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Abstract

Motivated by an article by Ian Stewart (Defend the Roman Empire!, Scienti2c American, Dec.
1999, pp. 136–138), we explore a new strategy of defending the Roman Empire that has the
potential of saving the Emperor Constantine the Great substantial costs of maintaining legions,
while still defending the Roman Empire. In graph theoretic terminology, let G=(V; E) be a graph
and let f be a function f :V → {0; 1; 2}. A vertex u with f(u) = 0 is said to be undefended
with respect to f if it is not adjacent to a vertex with positive weight. The function f is a weak
Roman dominating function (WRDF) if each vertex u with f(u)=0 is adjacent to a vertex v with
f(v)¿ 0 such that the function f′ :V → {0; 1; 2}, de2ned by f′(u) = 1, f′(v) = f(v)− 1 and
f′(w)=f(w) if w∈V−{u; v}, has no undefended vertex. The weight of f is w(f)=

∑
v∈V f(v).

The weak Roman domination number, denoted 
r(G), is the minimum weight of a WRDF in G.
We show that for every graph G, 
(G)6 
r(G)6 2
(G). We characterize graphs G for which

r(G) = 
(G) and we characterize forests G for which 
r(G) = 2
(G).
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Cockayne et al. [3] de2ned a Roman dominating function (RDF) on a graph
G= (V; E) to be a function f :V → {0; 1; 2} satisfying the condition that every vertex
u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. For a
real-valued function f :V → R the weight of f is w(f) =

∑
v∈V f(v), and for S ⊆ V
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we de2ne f(S)=
∑

v∈S f(v), so w(f)=f(V ). The Roman domination number, denoted

R(G), is the minimum weight of an RDF in G; that is, 
R(G) = min{w(f) |f is a
WRDF in G}. An RDF of weight 
R(G) we call a 
R(G)-function. Roman domination
in graphs has been studied, for example, in [3,4,6,10].
This de2nition of a Roman dominating function was motivated by an article in

Scienti2c American by Ian Stewart entitled “Defend the Roman Empire!” [11]. Each
vertex in our graph represents a location in the Roman Empire. A location (vertex v)
is considered unsecured if no legions are stationed there (i.e., f(v) = 0) and secured
otherwise (i.e., if f(v)∈{1; 2}). An unsecured location (vertex v) can be secured by
sending a legion to v from an adjacent location (an adjacent vertex u). But Emperor
Constantine the Great, in the fourth century A.D., decreed that a legion cannot be
sent from a secured location to an unsecured location if doing so leaves that location
unsecured. Thus, two legions must be stationed at a location (f(v) = 2) before one
of the legions can be sent to an adjacent location. In this way, Emperor Constantine
the Great can defend the Roman Empire. Since it is expensive to maintain a legion
at a location, the Emperor would like to station as few legions as possible, while
still defending the Roman Empire. A Roman dominating function of weight 
R(G)
corresponds to such an optimal assignment of legions to locations.
In this paper we explore the potential of saving the Emperor substantial costs of

maintaining legions, while still defending the Roman Empire (from a single attack).
Let G=(V; E) be a graph and let f be a function f :V → {0; 1; 2}. Let V0, V1, and V2
be the sets of vertices assigned the values 0, 1, and 2, respectively, under f. Note that
there is a 1–1 correspondence between the functions f :V → {0; 1; 2} and the ordered
partitions (V0; V1; V2) of V . Thus we will write f = (V0; V1; V2).
We say that a vertex u∈V0 is undefended with respect to f, or simply undefended

if the function f is clear from the context, if it is not adjacent to a vertex in V1 or V2.
We call the function f a weak Roman dominating function (WRDF) if each vertex
u∈V0 is adjacent to a vertex v∈V1 ∪ V2 such that the function f′ :V → {0; 1; 2},
de2ned by f′(u) = 1, f′(v) = f(v) − 1 and f′(w) = f(w) if w∈V − {u; v}, has no
undefended vertex.
We de2ne the weight w(f) of f to be |V1|+ 2|V2|. The weak Roman domination

number, denoted 
r(G), is the minimum weight of a WRDF in G; that is, 
r(G) =
min{w(f) |f is a WRDF in G}. A WRDF of weight 
r(G) we call a 
r(G)-function.
For a vertex v in V , we denote f(N [v]) by f[v] for notational convenience.
This de2nition of a WRDF is motivated as follows. Using notation introduced ear-

lier, we de2ne a location to be undefended if the location and every location adjacent
to it are unsecured (i.e., have no legion stationed there). Since an undefended location
is vulnerable to an attack, we require that every unsecure location be adjacent to a
secure location in such a way that the movement of a legion from the secure location
to the unsecure location does not create an undefended location. Hence every unse-
cure location can be defended without creating an undefended location. In this way
Emperor Constantine the Great can still defend the Roman Empire. Such a placement
of legions corresponds to a WRDF and a minimum such placement of legions corre-
sponds to a minimum WRDF. Since the potential exists to save the Emperor substantial
costs of maintaining legions, while still defending the Roman Empire (from a single
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attack), this concept of weak Roman domination is an attractive alternative to Emperor
Constantine’s notion of Roman domination.
Notice that in a WRDF, every vertex in V0 is dominated by a vertex in V1 ∪ V2,

while in an RDF every vertex in V0 is dominated by at least one vertex in V2 (this
is more expensive). Furthermore, in a WRDF, every vertex in V0 can be defended
without creating an undefended vertex.

2. Notation

For notation and graph theory terminology we in general follow [8]. Speci2cally,
let G = (V; E) be a graph with vertex set V of order n and edge set E, and let v be
a vertex in V . The open neighborhood of v is N (v) = {u∈V | uv∈E} and the closed
neighborhood of v is N [v] = {v} ∪ N (v). For a set S ⊆ V , its open neighborhood
N (S) =

⋃
v∈S N (v) and its closed neighborhood N [S] =N (S)∪ S. A vertex u is called

a private neighbor of v with respect to S, or simply an S-pn of v, if N [u] ∩ S = {v}.
The set pn(v; S)=N [v]−N [S−{v}] of all S-pns of v is called the private neighbor set
of v with respect to S. We de2ne the external private neighbor set of v with respect
to S by epn(v; S) = pn(v; S) − {v}. Hence the set epn(v; S) consists of all S-pns of v
that belong to V − S.
For ease of presentation, we mostly consider rooted trees. For a vertex v in a (rooted)

tree T , we let C(v) and D(v) denote the set of children and descendants, respectively,
of v, and we de2ne D[v] = D(v) ∪ {v}. The maximal subtree at v is the subtree of T
induced by D[v], and is denoted by Tv. A leaf of T is a vertex of degree 1, while a
support vertex of T is a vertex adjacent to a leaf. A strong support vertex is adjacent
to at least two leaves. In this paper, we denote the set of all strong support vertices
of T by S(T ) and the set of leaves by L(T ).
Let G = (V; E) be a graph and let S ⊆ V . A set S dominates a set U , denoted

S 
 U , if every vertex in U is adjacent to a vertex of S. If S 
 V − S, then S is
called a dominating set of G. The domination number 
(G) is the minimum cardinality
of a dominating set of G. A dominating set of cardinality 
(G) we call a 
(G)-set.
Domination and its variations in graphs are now well studied. The literature on this
subject has been surveyed and detailed in the two books by Haynes et al. [8,9].

3. Properties

We begin with an inequality chain relating the domination number, the weak Roman
domination number and the Roman domination number.

Observation 1. Every RDF in a graph G is also a WRDF of G.

Proof. Let f=(V0; V1; V2) be an RDF of G. Let u∈V0. Then u is adjacent to a vertex
v∈V2. Let f′ :V → {0; 1; 2} be the function de2ned by f′(u) = 1, f′(v) = 1, and
f′(w)=f(w) if w∈V −{u; v} (i.e., f′ corresponds to the movement of a legion from
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v to u). Then, f′=(V0−{u}; V1∪{u; v}; V2−{v}). Now each w∈V0−{u} is adjacent
to v or to a vertex in V2 − {v} and is therefore a defended vertex. Thus, f′ has no
undefended vertex and is therefore a WRDF of G.

Theorem 2. For any graph G,


(G)6 
r(G)6 
R(G)6 2
(G):

Proof. It is shown in [3] that 
R(G)6 2
(G). For completeness, we provide this short
proof. Let S be a 
(G)-set. Let f=(V0; V1; V2) be the function de2ned by V0=V (G)−S,
V1 = ∅ and V2 = S. Since V2 
 V0, f is an RDF, and therefore 
r(G)6w(f) =
2|V2| = 2|S| = 2
(G). To show that 
r(G)6 
R(G), let g be a 
R(G)-function. Then,
by Observation 1, g is a WRDF of G, and so 
r(G)6w(g)= 
R(G). Finally, to show
that 
(G)6 
r(G), let h= (V0; V1; V2) be a 
r(G)-function. Then, since V1 ∪ V2 
 V0,
V1∪V2 is a dominating set of G, and so 
(G)6 |V1∪V2|= |V1|+ |V2|6 |V1|+2|V2|=
w(h) = 
r(G).

Note that if G = P5, then 
(G) = 2, 
r(G) = 3 and 
R(G) = 4. Hence there exist
connected graphs G with 
(G)¡
r(G)¡
R(G).

4. Paths and cycles

The Roman domination number of a path Pn and a cycle Cn on n vertices is estab-
lished in [3].

Proposition 3. For n¿ 3, 
R(Pn) = 
R(Cn) = �2n=3.

In this section we determine the weak Roman domination number of paths and
cycles. We begin with paths.

4.1. Paths

To determine 
r(Pn), we 2rst present two lemmas.

Lemma 4. If G is a graph that contains a path P of order 7, every internal vertex
of which has degree 2 in G, then f(V (P))¿ 3 for any WRDF f of G.

Proof. Let P: v1; v2; : : : ; v7 denote the path P of order 7. Then, deg vi = 2 for i =
2; 3; : : : ; 6. Let f = (V0; V1; V2) be a WRDF of G. Then, f[v]¿ 1 for every vertex v
of G. In particular, f[v2]¿ 1 and f[v6]¿ 1. If f(v4)¿ 1; then f(V (P)) = f[v2] +
f(v4) + f[v6]¿ 3. On the other hand, suppose that f(v4) = 0. Since v4 ∈V0, v4 must
be adjacent to a vertex v∈V1 ∪ V2 such that the movement of a legion from v to
v4 will not create an undefended vertex, i.e., the function f′ :V → {0; 1; 2} de2ned
by f′(v4) = 1, f′(v) = f(v) − 1, and f′(w) = f(w) if w∈V (G) − {v; v4} has no
undefended vertex. We may assume that v = v3. Thus, f(v3)¿ 1. If f(v3) = 1, then
since the movement of a legion from v3 to v4 does not create an undefended vertex, it
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follows that f(v1)+f(v2)¿ 1, and so f[v2]¿ 2. If f(v3)=2, then clearly f[v2]¿ 2.
Hence we must have f[v2]¿ 2 irrespective of whether f(v3) = 1 or f(v3) = 2. Thus,
f(V (P)) = f[v2] + f(v4) + f[v6]¿ 2 + 0 + 1 = 3.

Lemma 5. If G is any graph and u is any vertex of G, then the graph H obtained
from G by attaching a path of length 7 to u satis<es 
r(H) = 
r(G) + 3.

Proof. Let u; v1; v2; : : : ; v7 denote the path of length 7 added to G, and let P denote the
path v1; v2; : : : ; v7. Any 
r(G)-function can be extended to a WRDF of H by assigning
the value 1 to v2; v4 and v6 and the value 0 to v1; v3; v5 and v7. Hence, 
r(H)6 
r(G)+3.
On the other hand, suppose f = (V0; V1; V2) is a 
r(H)-function. By Lemma 4,

f(V (P))¿ 3. Suppose f(V (P))¿ 4. Then the function f′ :V → {0; 1; 2} de2ned by
f′(v2)=f′(v4)=f′(v6)=1, f′(v1)=f′(v3)=f′(v5)=f′(v7)=0, f′(u)=2 if f(u)=2
and f′(u) = f(u) + 1 if f(u)6 1, and f′(w) = f(w) if w∈V (G)− {u} is a WRDF
of weight w(f) that satis2es f′(V (P))= 3. Hence, we may assume that f(V (P))= 3.
Suppose f(v1)¿ 1. Then, 3 = f(V (P)) = f[v7] + f[v4] + f(v2) + f(v1)¿ 3 with

equality if and only if f[v7] = 1, f[v4] = 1, and f(v2) = 0. If f(v7) = 1 (and so
f(v6) = 0), then we can simply interchange the values of v6 and v7 to produce a
new 
r(G)-function. Hence, we may assume that f(v7) = 0 (and so f(v6) = 1). Since
f[v3]¿ 1, f(v5) = 0. If the legion at v6 is moved to v5, then the vertex v7 would
become undefended. It follows that f(v4)=1, and so f(v3)=0. However if the legion
at v4 is moved to v5, then the vertex v3 would become undefended. Hence there is no
vertex v∈V1 ∪ V2 adjacent to the vertex v5 ∈V0 such that the movement of a legion
from v to v5 will not create an undefended vertex. This contradicts the fact that f is
a WRDF. Hence we must have f(v1) = 0.
Since f(v1)=0, the restriction of f to G is a WRDF of G. Hence, 
r(G)6f(V (G))=

w(f)−3=
r(H)−3, or, equivalently, 
r(H)¿ 
r(G)+3. Consequently, 
r(H)=
r(G)+
3.

Using Lemma 4, we can determine the weak Roman domination number of a path.

Proposition 6. For n¿ 1,


r(Pn) =
⌈
3n
7

⌉
:

Proof. We proceed by induction on n. It is straightforward to verify the result for
small n, 16 n6 7. Assume that the result holds for all paths of order less than n,
where n¿ 8. Let T : v1; v2; : : : ; vn be a path of order n. Let T ′ denote the path v8; : : : ; vn
of order n− 7¿ 1. Applying the inductive hypothesis to T ′, 
r(T ′)= �3(n− 7)=7. By
Lemma 5, 
r(T ) = 
r(T ′) + 3, and so 
r(T ) = �3(n − 7)=7 + 3 = �3n=7. The result
now follows by mathematical induction.

As a consequence of Propositions 3 and 6 we note that the cost savings of weak
Roman domination over Roman domination for a path on n¿ 1 vertices is 
R(Pn) −

r(Pn) = �2n=3 − �3n=7, which is either �5n=21 or �5n=21�.
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4.2. Cycles

Next we consider the weak Roman domination number of a cycle. For this purpose,
we shall need the following two observations.

Observation 7. If H is a spanning subgraph of a graph G, then 
r(G)6 
r(H).

Proof. The proof follows immediately from the observation that any WRDF of H is
also a WRDF of G.

Observation 8. If a graph G has a 
r(G)-function that assigns the value 0 to two
adjacent vertices u and v, then 
r(G) = 
r(G − uv).

Proof. Let f be a 
r(G)-function for which f(u) = f(v) = 0. Then, f is a WRDF
of G − uv, and so 
r(G − uv)6w(f) = 
r(G). However, by Observation 7, 
r(G)6

r(G − uv). Consequently, 
r(G) = 
r(G − uv).

We are now in a position to determine the weak Roman domination number of a
cycle. Clearly, 
r(C3) = 1.

Proposition 9. For n¿ 4,


r(Cn) = 
r(Pn) =
⌈
3n
7

⌉
:

Proof. It is straightforward to verify the result for small n, 46 n6 12. Suppose that
n¿ 13. By Proposition 6 and Observation 7, 
r(Cn)6 
r(Pn) = �3n=7. Let f be
a 
r(Cn)-function. Since w(f)6 �3n=7 and n¿ 13, the function f must assign the
value 0 to two adjacent vertices u and v of Cn. Hence, by Observation 8, 
r(Cn) =

r(Cn − uv) = 
r(Pn). Consequently, 
r(Cn) = 
r(Pn).

5. Graphs G with �r(G ) = �(G )

Our aim in this section is to characterize graphs G for which 
r(G) = 
(G).

Theorem 10. For any graph G, 
(G)= 
r(G) if and only if there exists a 
(G)-set S
such that

(1) pn(v; S) induces a clique for every v∈ S,
(2) for every vertex u∈V (G)− S that is not a private neighbor of any vertex of S,

there exists a vertex v∈ S such that pn(v; S) ∪ {u} induces a clique.

Proof. Suppose G=(V; E) and 
(G)= 
r(G). Let f=(V0; V1; V2) be a 
r(G)-function.
Then, 
r(G) = 
(G)6 |V1|+ |V2|6 |V1|+2|V2|=w(f) = 
r(G). Hence we must have
equality throughout the above inequality chain. In particular, it follows that V2 = ∅.
Thus, S = V1 is a 
(G)-set.
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Suppose u; w∈ epn(v; S). Then, u; w∈V − S = V0. Since v is the only vertex of V1
adjacent to u, the movement of a legion from v to u cannot create an undefended vertex,
i.e., the function f′ :V → {0; 1; 2} de2ned by f′(u) = 1, f′(v) = 0, and f′(w) =f(w)
if w∈V −{u; v} has no undefended vertex. But since N (w)∩ (V1−{v})= ∅, we must
have uw∈E. It follows that epn(v; S) induces a clique. This establishes (1).
Suppose u∈V −S is not a private neighbor of any vertex of S. Since u∈V0, u must

be adjacent to a vertex v∈V1 such that the movement of a legion from v to u will
not create an undefended vertex. But then u 
 pn(v; S), and so pn(v; S) ∪ {u} induces
a clique. This establishes (2) and proves the necessity.
To prove the suPciency, suppose there exists a 
(G)-set S satisfying conditions (1)

and (2) in the statement of the theorem. Let g = (V0; V1; V2) be a function de2ned
by V0 = V − S, V1 = S and V2 = ∅. Then, g is a WRDF, and so 
r(G)6 |S| = 
(G).
Consequently, 
(G) = 
r(G).

6. Forests F with �r(F) = 2�(F)

By Theorem 2, 
r(G)6 2
(G) for all graphs G. Our aim in this section is to char-
acterize forests F for which 
r(F) = 2
(F). We begin with the following lemma.

Lemma 11. If G is a graph satisfying 
r(G) = 2
(G), then for every 
(G)-set S and
every v∈ S, the set epn(v; S) contains two nonadjacent vertices.

Proof. Suppose G = (V; E). Let S be a 
(G)-set and let v∈ S. Suppose epn(v; S)
induces a clique. Let f = (V0; V1; V2) be a function de2ned by V0 = V − S, V1 = {v}
and V2=S−{v}. Since epn(v; S) induces a clique, the movement of a legion from v to
any vertex in epn(v; S) cannot create an undefended vertex. If w∈V2 and u∈V0 with
u∈N (w), then the movement of a legion from w to u cannot create an undefended
vertex. In particular, if u∈N (v)−pn(v; S), then since u is adjacent to at least one vertex
w∈ S −{v}=V2, the movement of a legion from w to u cannot create an undefended
vertex. It follows that f is a WRDF, and so 
r(G)6 |V1|+2|V2|=2|S|−1=2
(G)−1,
contrary to assumption. Hence, epn(v; S) cannot induce a clique, i.e., epn(v; S) contains
two nonadjacent vertices.

The necessary condition in Lemma 11 for a graph G satisfying 
r(G) = 2
(G) is
not suPcient. For example, for k¿ 2 an integer, let G be the path v1; v2; : : : ; v3k on
3k vertices. Then, S =

⋃k
i=1{v3i−1} is the unique 
(G)-set, and for each i= 1; 2; : : : ; k,

v3i−2 and v3i are two nonadjacent vertices in epn(v3i−1; S). However, by Proposition
6, 
r(G) = �9k=7¡ 2k = 2
(G).
Gunther et al. [7] presented the following characterization of trees with unique min-

imum dominating sets.

Theorem 12 (Gunther et al. [7]). Let T be a tree of order at least 3. Then, T has a
unique 
(T )-set if and only if T has a 
(T )-set S such that |epn(v; S)|¿ 2 for every
vertex v∈ S.
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As an immediate consequence of Lemma 11 and Theorem 12, we have the following
result.

Corollary 13. If T is a tree satisfying 
r(T ) = 2
(T ), then T has a unique 
(T )-set.

The necessary condition in Corollary 13 for a tree T satisfying 
r(T )=2
(T ) is not
suPcient as may be seen by considering a path P3k with k¿ 2.
Recall that the set of all strong support vertices of T is denoted by S(T ). Every

strong support vertex of a tree T belongs to every 
(T )-set. Hence, if a tree T has a
unique 
(T )-set S, then S(T ) ⊆ S. We state this as an observation.

Observation 14. If T is a tree with a unique 
(T )-set S, then S(T ) ⊆ S.

Lemma 15. If T is a tree with a unique 
(T )-set S, and if every vertex of S is a
strong support vertex, then 
r(T ) = 2
(T ).

Proof. By Observation, S(T ) ⊆ S. By assumption, every vertex of S is a strong support
vertex, and so S ⊆ S(T ). Consequently, S=S(T ). Let f be a 
r(T )-function. We show
that w(f)¿ 2
(T ). For each v∈ S, let Nv consist of v and every leaf adjacent to v. If
f(v) = 0, then f(u) = 1 for each u∈Nv − {v}, and so f(Nv)¿ 2. If f(v) = 1, then
f(u)=1 for all except possibly one vertex in Nv−{v}, and so f(Nv)¿ 2. If f(v)=2,
then f(Nv)¿ 2. Hence in all cases, f(Nv)¿ 2. Since the sets

⋃
v∈S Nv are disjoint

sets in T , it follows that w(f)¿
∑

v∈S f(Nv)¿ 2|S|= 2
(T ). On the other hand, the
function g = (V0; V1; V2) de2ned by V0 = V − S, V1 = ∅ and V2 = S is a WRDF, and
so 
r(T )6w(g) = 2|V2|= 2|S|= 2
(G). Consequently, 
r(T ) = 2
(T ).

Lemma 16. If T is a tree with a unique 
(T )-set S, and if no vertex of S is a strong
support vertex, then 
r(T )¡ 2
(T ).

Proof. We proceed by induction on 
(T ). Suppose 
(T ) = 1 and S = {v}. Then, T is
a star on at least three vertices with v as the central vertex. But then v∈ S(T ), and
so there is no tree satisfying the hypothesis in the statement of the lemma. Hence we
may assume 
(T )¿ 2.
Suppose 
(T )=2 and S={u; v}. By Theorem 12, |epn(u; S)|¿ 2. Since u �∈ S(T ), at

most one vertex in epn(u; S) is a leaf. Let u′ ∈ epn(u; S)−L(T ) and let x∈N (u′)−{u}.
Similarly, let v′ ∈ epn(v; S) − L(T ) and let y∈N (v′) − {v}. Since S dominates V (T ),
x �= y. If u′v′ �∈ E(T ), then, since S dominates V (T ), we must have xv∈E(T ). But then
y is not dominated by S, a contradiction. Hence, u′v′ ∈E(T ). It follows that T = P6,
and so, by Proposition 6, 
r(T )=3¡ 4=2
(T ). Hence the result of the lemma is true
when 
(T )6 2.
Suppose that the result of the lemma is true for all trees T ′ with 
(T ′)¡k, where

k¿ 3, that satisfy the hypothesis in the statement of the lemma. Let T = (V; E) be a
tree with 
(T ) = k and with a unique 
(T )-set S such that v �∈ S(T ) for every vertex
v∈ S. Let T be rooted at an end-vertex r of a longest path. Let w be a vertex at
distance diam(T )− 2 from r on a longest path starting at r, and let v be the child of
w on this path. Let x denote the parent of w, and let y denote the parent of x.



M.A. Henning, S.T. Hedetniemi /Discrete Mathematics 266 (2003) 239–251 247

By Observation 14, S(T ) ⊂ S. Hence, since S is the unique 
(T )-set and no vertex
of S is a strong support vertex, S(T )=∅. In particular, deg v=2. Let u denote the child
of v. By Theorem 12, no leaf belongs to S, and so v∈ S. Furthermore, |epn(v; S)|¿ 2
and therefore epn(v; S) = N (v) = {u; w}. It follows that degw = 2 and that w; x �∈ S.
Thus, x cannot be a support vertex.
Suppose x has a child w′ that is a support vertex. Then it follows from Theorem

12 that w′ ∈ S. If w′ has a child v′ that is a support vertex, then, since S(T ) = ∅,
deg v′ = 2. But then, v′ ∈ S and |epn(v′; S)| = 1, contradicting Theorem 12. Hence,
degw′ = 2 and so, by Theorem 12, epn(w′; S) = N (w′). Let f = (V0; V1; V2) be the
function de2ned by V0 = V − S, V1 = {v; w′; x} and V2 = S − {v; w′}. Then f is a
WRDF, and so 
r(T )6w(f) = |V1|+ 2|V2|= 3 + 2(|S| − 2) = 2|S| − 1 = 2
(G)− 1,
contrary to assumption. Hence, no child of x is a support vertex.
Suppose deg x¿ 3. Let w′ ∈C(x) − {w}. Then, w′ is neither a leaf nor a support

vertex. Let v′ be a child of w′ and let u′ be a child of v′. As shown earlier, deg v′=2,
v′ ∈ S and degw′ = 2. Let g = (V0; V1; V2) be the function de2ned by V0 = V − S,
V1 = {v; v′; x} and V2 = S − {v; v′}. Then g is a WRDF, and so 
r(T )6w(g) =
|V1| + 2|V2| = 3 + 2(|S| − 2) = 2|S| − 1 = 2
(G) − 1, contrary to assumption. Hence,
deg x = 2. Since w; x �∈ S, we must therefore have y∈ S.
Let T ′ = T − {u; v; w; x}. Since y∈ S, S − {v} is a dominating set of T ′, and so


(T ′)6 |S| − 1= 
(T )− 1. Let h′ be a 
r(T ′)-function and let h :V → {0; 1; 2} be the
function de2ned by h(z)=h′(z) if z ∈V (T ′), h(x)=h(v)=1, and h(u)=h(w)=0. Then,
h is a WRDF, and so 
r(T )6w(h)=w(h′)+26 2
(T ′)+26 2(
(T )−1)+2=2
(T ).
Suppose 
r(T ) = 2
(T ). Then we have equality throughout the above inequality chain.
In particular, 
r(T ′) = 2
(T ′) and 
(T ′) = 
(T )− 1. By Corollary 13, T ′ has a unique

(T ′)-set, namely S ′ = S − {v}. In particular, since y∈ S ′, it follows from Theorem
12 that |epn(y; S ′)|¿ 2. Thus, in the tree T ′, deg y¿ 2 and therefore y is not a leaf
in T ′. Hence, every leaf in T ′ is also a leaf in T . Since T has no strong support
vertex, neither too does T ′. Consequently, T ′ is a tree with 
(T ′)¡k and with a
unique 
(T ′)-set S ′ such that no vertex of S ′ is a strong support vertex. Applying
the inductive hypothesis to T ′, 
r(T ′)¡ 2
(T ′), a contradiction. Hence we must have

r(T )¡ 2
(T ), as desired.

As an immediate consequence of Lemma 16 we have the following result.

Corollary 17. If F is a forest with a unique 
(F)-set S, and if F has a component T
with no strong support vertex, then 
r(F)¡ 2
(F).

Proof. Let T1; : : : ; Tk , k¿ 1, denote the components of F , where T = T1. Since S
is the unique 
(F)-set, S ∩ V (Ti) is the unique 
(Ti)-set for each i; 16 i6 k. For
i=1; : : : ; k, let fi be a 
r(Ti)-function and let f :V (T )→ {0; 1; 2} be the 
r(F)-function
de2ned by f(v) =fi(v) if v∈V (Ti). By Lemma 16, w(f1) = 
r(T1)¡ 2
(T1). Hence,

r(T ) = w(f) =

∑k
i=1 w(fi)¡ 2

∑k
i=1 
(Ti) = 2
(T ).

In order to characterize the trees T for which 
r(T ) = 2
(T ), we construct a family
F of forests as follows.
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Let F be a forest with a unique 
(F)-set S such that each component of F contains
a strong support vertex. It follows from Observation 14 that S(F) ⊆ S. If S(F) = S,
then we let F̃ = F . Otherwise, if S(F) �= S, then we de2ne the subforest F̃ of F
recursively by means of a sequence of subforests F0; F1; : : : ; Fk of F , where F0 =F , as
follows: For i=0; : : : ; k − 1, let Si = S ∩V (Fi). If every component of Fi has a strong
support vertex and if Si − S(Fi) �= ∅, then let

Fi+1 = Fi −

 ⋃

v∈S(Fi)
N [v]− (Si − S(Fi))


 :

Hence, Fi+1 is obtained from Fi by deleting all vertices, except for possibly any vertices
of Si − S(Fi), in the closed neighborhoods of every strong support vertex in Fi. Since

(F) is 2nite, there exists an integer k¿ 1 such that Fk has a component with no
strong support vertex or Sk = S(Fk). Then, F̃ = Fk . For i = 1; : : : ; k, we call Fi+1 the
pruning of Fi and we de2ne k to be the number of prunings of the forest F . Note
that, if k ¿ i¿ 0, then Si+1 = Si − S(Fi).

Observation 18. If F is a forest with a unique 
(F)-set S such that each component
of F contains a strong support vertex, then for i = 0; : : : ; k, the set Si is the unique

(Fi)-set.

Proof. We proceed by induction on i. If i = 0, then S0 = S and F0 = F , and so S0
is the unique 
(F0)-set. Thus the statement is true for i = 0. Suppose that the set
Sm is the unique 
(Fm)-set, where 06m¡k. By construction, Sm+1 is a dominat-
ing set of Fm+1, and so 
(Fm+1)6 |Sm+1|. If 
(Fm+1)¡ |Sm+1|, then adding the set
S(Fm) to any 
(Fm+1)-set produces a dominating set of Fm of cardinality |S(Fm)| +

(Fm+1)¡ |S(Fm)|+ |Sm+1|= |S(Fm)|+ |Sm − S(Fm)|= |Sm|= 
(Fm), which is impos-
sible. Hence, 
(Fm+1) = |Sm+1|. If Fm+1 has two distinct 
(Fm+1)-sets X and Y , then
X ∪ S(Fm) and Y ∪ S(Fm) are both 
(Fm)-sets, contradicting the inductive hypothesis
that Sm is the unique 
(Fm)-set. Hence, Sm is the unique 
(Fm)-set.

We de2ne the family F to consist of all forests F , every component of which
contains a strong support vertex, that have a unique 
(F)-set S such that F̃ = Fk and
Sk = S(Fk). Note that if F ∈F and F̃ = Fk , then each of the subgraphs F0; : : : ; Fk
belong to the family F.

Lemma 19. If F ∈F, then 
r(F) = 2
(F).

Proof. We proceed by induction on the number k of prunings of the forest F . Let
S be the unique 
(F)-set. We shall adopt the notation introduced in constructing the
family F. Suppose k = 0. Then, F̃ = F and S = S(F). Thus every vertex of S is a
strong support vertex. Hence it follows from Lemma 15 that 
r(F)= 2
(F). Therefore
the base case when k = 0 is true.
Suppose that all forests F ∈F with F̃=Fm where 06m¡k satisfy 
r(F)=2
(F).

Let F ∈F satisfy F̃ =Fk . Then, Sk = S(Fk). Since k¿ 1, S − S(F) �= ∅. We consider
the forest F1 =F− (⋃v∈S(F) N [v]−S1). By Observation 18, S1 is the unique 
(F1)-set.
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Since F ∈F, every component of F1 has a strong support vertex (possibly, S1=S(F1)).
Now, F1 ∈F and k − 1 prunings of the forest F1 are needed to construct the forest
F̃1. Applying the inductive hypothesis to F1, 
r(F1) = 2
(F1).
Let f1 be a 
r(F1)-function, and let f :V (F)→ {0; 1; 2} be de2ned by f(v)=f1(v)

if v∈V (F1), f(v) = 2 if v∈ S(F), and f(v) = 0 otherwise. Then, f is a WRDF of F ,
and so 
r(F)6w(f) = w(f1) + 2|S(F)|= 
r(F1) + 2|S(F)|. On the other hand, let g
be a 
r(F)-function. Suppose v∈ S(F) and u is a leaf adjacent to v. If g(u) = 1, then
we can reassign to v the value g(v) + 1 and to u the value 0. Hence we may assume
that g(v)=2 for each v∈ S(F) and g(u)=0 for each leaf u adjacent to v. Furthermore,
if u∈N [S(F)]− S, then we may assume that g(u) = 0 for otherwise we can shift the
positive weight on u to a neighbor of u that belongs to F1. Let g′ be the restriction
of g to F1. Then, g′ is a WRDF of F1, and so 
r(F1)6w(g′) = w(g) − 2|S(F)| =

r(F)− 2|S(F)|. Consequently, 
r(F) = 
r(F1) + 2|S(F)|.
Since S1 is the unique 
(F1)-set, 
(F1)=|S1|=|S|−|S(F)|=
(F)−|S(F)|. Thus, since


r(F1)=2
(F1), it follows that 
r(F)=
r(F1)+2|S(F)|=2(
(F1)+|S(F)|)=2
(F).

Lemma 20. Let F be a forest. If F �∈ F, then 
r(F)¡ 2
(F).

Proof. Suppose F �∈ F. If the forest F does not have a unique 
(F)-set, then it
follows from Corollary 13 that 
r(F)¡ 2
(F). Hence we may assume that F has a
unique 
(F)-set S. If F has a component with no strong support vertex, then, by
Corollary 17, 
r(F)¡ 2
(F). Hence we my assume that each component of F con-
tains a strong support vertex. Now since F �∈ F, it follows that F̃ = Fk where Fk
has a component with no strong support vertex. Let g be a 
r(Fk)-function. Then,
by Corollary 17, w(g) = 
r(Fk)¡ 2
(Fk). By Observation 18, Sk is the unique 
(Fk)-
set and, by construction, S − Sk is a dominating set of F − V (Fk). Let f :V (F) →
{0; 1; 2} be de2ned by f(v) = g(v) if v∈V (Fk), f(v) = 2 if v∈ S − Sk , and f(v) = 0
otherwise. Then, f is a WRDF of F , and so 
r(F)6w(f)=w(g)+2|S−Sk |¡ 2
(Fk)+
2(|S| − |Sk |) = 2|Sk |+ 2(|S| − |Sk |) = 2|S|= 2
(F).

As an immediate consequence of Lemmas 19 and 20, we have the following char-
acterization of forests F that satisfy 
r(F) = 2
(F).

Theorem 21. Let F be a forest. Then 
r(F) = 2
(F) if and only if F ∈F.

Note that each forest F ∈F satis2es 
r(F)= 
R(F)=2
(F). Hence the family F of
forests is a subclass of Roman forests. A characterization of Roman trees, and hence
of Roman forests, can be found in [10].

7. Complexity

The following decision problem for the domination number of a graph is known to
be NP-complete, even when restricted to bipartite graphs (see Dewdney [5]) or chordal
graphs (see Booth [1] and Booth and Johnson [2]).
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Dominating set (DM)

Instance: A graph G and a positive integer k6 |V (G)|.
Question: Does G have a dominating set of cardinality k or less?

We will demonstrate a polynomial time reduction of this problem to our weak Roman
dominating function problem.
Weak roman dominating function (WRDF)

Instance: A graph H and a positive integer j6 |V (H)|.
Question: Does H have a WRDF of weight j or less?

Theorem 22. WRDF is NP-complete, even when restricted to bipartite or chordal
graphs.

Proof. It is obvious that WRDF is a member of NP since we can, in polynomial time,
guess at a function f :V (H)→ {0; 1; 2} and verify that f has weight at most j and is
a WRDF. We next show how a polynomial time algorithm for WRDF could be used
to solve DM in polynomial time. Given a graph G and a positive integer k construct
the graph H by adding to each vertex of G a path of length 4. It is easy to see that
the construction of the graph H can be accomplished in polynomial time. Note that if
G is a bipartite or chordal graph, then so too is H .

Lemma 23. 
r(H) = 
(G) + 2|V (G)|.

Proof. Let f = (V0; V1; V2) be a 
r(H)-function. Let v∈V (G) ⊂ V (H), and let Pv:
v; w; x; y; z be the path of length 4 added to v. Now, f[u]¿ 1 for every vertex u of H .
In particular, f[w]¿ 1 and f[z]¿ 1, and so f(V (Pv)) = f[w] + f[z]¿ 2. We may
assume that f(z) = 0 and f(y)¿ 1 (for otherwise we can simply shift any positive
weight from z to its neighbor y). Let S = (V1 ∪ V2) ∩ V (G).
If f(V (Pv))¿ 3, then we may assume that f(v)¿ 1, f(w) =f(y) = 1 and f(x) =

f(z)=0 (for otherwise we can simply shift any additional positive weight on the path
to v). Hence, if f(V (Pv))¿ 3, then v∈ S.
Suppose that f(V (Pv))=2. Then, f[w]=1 and f[z]=1. Thus, f(z)=0 and f(y)=1.

If f(x)=1, then f(v)=f(w)=0. In particular, v∈V0, and so v must be adjacent to a
vertex u∈V1 ∪ V2. Since w∈V0, u∈V (G). Hence, v is adjacent to a vertex of S. On
the other hand, suppose f(x) = 0. Since the movement of a legion from y to x will
create an undefended vertex, namely z, it follows that f(w)= 1 and f(v)= 0 and that
the movement of a legion from w to x will not create an undefended vertex. But this
implies that the vertex v must be adjacent to a vertex of S. Hence, if f(V (Pv)) = 2,
then v is dominated by S.
Thus, S is a dominating set of G, and so 
(G)6 |S|. Furthermore, if v∈ S, then

f(V (Pv))¿ 3, while if v �∈ S, then f(V (Pv)) = 2. Hence, 
r(H) = w(f)¿ 3|S| +
2(|V (G)| − |S|) = |S|+ 2|V (G)|¿ 
(G) + 2|V (G)|.
On the other hand, let D be a 
(G)-set. Let g :V (H) → {0; 1; 2} be the function

de2ned as follows: if v∈D, then let g(v)= g(w)= g(y)=1 and g(x)= g(z)=0, while
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if v �∈ D, then let g(v) = g(x) = g(z) = 0 and g(w) = g(y) = 1. Then, g is a WRDF of
H , and so 
r(H)6w(g) = 3|D|+ 2(|V (G)| − |D|) = |D|+ 2|V (G)|= 
(G) + 2|V (G)|.
Consequently, 
r(H) = 
(G) + 2|V (G)|, as desired.

Lemma 23 implies that if we let j = k + 2|V (G)|, then 
(G)6 k if and only if

r(H)6 j. This completes the proof of Theorem 22.

Using the Wimer Technique, it is straightforward to show that if T is a tree, then
there exists a linear-time algorithm for 2nding 
r(T ). The proof is routine and similar
to that presented in [4] and is therefore omitted.
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