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Abstract 

An identification method using Allan variance and equivalent theorem is proposed to identify non-stationary sensor errors 
mixed out of different simple noises. This method firstly derives the discrete Allan variances of all component noises inherent in 
noise sources in terms of their different equations; then the variances are used to estimate the parameters of all component noise 
models; finally, the original errors are represented by the sum of the non-stationary component noise model and the equivalent 
model mixed out of the stationary and critically stationary component noises. Results of two examples for identification confirm 
the superiority of this approach regardless of the errors being stationary or not. The comparison of results of real ring laser gyro 
(RLG) errors processed by various methods shows that the proposed approach is more suited to depict the original noises than 
common ones. 
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1. Introduction1 

The errors inherent in instruments have to be 
modeled and identified so that they can properly be 
compensated or filtered after their integration into a 
system[1-2]. Ring laser gyro (RLG) is an important in-
strument in inertial navigation system (INS) that has 
found broad applications in a variety of fields. Various 
methods to model RLG random errors have been stud-
ied until recently. In Ref.[3], RLG random errors were 
described by a non-stationary auto-regressive and 
moving average (ARMA) model with the parameters 
estimated through data differentials. In Ref.[4], C.N. 
Lawrenence, et al. applied the Allan variance method 
to model various RLG errors including deterministic 
and random noises. Ref.[5] proposed state space and 
Kalman filtering to identify RLG random errors. 

Among the above-mentioned methods, models of  
Ref.[3] and Ref.[5], which fails to consider the inher-
ent noise sources, could not properly describe the RLG 
errors while the model of Ref.[4], which is not esti-
mated in time-domain, proves inconvenient for com-
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pensating online. To help overcome these shortcom-
ings, this article proposes an effective approach to 
identify RLG errors, in which, after using Allan vari-
ance to estimate the parameters of the component 
noises contained in RLG errors, the equivalent theo-
rem is applied to mix the stationary and critically sta-
tionary component noises. 

For verification, the proposed method is applied to 
model a set of data collected from a real RLG and the 
data are compensated using extended Kalman filter 
(EKF) based on the model. By comparing the thus 
compensated results to those compensated with the 
method in Ref.[5], it is understood that the model es-
tablished with the proposed method is capable of de-
fining the original noises more precisely and effec-
tively than that introduced by Ref.[5].  

2. Equivalent ARMA Model Theorem 

This section derives an equivalent ARMA model for 
a mixture of ARMA processes representing different 
forms of noises. The following lemma shows that a 
stationary process with finite non-zero autocorrelations 
can be simplified by a single moving average (MA) 
model. 

2.1. Proof of lemma 

Lemma  Given a stationary process{ , }t tX  Open access under CC BY-NC-ND license.
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with zero-mean and autocorrelation function r( ) that 
meets 

( ) 0r k when k p  and ( ) 0r p      (1) 
then { , }t tX  satisfies 

1

p

t t i t i
i

X W W  

where{ , }t tW is a white noise process.  

Proof  First let span{ , }t s s tX , u
t  

span {Xs, t u < s < t}, t Z . 

Let Wt=Xt
t

P Xt and u
t

u
t t tPW X X , where 

t
P Xt or
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Then 
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It can be seen that { , , }u
t

tP u t t ZX is a 

Cauchy sequence, so can be obtained 
lim u

tt
t tu

P PX X             (5) 

Since{ , }t tX is stationary to Eq.(5),  

1 11 1 1 1 1lim u
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As a result, {Wt ,  < t < } ~ N (0, 2), where 2= 
2

tW . Namely, {Wt ,  < t < } is a white noise pro- 

cess with E(Wt) = 0 and E 2( )tW = 2. 

t can be divided into two orthogonal subspaces t p 
and span 1{ , , }t p tW W . From the supposition Eq. (1), 
can be obtained 

t t pX              (7) 
Then 
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where 2 ( )i t t iE X X , 1,2, ,i p and thus the 
proof is completed. 

2.2. Equivalent theorem 

Equivalent theorem  Consider two ARMA processes, 

x and y, of which x with order (p1, q1) and y with order 
(p2, q2), which satisfy 

1

1

1
1

1

1
( ) ( )

1

q
i

i
i
p

i
i

i

b z
x n u n

a z
, 

2

2

1
2

1

1
( ) ( )

1

q
i

i
i
p

i
i

i

c z
y n u n

d z
 

where u1 and u2 are independent white processes, 
and z is a forward shift operator. 

Denote ( ) ( ) ( )n x n y n , then 
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where 2 11q p q , 1 22q p q . 
Obviously, the left part of Eq.(9) corresponds to the 

AR part of the equivalent ARMA model with an order 
of p1+p2. As for the right part of Eq.(9), define s(n)= 

1 2

1 2
0 0

( ) ( )
q q

i i
i i

i i
f z u n g z u n . According to the lemma, 

s(n) can be represented by s(n)= 
0

q
i

i
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z • w(n), 

where q = max (q1,q2), and w is a white process. 
It should be noted that the autocorrelations of s(n) 

satisfy 
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Taking generality into consideration, let  =1. De-
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To solve Eq.(10), Newton algorithm is used as fol-
lows: 

Let
T(0) (0) 0 0 0r . 
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Calculate ( )i
kf , k=1,2, ,q, q+1 according to 

Eq. (11), which yields 
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 Update  (i) according to the equation: ( 1)i  
( ) 1 ( )( )i i

iA F . 
 Set threshold value to be  and criterion func-

tion
( 1) ( )

( 1)

i i
k k

i
k

. Once  (i) satisfies the criterion 

function, stop calculating and obtain =  (i); otherwise, 
go to  and continue. 

Up to now, it is shown that the mixture of any two 
ARMA processes can be represented by a single 
equivalent ARMA model, and the parameters of the 
equivalent model can be obtained through Newton 
algorithm. This result can be easily extended to the 
mixture of more than two ARMA processes.  

3. Identification of RLG Random Errors 

In order to illustrate the application of the results 
obtained in Section 2, this section presents a procedure 
for identifying RLG errors.  

3.1. Four main noises of RLG errors 

As mentioned in Ref.[6], the four important forms 
of discrete RLG random errors include white noise, 
quantization noise, random walks and first-order 
Markov processes, which will be introduced in some 
detail as follows: 

(1) White noise, also known as angle random walk, 
results from integrating a wideband rate power spectral 
density (PSD) noise. It is the major source of errors of 
RLGs that employ randomized dither as an anti-lock 
approach. This form of noise is mainly caused by ran-
domized dither or spontaneous emission of photons.  

(2) Quantization noise is strictly blamed for the 
digital nature of RLG outputs since readouts of an 
electronic device are all in the digital form. The quan-
tization noise represents the minimum resolution level 
of a sensor. 

(3) Rate random walk results from integrating wide-
band acceleration PSD. Without a clear reason, this 
may stem from a random process of uncertain origin, 
possibly a limiting case of an exponentially correlated 
noise with a very long correlation time. 

(4) As a common form of noise found in RLG, ex-

ponentially correlated first-order Markov process is 
described by an exponentially decaying function with 
a limited correlation time. The potential source of this 
noise component is randomized mechanical dither 
stemming from the resonant nature of the dither 
mechanism that does not allow all frequencies with an 
equal amplitude being transferred to the gyro body.  

Let y1, y2, y3 and y4 represent the above four forms 
of noises, which satisfy[6] 

1 1

2 2 2

3 3 3

4 4 4

( ) ( )
( ) ( ) ( 1)
( ) ( 1) ( )
( ) ( ) ( 1) ( )

y n w n
y n w n w n
y n y n w n
y n a n y n w n

      (12) 

where w1, w2, w3 and w4  are independent white noises 
with variances

1

2 ,w 2

2 ,w 3

2
w and

4

2 ,w respectively. a(n) 
is the time-varying coefficient of the Markov process. 
Considering that randomized mechanical dither may be 
a potential source of Markov process, the coefficient a(n) 
is generally not a constant, but a series satisfying[6] 

( ) ( )a n a e n  

where e is a white noise with small variance 2
e . 

RLG errors are non-stationary, which could be im-
puted to, on one hand, the critically stationary random 
walk y3 and, on the other, the non-stationary first-order 
Markov process when 2

e 0. Consequently, RLG 
errors are better depicted by auto-regressive integrated 
moving average (ARIMA) model or time-varying 
ARMA (TARMA) model rather than ARMA. Table 1 
summarizes equivalent ARMA models mixed out of 
four possible forms of RLG noises. 

Table 1 Equivalent ARMA models 

Noise The model’s 
order Noise The model’s 

order 

y1+y2 ARMA(0,1) y1+y2+y3 ARIMA(0,2,1)

y1+y3 ARIMA(0,1,1) y1+y2+y4 
ARMA(1,2) 

TARMA (1,2)2 

y1+y4 
ARMA(1,1) 

TARMA(1,1)2 y1+y3+y4 
ARIMA(1,2,1)
TARMA (2,2)2 

y2+y3 ARIMA(0,2,1) y2+y3+y4 
ARIMA(1,3,1)
TARMA (2,3)2 

y2+y4 
ARMA(1,2) 

TARMA(1,2)2 y1+y2+y3+y4 
ARIMA(1,3,1)
TARMA (2,3)2 

y3+y4 
ARIMA(1,1,1) 
TARMA (2,1)2   

2 Orders of the models are decided by the condition of 2
e 0. 

3.2. Discrete Allan variances of the four main noise 
forms 

The Allan variance is defined as[7] 
2 2

2
1( ) { ( ) 2 ( ) ( 2 )}

2
A x t x t x t  

where denotes an ensemble average or a sample 
average, x(t) a time series of time differences between 
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two clocks spaces seconds apart. 
Suppose x(t) is sampled as {x(k 0), k=1, 2, , N}, 

with the sample time being 0 and the notation simpli-
fied by writing x(k 0) = xk. Then the Allan variance 
becomes 

2 22
22

1

1( ) ( 2 )
2 ( 2 )

N m

k m k m k
k

A x x x
N m

 

where 0m . 
Commonly, the main forms of RLG noise are all 

represented with PSD when Allan variances are ap-
plied to identify them. Since they are now separately 
described by differential equations, the identification 
algorithm must be rededuced as follows.  

For 1y , the Allan variance is 
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For y2, the Allan variance is 
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2 2 22 2
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For y3, the Allan variance is 
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And for 4y , the autocorrelations satisfy 
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 Taking into account the fact that values of
4

2
w  

and 2
e  are not independent, it is necessary to calculate 

Allan variances of both RLG errors y(n) and y(n) (1 z 1) 

in order to determine the values of 
4

2
w  and 2

e . At the 
same time, in the errors y(n)(1 z 1), the four main forms 
will become 

1
1 1 1 1
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Then their Allan variances will satisfy 

11

2 2
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3( ) wyA n
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          (17) 
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2
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          (18) 

33

2 21( ) wyA n
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4

44

2
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e yyA a A
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      (20) 

From Eqs.(13)-(20), it is seen that the Allan vari-
ances based on differential equations are not continu-
ous, rather, they are discrete according to the sampling 
frequency that has been normalized with identification 
algorithm. 

3.3. Determination of parameters of four noise forms 

According to Eqs.(13)-(20), the parameters of the 
four main noise forms can be obtained by using least 
square method or Newton method to fit the Allan vari-
ances 2 ( )yA n and 2

y
A (n). The fitting equations 

should satisfy 

1 2 3 4

2 2 2 2 2
y y y y yA A A A A      (21) 

1 2 3 4

2 2 2 2 2
y yy y yA A A A A     (22) 

Eq.(16) and Eq.(20) are too complicated to calculate in 
curve-fitting process. Because 1a , could be found 

4

4

4

2 1 1 2
2

02 2 2 2
2

2
2

02 2 2 2

4 (1 ) 3 ( )
(1 ) (1 )

(1 ) 3 ( )
(1 ) (1 )

n n

w
e

y

w
e

a a a n a n n
n a a

A
a n a n n

n a a

 

(23)  

4

44

2
2 2 2 2(3 ) w

e yy
A a A

n
      (24) 

where n0 generally equals 3 or 4. 

3.4. Determination of MA part of equivalent model of 
stationary and critically stationary components 

It has been shown that the necessary condition of 
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the equivalent theorem is that all noises should be ei-
ther stationary or critically stationary. However, since 

4y is non-stationary as mentioned in Section 3.1, it is 
necessary to divide the RLG noises into two parts 

(1) (2)( ) ( ) ( )y n y n y n          (25) 

where y(1)(n) = y1(n)+y2(n)+y3(n), y(2) (n) = y4(n).  
Then the TARMA model shown in Table 1 should 

be replaced by the sum of a stationary (when
3

2 0w ) 

or a critically stationary (when
3

2 0w ) ARMA model 
y1(n) and a non-stationary one y2(n). As mentioned in 
Section 2, the AR part of the equivalent model is very 
easy to acquire while the MA part should be resolved 
through Newton algorithm. For the RLG errors, the 
MA part’s order of y1(n) does not exceed 2. The pre-
cise equivalent models of MA(1) and MA(2) can be 
calculated as follows. 

For MA(1) model, assuming that the autocorrela-
tions are r(0) and r(1), the parameters of the equivalent 
model are 

0

1

(0) 2 (1) (0) 2 (1)
2

(0) 2 (1) (0) 2 (1)
2

r r r r

r r r r
   (26) 

For MA(2) model, assuming that the autocorrela-
tions are r(0), r(1) and r(2), then 
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0
1 1

1

2

2
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1 (1) (1) 4 (2)
2

1 (0) 2 (2) 2 (1) (0) 2 (2) 2 (1)
2

1 (1) (1) 4 (2)
2

r r r

r r r r r r
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 (27) 

4. Examples and Verification of the Equivalent 
ARMA Model 

Example 1  To verify the effectiveness of the pro-
posed method, was simulated a stationary ARIMA 
model y(n) that satisfies

1

2 1w ,
2

2 1w ,
3

2 1w , 

4

2 0w . 
According to Eq.(18), y(n) = y(n 1)+2.369 2w(n)  

1.791 3w(n 1)+0.422 1w(n 2). 
Two different methods were applied to estimate the 

parameters of ARIMA(0, 2, 1) model y(n). From the 
estimation results shown in Table 2, it is confirmed 
that both models produced by the methods accord with 
simulated noise quite well. Common method in Table 2 
estimates parameters by solving Yule-Walker equations 
and the orders of the model are decided by Akaike 
information criterion (AIC). 

Table 2 Comparison of estimation results by using dif-
ferent methods 

Parameter Precise 
value 

Proposed 
method 

(Value/Error) 

Normal 
method 

(Value/Error)

1

2
w  1 1.026 9/ 

2.69% 

2

2
w  1 1.022 0/ 

2.20% 

3

2
w  1 0.971 1/ 

2.89% 

4

2
w  0 0/0% 

 

0  2.369 2 2.377 6/ 
0.35% 

2.397 1/ 
1.18% 

1  1.791 3 1.821 9/ 
1.71% 

1.715 2/ 
4.25% 

2  0.422 1 0.429 9/ 
1.85% 

0.421 0/ 
0.26% 

Example 2  The common methods, such as Durbin- 
Levinson or double Levinson algorithm, are not effective 
to estimate non-stationary noises, but the proposed one 
is. To verify this, from HG4195 was recorded an RLG 
noise, of which the input and output data have been 
collected from a static rate table test. No rate input was 
applied to the gyro. Output data were compensated by 
the earth rate input and a constant bias. 

The ensuing parameters of all component models 
are estimated according to Allan variances with the 
unit of the original RLG noise being (°)/h. 

1 2

3 4

2 3 2 6

2 5 2 6

2 8

1.541 10 , 3.475 10

5.796 10 , 8.552 10

9.476 10 , 0.901

w w

w w

e a

 

Then the RLG noise can be written in the following 
forms according to Section 3.4 

(1) (2)( ) ( ) ( )y n y n y n         (28) 
(1) (1) (1) (1)

(1)

(2) (2)
4

( ) ( 1) ( ) 0.826 3 ( 1)

0.001850 ( 2)

( ) (0.901 ( )) ( 1) ( )

y n y n w n w n

w n

y n e n y n w n

 

According to the equivalent theorem and Eq.(27), 
(1)

2
w =0.001 878 can be obtained. 
The above model can be expressed as 

1 1 2

2 2 2

1

2

( ) ( ) 0 ( 1)
( ) 0 ( ) ( 1)

( )
( )

( ) 1 0 0 1 0 ( )

n n n
n n n

n
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n n

X X
X X

W
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Y X

 

T(1) (1) (1)
1

1

( ) ( ) ( ) ( 1)

1 0.826 3 0.00185
( ) 0 0 0

0 1 0

n y n w n w n

n

X
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T(1) (1)
1

(2)

2 2

T
2 4

( ) ( ) ( ) 0

(0.901 ( )) ( 1)( ) ( 1)
0

( ) ( ) ( )

n w n w n

e n y nn n

n w n e n

W

X

W

 

EKF is applied to filter the RLG noise based on the 
above non-linear state equation[8]. Fig.1 shows the 
result curve as a continuous line. Another result curve 
drawn with Kalman filter (KF) method based on the 
ARIMA(0, 2, 2) model appears to be a broken line[5]. 
The variances of the two filtered noises are 
0.000 142 1 and 0.000 255 6, respectively. The ARIMA 
(0, 2, 2) can be expressed as 

( ) 2 ( 1) ( 2) ( )
0.9131 ( 1) 0.011 32 ( 2) (29)
y n y n y n w n

w n w n
 

 
Fig.1  Comparison of result curves filtered with the two 

methods. 

From Fig.1 and the variances, it can be confirmed 
that the first filtered result is much better than the sec-
ond, which evidences the model Eq.(28) is more suited 
to depict original RLG noise than model Eq.(29). One 
reason may be that the proposed model Eq.(25) is 
based on the physical characteristics of RLG, and the 
other may be that the model Eq.(25) includes the 
model ARIMA(0, 2, 2) (when a = 1 and 2 0w ) which 
is the base of the common method. 

5. Conclusions 

An effective approach is proposed for modeling 
random noises inherent in inertial sensors. First, the 
discrete Allan variances of the four component ARMA 
models contained in original RLG random errors are 
deduced. Then the four components are identified with 
the discrete Allan variances. Finally, the stationary and 
critically stationary ARMA noises are mixed with an 
equivalent ARIMA model. It is shown that RLG ran-
dom errors could be represented by the sum of an 

equivalent ARIMA model and a non-stationary one by 
using Allan variance method and equivalent theorem. 

Applying the proposed method to an ARIMA model 
bears witness to that it is as effective as the common 
method when the random noise is critical stationary. 
When applying the proposed method to model the real 
test data of RLG, the result shows that the equivalent 
model generated by the proposed method is more 
suited to depict the non-stationary noise than the one 
by common method. The superiority of the proposed 
method is reflected not only in smaller filtered vari-
ances acquired with the model established with the 
proposed method than those with the common method, 
but also in its discovery of the RLG noise possessive 
of non-stationary characteristic the common method 
fails to display. This method can also be used to model 
other sensors’ noises mixed out of random ones. 

References 

[1]  Siouris G M. Aerospace avionics system, a modern 
synthesis. New York: Academic Press, 1993. 

[2]  Guo J C, Teng J F, Li Q, et al. The denosing of gyro 
signals by bi-orthogonal wavelet transform. IEEE Ca-
nadian Conference on Electrical and Computer Engi-
neering 2003; 3: 1985-1988. 

[3]  Oravetz A S, Sandberg H J. Stationary and non-stationary 
characteristics of gyro drift rate. AIAA Journal 1970; 
8(10): 1766-1772. 

[4]  Lawrenence C N, Darryll J P. Characterization of ring 
laser gyro performance using the Allan variance method. 
Journal of Guidance, Control, and Dynamics 1997; 20(1): 
211-214. 

[5]  Jiang H, Yang W Q, Yang Y T. State space modeling of 
random drift rate in high-precision gyro. IEEE Transac-
tions on Aerospace and Electronic Systems 1997; 32(3): 
1138-1143. 

[6]  Siouris G. Equivalent ARMA model representation for 
RLG random errors. IEEE Transactions on Aerospace 
and Electronic Systems 2000; 36(1): 286-290. 

[7]  Lepek A, Walls F L. Cross correlation analysis im-
proves time domain measurements. 47th IEEE Interna-
tional Conference on Frequency Control Symposium. 
1993; 312-320. 

[8]  Malladi K M, Kumar R V R, Rao K V. A Gauss-Markov 
model formulation for the estimation of ARMA model 
of time-varying signals and systems. IEEE-SP Interna-
tional Symposium on Time-Frequency and Time-Scale 
Analysis. 1998; 657-660. 

Biography: 

Tang Jianghe  Born in 1979, he received M.S. degree from 
Harbin Institute of Technology in 2004. His main research 
interest lies in nonlinear control. 
E-mail: hittangjianghe@163.com

 


