary physical interest is paid on the glide compo-
nent FG of the image force along the glide direction and the compo-
nent FC perpendicular to the Burgers vector direction (climb force),
which are given by

FG ¼ fx cos hþ fy sin h; ð61Þ

FC ¼ fx sin h� fy cos h: ð62Þ

where h ¼ arctanðby=bxÞ, i.e., the glide direction of the dislocations
relative to x-axis, as shown in Fig. 1b.

The total force acting on the dislocations can be evaluated by
using Eqs. (46)–(55). However, to understand the effect of GBs on
the mobility and stability of edge dislocations, the equilibrium
numbers Ne of lattice dislocations emitted along the same slip
plane will be calculated in the glide direction. First, we must verify
the leading dislocation can be emitted from ACI by the critical
condition:

ra
ruðri;uÞ þ rf

ruðri;uÞ þ rim
ruðri;uÞ > 0; ð63Þ

Then, adopting the calculation procedures given by Ovid’ko and
Sheinerman (2009), we suppose that the (N þ 1)th dislocation
(N ¼ 1;2; . . .) can emit if there exists a region within the interval
0 < r < d where the dislocation is repelled from the ACI. The fol-
lowing inequality should be satisfied in this region:

ra
ruðri;uÞ þ rf

ruðri;uÞ þ rim
ruðri;uÞ þ

XN

j¼1;
j–i

rd
ruðri; rj;uÞ > 0: ð64Þ
Table 1
Parameters used in the calculation of total force acting on the dislocations in CNT-
reinforced MMNCs (MWCNT properties taken from Shen and Li (2005) and matrix
properties from Hirth and Lothe (1982)).

Elastic constituent properties MWCNT (phase 1) Metal matrix (phase 3)

Axial Young’s modulus (Ezz) 1.17 T Pa �
Transverse bulk modulus (Krh) 130 GPa �
Transverse shear modulus

(lrh)
5.98 GPa �

In plane shear modulus (lrz) 277 GPa �
In plane Poisson’s ratio (mrz) 0.139 �
Shear modulus (l) � 27 GPa
Poisson’s ratio (m) � 0.34
4. Numerical results and discussions

The foregoing theory is applicable to calculate the image force
exerting on a single dislocation and equilibrium numbers of multi-
ple parallel dislocations in CNT-reinforced MMNCs, with or with-
out interface effect. In this section, we first apply it to evaluate
the image force on one single dislocation, and then move on to
examine the mobility and stability of multiple parallel edge
dislocations in the metal matrix. In the present physical problem,
determination of the image force on the dislocations and the equi-
librium positions of the dislocations are highly complicated issues
of the material properties of three phases, the thickness of the
interphase and the orientation of the Burgers vector. In order to
simplify the calculations, we suppose that the leading edge disloca-
tion situates at the point x0 (x0 > R2 is a real number) on the posi-
tive x-axis. The image force is normalized as fG ¼ pð1þ j3ÞFG

=R2½l3ðb
2
x þ b2

yÞ� and fC ¼ pð1þ j3ÞFC=R2½l3ðb
2
x þ b2

yÞ�, and we de-
fine the relative location of the edge dislocation q ¼ x0=R2.

MWCNT-reinforced aluminum matrix composites are analyzed
as an illustrative example. The parameters used in the calculations
for the composite system are listed as follow. We use the trans-
versely isotropic properties of MWCNT given by Shen and Li
(2005) and the elastic constants for the aluminum matrix given
by Hirth and Lothe (1982) in the calculation, as shown in Table 1.
Without loss of generality, the three-phase composite system is as-
sumed to be subjected to remote uniform loading r0 ¼ 0:3l3,
g ¼ 1 and Burgers vector b ¼ 0:25 nm. The interface effect along
the circle C2 is represented by the surface elastic constants l0

and k0 and the interface residual stress s0. Two different cases of
interface effect used in the present investigation are equivalent
to surface modulus of the aluminum, as shown in Table 2. Although
the surface properties are generally anisotropic, the transverse iso-
tropic case is assumed to be sufficient to elaborate the main fea-
tures of the size-dependent response.

4.1. An analysis of the image force exerting on an edge dislocation

4.1.1. The influence of interface constants and residual stress
As a starting point, we will mainly focus on the comparison of

the image force obtained by adopting the three-phase composite
cylinder model and the two-phase composite model, with three
different sets of interface properties and interface residual stresses
when a single edge dislocation located in the matrix by utilizing
Eqs. (49)–(52) and Eqs. (56)–(60). The relations of the image force
with the radius are plotted in Figs. 3–5 for t2 ¼ t3 ¼ 0:34,
l2=l3 ¼ 1:1, R2 � R1 ¼ 3 nm and q ¼ 1:2. Fig. 3 shows the compa-
rision of the normalized glide/climb force versus the radius R1 of
MWCNT for the case s0 ¼ 0. Then the influence of interface resid-
ual stress s0 upon the image force is depicted in Fig. 4 without con-
sidering the interface constants ðl0 ¼ 0; k0 ¼ 0Þ. At last, Fig. 5
displays the image force with different radii for three combinations
of the interface stress s0 and the interface constants l0 and k0. It is
clear from Figs. 3–5 that the model presented in the paper is obvi-
ously different from the case that without the amorphous layer.
We will discuss the variation of the image force obtained using
the three-phase composite cylinder model carefully in the follow-
ing. For convenience, the interface elastic constants are written as
K0 ¼ 2l0 þ k0 � s0, and for the case of l0 ¼ �5:4251 N/m,
k0 ¼ 3:4939 N/m, s0 ¼ 0:5689 N/m, K0 ¼ �7:9253 N=m < 0, while
K0 ¼ 5:1882 N=m > 0, for l0 ¼ �0:3760 N/m, k0 ¼ 6:8511 N/m,
s0 ¼ 0:9108 N/m. It can be seen from Figs. 3–5 that, if interface
constants are positive (K0 > 0), the normalized climb force fC is
smaller than that in the classical case without considering the
interface effect (K0 ¼ 0 in the associated plot has been provided
in Fig. 3), while the values of the glide force become larger com-
pared to the corresponding spots in the classical one. However,
for the case K0 < 0, the trend is reversed. One feature shared by
them was the smaller the radius of MWCNT, the larger discrepan-
cies between the values (K0 – 0) and the classical case, especially
when the size is below 10 nm. In brief, an additional attractive
force or repulsive force will act on the edge dislocation on account
of the interface effect, which causes the normalized glide/climb
force to decrease or increase. The phenomenon cannot be produced
by the classical elasticity solution and agree with the results given
by Fang et al. (2009b). This implies that local hardening and soften-
ing can occur at the interface due to the presence of the interface
effect. In addition, the classical solution (K0 ¼ 0, s0 ¼ 0) in the
present paper is dependent on the size of MWCNT. This mainly



Table 2
the surface modulus of aluminum (Miller and Shenoy, 2000; Sharma et al., 2003).

Surface modulus Al½1 0 0�
surface (phase 1)

Al½1 1 1� surface

Surface elastic constants l0 (N/m) �5.4251 �0.3760

k0 (N/m) 3.4939 6.8511

Residual surface stress s0 (N/m) 0.5689 0.9108
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attributes to the position of the edge dislocation is changing in line
with the variation of the radius, finally lead to the variation of the
glide/climb force with the radius even the interface elastic con-
stants and interface stress are neglected. Through the comparison
of the three sets of figures among Figs. 3–5 again, it is concluded
Fig. 3. Comparison of the image force fG and fC as a function of the radius R1 of MWCNT f
and (b) climb force fC ðbx ¼ 0Þ under the condition s0 ¼ 0.

Fig. 4. Comparison of the image force fG and fC as a function of the radius R1 of MWCNT f
and (b) climb force fC ðbx ¼ 0Þ for the influence of interface stress s0 without the surfac

Fig. 5. Comparison of the image force fG and fC as a function of the radius R1 of MWCNT f
and (b) climb force fC ðbx ¼ 0Þ for combinations of the interface stress s0 and the interfa
that the interface effect is mainly due to the interface elastic con-
stants l0 and k0 rather than the interface residual stress s0.
4.1.2. The mechanical properties and thickness effect of the amorphous
interphase

The normalized glide force fG and climb force fC for different
values of l2=l3 versus the relative position q are given in Fig. 6
for t2 ¼ t3 ¼ 0:34, R1 ¼ 10:19 nm, R2 � R1 ¼ 3 nm and l0 ¼
�5:4251 N/m, k0 ¼ 3:4939 N/m, s0 ¼ 0:5689 N=m. It can be seen
from Fig. 6 that the glide force is always negative expect for one
single point. In other words, the coated MWCNT attracts the edge
dislocation in the matrix under the given condition all the time,
regardless of the value l2=l3 larger than 1 or not. It is clearly
different from the classical elasticity result, in which the stiff
or t2 ¼ t3 ¼ 0:34, l2=l3 ¼ 1:1, R2 � R1 ¼ 3 nm, q ¼ 1:2; for (a) glide force fGðby ¼ 0Þ

or t2 ¼ t3 ¼ 0:34, l2=l3 ¼ 1:1, R2 � R1 ¼ 3 nm, q ¼ 1:2, for (a) glide force fGðby ¼ 0Þ
e constants ðl0 ¼ 0; k0 ¼ 0Þ.

or t2 ¼ t3 ¼ 0:34, l2=l3 ¼ 1:1, R2 � R1 ¼ 3 nm, q ¼ 1:2, for (a) glide force fGðby ¼ 0Þ
ce constants l0 and k0:.
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inclusion ðl2=l3 > 1Þ will always repel the edge dislocation lied
near the inclusion within the matrix. This happen may because
of the combined effect of negative interface elastic constant, inter-
face stress and the amorphous interphase. This phenomenon is
similar to the micrographs (Schröder and Arzt, 1985), which give
the impression of an attractive interaction between the particles
and dislocations. In addition, the attractive interaction of a mobile
lattice dislocation with a larger particle is also illustrated by a ser-
ies of images (Clark et al., 2005). Moreover, a strong attractive
interaction is obtained by adopting linear elasticity theory and
the evaluated glide force is always negative when the dislocation
locates at the positive y�axis. In the glide direction, the amorphous
interphase will always attract the edge dislocations in the matrix,
which can cause local hardening at the ACI. It can be concluded
that for negative interface characteristic constants (K0 < 0), there
exists significant local hardening at the interface between the
amorphous layer and the matrix, whether the coating layer harder
or softer than the matrix. Additionally, an interesting result found
in Fig. 6 is that for the case l2=l3 6 1:1, the normalized climb force
is positive first, and then becomes negative. The equilibrium posi-
tions of the dislocation can be obtained by letting the image force
on dislocation zero. When the relative position increases to a crit-
ical value (about 1.5), there is a stable equilibrium position. How-
ever, no equilibrium position is available for l2=l3 ¼ 1:5, 3 or 5.
This may attribute to the fact that as the ratio of relative shear
modulus l2=l3 decreases, the same value of the elastic constants
of MWCNT has a more pronounced influence on the climb force.
For small values of the relative position, the repulsive force created
by the stiff reinforcement and interphase overcomes the attractive
force produced by the interface constants, interface stress and
amorphous interphase, which lead to the change of the direction
of the climb force. The discrepancies between the normalized
climb forces disappear gradually with increases of relative posi-
tion. Generally speaking, inserting an amorphous interphase be-
tween the stiff reinforcement and the soft matrix provides a
possible method to achieve significant local hardening at the inter-
face with considering the negative interface effect.

Then we change Poisson’s ratio of the coating layer instead of
shear modulus. We can achieve the relationship between the glide
force fG and the climb force fC with different values of t2. The vari-
ations of the image force as a function of the relative location q are
depicted in Fig. 7 for l2=l3 ¼ 1:1, R1 ¼ 10:19 nm, R2 � R1 ¼ 3 nm
and l0 ¼ �5:4251 N/m, k0 ¼ 3:4939 N/m, s0 ¼ 0:5689N=m. The
variations of the glide force have the same trend along with the
change of Poisson’s ratio t2, and opposite trend can be seen for
the climb force. The conclusions parallel to those drawn in Fig. 6.
In addition, when t 6 0:4, there exist two equilibrium positions
Fig. 6. Glide force fG and Climb force fC vs. the relative location q ¼ x0=R2 for
t2 ¼ t3 ¼ 0:34, R1 ¼ 10:19 nm, R2 � R1 ¼ 3 nm and l0 ¼ �5:4251 N/m,
k0 ¼ 3:4939 N/m, s0 ¼ 0:5689 N/m.
of the edge dislocation (one stable and the other one unstable)
on the x-axis where the climb forces equal to zero at these points.
Similar observation has been given in a theoretical model describ-
ing the mobility of a misfit dislocation dipole in a wire composite
including a hard cylindrical substrate coated by a soft co-axial
cylindrical film (Wang et al., 2010). It is concluded from these fig-
ures that the variation of Poisson’s ratio of the amorphous inter-
phase also can affect the stability of the dislocation, especially in
the climb direction.

We will examine the thickness effect of the interphase on the
image force acting on the dislocation in the following part. The
normalized glide force fG and the normalized climb force fC for
different thicknesses are plotted in Fig. 8 ðby ¼ 0Þ and Fig. 9
ðbx ¼ 0Þ, respectively, for l2=l3 ¼ 1:1, t2 ¼ t3 ¼ 0:34, q ¼ 1:2 and
l0 ¼ �5:4251 N/m, k0 ¼ 3:4939 N/m, s0 ¼ 0:5689N=m. It is clearly
seen from Fig. 8 that when the thickness R2 � R1 of the interphase
is small, the glide force varies widely, especially in the region
where the size of MWCNT is close to the thickness of the amor-
phous interphase. However, when R2 � R1 is large (the MWCNT is
thickly coated), the glide force increases linearly at a set ratio with
the size of the amorphous interphase increases. It can be found
from Fig. 9 that when the thickness of interphase is small, the
climb force is negative first, and then becomes positive with large
size of MWCNT. There exists an unstable equilibrium. However,
with increases of the thickness, the climb force will always be po-
sitive and the values changeless with the variation of the size of the
MWCNT. Roughly speaking, the thinner the thickness of the amor-
phous interphase, the larger the effect of climb force. From Figs. 8
and 9, we conclude that when the thickness of the interphase is
small and approximate to the radius of the reinforcement, the
coated MWCNT has vital influence on the image force exerting
on the edge dislocation. In contrast, when the amorphous inter-
phase is thick enough, the image force increases slightly with in-
creases of the radius of MWCNT. The results agree with the
investigation finished by Xiao and Chen (2001) that as the thick-
ness of the coating layer increases, the influence of the MWCNT
on the mobility of the dislocation may be shielded. In other words,
when the interphase is thick enough, the elastic properties of the
inclusion and the interface stresses have not-so-obvious influence
on the force exerting on the dislocations.
4.1.3. Size effect of MWCNT
To analyze the size (radius) effect of MWCNT on the image

force, Figs. 10 and 11 exhibit the glide force fG and climb force fC

as a function of the relative location q ¼ x0=R2 for l2=l3 ¼ 1:1,
t2 ¼ t3 ¼ 0:34, R2 � R1 ¼ 3 nm and l0 ¼ �5:4251 N/m, k0 ¼
3:4939 N/m, s0 ¼ 0:5689 N=m, respectively. It is clearly seen from
Fig. 7. Glide force fG and Climb force fC as a function of the relative location
q ¼ x0=R2 for l2=l3 ¼ 1:1, R1 ¼ 10:19 nm, R2 � R1 ¼ 3 nm and l0 ¼ �5:4251 N/m,
k0 ¼ 3:4939 N/m, s0 ¼ 0:5689 N/m.



Fig. 9. Climb force fC as a function of the radius R1 for l2=l3 ¼ 1:1, t2 ¼ t3 ¼ 0:34,
q ¼ 1:2 and l0 ¼ �5:4251 N/m, k0 ¼ 3:4939 N/m, s0 ¼ 0:5689 N/m ðbx ¼ 0Þ.

Fig. 10. Glide force fG as a function of the relative location q ¼ x0=R2 for
l2=l3 ¼ 1:1, t2 ¼ t3 ¼ 0:34, R2 � R1 ¼ 3 nm and l0 ¼ �5:4251 N/m,
k0 ¼ 3:4939 N/m, s0 ¼ 0:5689 N/m ðby ¼ 0Þ.

Fig. 11. Climb force fC as a function of the relative location q ¼ x0=R2 for
l =l ¼ 1:1, t ¼ t ¼ 0:34, R � R ¼ 3 nm and l0 ¼ �5:4251 N/m,
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Fig. 10 that the size effect of MWCNT on the glide force becomes
negligible when the relative position of the edge dislocation be-
yond the critical value q ¼ 1:2. In contrast, the size effect is quiet
evident when the dislocation near the ACI, and the values of fG

diminish extremely rapidly as q from origin close to 1.2, especially
in the case of small radius. In the climb direction, the influence of
size on the image force exhibits different features, as shown in
Fig. 11. Nevertheless, the climb forces tend towards stability with
increases of the relative location, as well as the glide force. It im-
plies that the size effect of MWCNT on the mobility and stability
of the edge dislocation is significant within certain realms in metal
matrix.

4.1.4. The effect of the orientation of the Burgers vector
Figs. 12 and 13 elaborate the glide force fG and the climb force fC

as functions of the direction of the Burgers vector h for
t2 ¼ t3 ¼ 0:34, l2=l3 ¼ 1:1, R1 ¼ 10:19 nm, R2 � R1 ¼ 3 nm and
q ¼ 1:2. At h ¼ 00, the normalized glide force reduces for negative
K0 and increases for positive K0 when compared to the classical re-
sult. The glide force is equal to zero for all cases at h ¼ 900. It is also
found from Fig. 12 that the glide force is negative first and equals
zero around h ¼ 300, then becomes positive with increases angle h
for classical solution ðK0 ¼ 0Þ. However, if the interface constants
are considered, the absolute value of the glide force is smaller than
that for classical solution at the majority distribution of h. The
influence of the interface stress upon the glide force is largest when
the angle is approximate 600, while the influence is almost negligi-
ble when h 6 150. We can see from Fig. 13 that the climb force fC is
always negative for classical solution and the case considering the
interface properties (for the case K0 > 0). The values of climb force
below zero when h ¼ 00, mainly because of the existence of remote
uniform loadings. Looking at a close-up of the classical solution, we
can observe distinct troughs are adjacent to the angle h ¼ 350,
when the effect of the interface stress on the climb force is the larg-
est, and after that the magnitude of the climb force decreases with
the angle increases. The discrepancy of these two kinds of interface
effect is also found to be unremarkable when compared to the clas-
sical solution, mainly due to the interface constant l0 < 0 in both
cases regardless of K0 > 0 or not. From the results obtained, it
seems that the presence of the interface stress has significant influ-
ence on the glide force and climb force when the direction of the
Burgers vector varies.

4.2. Analysis of dislocation stability

In this section, attention is paid on the total glide/climb force
acting on the subsequent edge dislocations and the impact of the
interface conditions and elastic mismatch of three phases on the
equilibrium numbers of the dislocations at a given size grain. For
Fig. 8. Glide force fG as a function of the radius R1 for l2=l3 ¼ 1:1, t2 ¼ t3 ¼ 0:34,
q ¼ 1:2 and l0 ¼ �5:4251 N/m, k0 ¼ 3:4939 N/m, s0 ¼ 0:5689 N/m ðby ¼ 0Þ:

2 3 2 3 2 1

k0 ¼ 3:4939 N/m, s0 ¼ 0:5689 N/m ðbx ¼ 0Þ.
comparison’s sake, in subsequent numerical calculation, we define

the normalized stress f0 ¼ pð1þ j3Þf=R2½l3ðb
2
x þ b2

yÞ�, where

f ¼ ra
ruðri;uÞ, rf

ruðri;uÞ or rd
ruðri;uÞ, respectively. The repulsive

portion of the total glide force is mainly due to applied stress, while
the attractive portion consists of the image force, friction stress and
the interactions between neighbor dislocations. In Figs. 14 and 15,
the variation of the total force with respect to the parameter R1 for
the leading dislocation is illustrated with t2 ¼ t3 ¼ 0:34,
l2=l3 ¼ 1:1, R2 � R1 ¼ 3 nm, h ¼ 300 and q ¼ 1:2. It is found from
Fig. 14 that the total glide force is always positive when incorporat-
ing the interface effect, while the force is negative for the classical
case. Parallel result can be found in Fig. 15 for the total climb force.
When the interface effect is taken into consideration, the



Fig. 12. Glide force fG vs. the direction of the Burgers vector h for t2 ¼ t3 ¼ 0:34,
l2=l3 ¼ 1:1, R1 ¼ 10:19 nm, R2 � R1 ¼ 3 nm and q ¼ 1:2.

Fig. 13. Climb force fC vs. the direction of the Burgers vector h for t2 ¼ t3 ¼ 0:34,
l2=l3 ¼ 1:1, R1 ¼ 10:19 nm, R2 � R1 ¼ 3 nm and q ¼ 1:2.

Fig. 14. The value of the total glide force as a function of the relative position
q ¼ x0=R2 for l2=l3 ¼ 1:1, t2 ¼ t3 ¼ 0:34, R1 ¼ 10:19 nm, R2 � R1 ¼ 3 nm and
h ¼ 300.

Fig. 15. The value of the total climb force as a function of the relative position
q ¼ x0=R2 for l2=l3 ¼ 1:1, t2 ¼ t3 ¼ 0:34, R1 ¼ 10:19 nm, R2 � R1 ¼ 3 nm and
h ¼ 300.

Fig. 16. The equilibrium numbers Ne of edge dislocations that can be emitted from
the ACI along the same slip plane as a function of grain size d in nanocrystalline Al.
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inequality (63) is satisfied. Then the first dislocation can be emitted
from the ACI and move far away. We can also conclude that the
emission of edge dislocation from the ACI is difficult for the classi-
cal case. The absolute values of the glide/climb force increases rap-
idly with decreases of the radius of MWCNT. This is the so-called
‘‘smaller but stronger’’. In short, the smaller the radius, the larger
relative thickness of amorphous interphase to the size of MWCNT
is presented. As a result, the influence of amorphous interphase
and interface effect on the dislocations stability is remarkable.
Then the equilibrium numbers of dislocations along the same slip
direction with considering the interface effect will be evaluated.

To investigate the effect of GBs on the stability of the edge dis-
locations, the maximum numbers Ne of lattice dislocations along
the same slip plane is calculated by adopting the computational
procedure in Section 3. For definiteness, we put l2=l3 ¼ 1:1,
t2 ¼ t3 ¼ 0:34, R1 ¼ 10:19 nm, R2 � R1 ¼ 3 nm and h ¼ 300. The
variation of Ne with grain size d is shown in Fig. 16. It can be clearly
seen that fewer dislocations can be emitted from the ACI at a smal-
ler size grain. In particular, when the grain size of crystalline mate-
rials less than 100 nm, i.e., in nanocrystalline matrix, the
dislocations emitted from the ACI is quietly low. With the grain
size decreases, the distance between ACI and GB becomes closer.
So the stress rd

ruðri; rj;uÞ created by the previous dislocations will
inhibit the subsequent dislocations. This means that, dislocations
will not easily be emitted from ACI for small grain size, which in
turn inhibits the delamination of the interface between the rein-
forcement and matrix. Another interesting appearance shown in
Fig. 16 is that the equilibrium numbers of dislocations seem to
be insensitive to the large grain size. From the expression (46),
the equilibrium numbers is determined by four factors: ra

ruðri;uÞ
, rf

ruðri;uÞ, rim
ruðri;uÞ and rd

ruðri; rj;uÞ, of which ra
ruðri;uÞ is benefi-

cial for the emission of dislocations. Since value of the shear stress
is very small far away from the coated MWCNT, the mobility of dis-
locations becomes more difficult.
5. Conclusions

The effect of the interaction between the amorphous interphase
and edge dislocations on the local plastic behavior of CNT-rein-
forced MMNCs is presented in the paper. The influence of amor-
phous interphase and interface conditions on the interaction
between edge dislocations and a circular nanoscale coated MWCNT
are comparatively complicated issues, for there are many factors
that can affect the mobility and stability of dislocations. These
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include interface effect, materials properties of coated MWCNT and
orientation of the Burgers vector, among others. A three phase
composite cylinder model is developed to explain the new bound-
ary value problem. In addition, the plastic flow occurring around
the reinforcement and the emission of edge dislocations from the
amorphous interphase is addressed. The image force acting on an
edge dislocation is evaluated in detail, and the image force evalu-
ated in the three phase composite cylinder model is obviously dif-
ferent from that calculated in the two-phase composite model
without the amorphous interphase. The interface conditions are
proved to have significant effect on the glide/climb force acting
on an edge dislocation when the size of MWCNT is very small, typ-
ically approximate ten nanometers. An additional repulsive force
or attractive force exerts on the edge dislocation due to the exis-
tence of interface effect. An amorphous interphase existing be-
tween the stiff reinforcement and the soft matrix can achieve
significant local hardening at the interface with considering the
negative interface effect. However, when the amorphous inter-
phase is thick enough, the influences of the interface stresses and
the elastic constants of the reinforcement on the glide/climb force
are slight. With the variation of the direction of Burgers vector, the
effect of interface stress on glide/climb force is significant. In addi-
tion, the elastic interaction between two edge dislocations may be
strongly affected by interface conditions and nearby nano-sized
coated reinforcement. At last, the equilibrium numbers of edge dis-
locations are presented by numerical procedures and discussed in
detail. It is found that the equilibrium numbers of dislocations are
sensitive to the grain size, especially for nanocrystalline. These
solutions may form the basis for problems of significant crack-
inclusion interaction relevant to composite materials, especially
for CNT-reinforced MMNCs (Kim and Sudak, 2005). Such investiga-
tion may provide some insight into determining the optimal coated
CNT cross-section of CNT-reinforced MMNCs; estimating the dif-
ference in performance due to deviations from the optimum. Addi-
tionally, these solutions can be useful for studying the generation
and growth of crack, as well as the overall elastic and plastic prop-
erties in CNT-reinforced MMNCs.

In retrospect, it must be recognized that the adoption of circular
coherent interface is an idealizations in this development. With
semi-coherent or incoherent interfaces, the jump of the interfacial
strain in the adjoining bulk materials is required (Romanov and
Wagner, 2001). Additionally, Incorporation of the interatomic po-
tential is another desirable route to model CNT, interphase and
interface effects, though involving a higher degree of calculation
complexity (Jiang et al., 2006; Tan et al., 2007; Wu et al., 2009;
Pavia and Curtin, 2011). The constitutive properties of interphase
can be derived from atomistic simulations and then introduced
in a continuum micromechanics-based interphase model to char-
acterize the macroscopic plastic behaviors of nanocomposites con-
sidering the effect of surface/interface stress (Zhang et al., 2010;
Azizi et al., 2011; Paliwal and Cherkaoui, 2012). Such an approach
could link the discrete atomic level interactions and continuum
mechanics (Espinosa et al., 2006), and it is expected to tailor it spe-
cifically to CNT-reinforced materials. Further study of these and
other factors deserve to be implemented in the future.
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Appendix A. Explicit evaluation of the complex analytical
functions h1ðzÞ and h2ðzÞ in Eqs. (18) and (19)

With the aid of the continuation theory given by England
(1971), it can be demonstrated from Eq. (16) that the function
/ðzÞ ¼ g1ðzÞ þ g2ðzÞ is holomorphic in the finite region
R2

1=R2 < jzj < R2. Therefore, we can express /ðzÞ according to Xiao
and Chen (2001) as

/ðzÞ ¼ �g1ð0Þ þ
Xþ1

n¼�1
Anzn; R2

1=R2 < jzj < R2; ðA:1Þ

Since /ðzÞ ¼ g1ðzÞ þ g2ðzÞ, by virtue of Eq. (16) and eliminating
gþ2 ðzÞ and g�2 ðzÞ, Eq. (17) will be reduced to the Hilbert problem.

gþ1 ðzÞ þ ag�1 ðzÞ ¼ b/ðzÞ; ðA:2Þ

where the two parameters a and b are defined by

a ¼ j2l1 þ l2

j1l2 þ l1
; b ¼ ðj2 þ 1Þl1

j1l2 þ l1
; ðA:3Þ

Introducing a sectionally holomorphic auxiliary function, WðzÞ
is defined by

WðzÞ ¼
g1ðzÞ � ða� bÞg1ð0Þ � b

Xþ1
n¼0

Anzn; jzj < R1;

�ag1ðzÞ � ag1ð0Þ þ b
Xþ1
n¼1

A�nz�n; jzj > R1:

8>>>><
>>>>:

ðA:4Þ

Obviously, WðzÞ is analytic and single value in the whole com-
plex plane even containing the points at infinity. By Liouville’s
theorem, WðzÞ must be constant and is identically equal to zero,
i.e.

WðzÞ � 0: ðA:5Þ

Hence we can obtain the following expressions

g1ðzÞ ¼ ða� bÞg1ð0Þ þ b
Xþ1
n¼0

Anzn; jzj < R1; ðA:6Þ

g1ðzÞ ¼ �g1ð0Þ þ
b
a
Xþ1
n¼1

A�nz�n; jzj > R1; ðA:7Þ

From Eq. (A.6), we can determine g1ð0Þ and g1ð0Þ as

g1ð0Þ ¼
ða� bÞbA0 þ bA0

1� ða� bÞ2
; g1ð0Þ ¼

ða� bÞbA0 þ bA0

1� ða� bÞ2
; ðA:8Þ

Subtracting the above expressions (A.6) and (A.7) from Eq. (A.1)
and achieving the following expressions:

g2ðzÞ ¼ �ð1þ a� bÞg1ð0Þ þ
Xþ1
n¼1

A�nz�n þ ð1� bÞ
Xþ1
n¼0

Anzn;

R2
1=R2 < jzj < R1; ðA:9Þ

g2ðzÞ ¼
Xþ1
n¼0

Anzn þ 1� b
a

� �Xþ1
n¼1

A�nz�n; R1 < jzj < R2; ðA:10Þ

Then, substituting Eqs. (A.6) and (A.10) into Eq. (13) with R ¼ R1

lead to

h1ðzÞ ¼
R2

1

z2

b
a
Xþ1
n¼1

A�n
z

R2
1

 !n

� b
Xþ1
n¼1

Anðn� 1Þzn

" #
; jzj < R1; ðA:11Þ
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h2ðzÞ ¼
R2

1

z2

1� a
1� aþ b

ðA0 þ A0Þ �
Xþ1
n¼1

Anðn� 1Þzn þ
Xþ1
n¼1

A�n
z

R2
1

 !n"

þð1� bÞ
Xþ1
n¼1

An
R2

1

z

 !n

þ 1� b
a

� �Xþ1
n¼1

A�nðn� 1Þz�n

#
;

R1 < jzj < R2: ðA:12Þ
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