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Vertebrate Hox clusters contain protein-coding genes that regulate body axis development and microRNA
(miRNA) genes whose functions are not yet well understood. We overexpressed the Hox cluster microRNA
miR-196 in zebrafish embryos and found four specific, viable phenotypes: failure of pectoral fin bud initiation,
deletion of the 6th pharyngeal arch, homeotic aberration and loss of rostral vertebrae, and reduced number of
ribs and somites. Reciprocally, miR-196 knockdown evoked an extra pharyngeal arch, extra ribs, and extra
somites, confirming endogenous roles of miR-196. miR-196 injection altered expression of hox genes and the
signaling of retinoic acid through the retinoic acid receptor gene rarab. Knocking down rarab mimicked the
pectoral fin phenotype of miR-196 overexpression, and reporter constructs tested in tissue culture and in
embryos showed that the rarab 3′UTR is a miR-196 target for pectoral fin bud initiation. These results show
that a Hox clustermicroRNA modulates development of axial patterning similar to nearby protein-coding Hox
genes, and acts on appendicular patterning at least in part by modulating retinoic acid signaling.
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Introduction

Hox cluster genes control animal body patterning in radiata and in
bilateria, including both protosotomes and deuterostomes (Finnerty
et al., 2004; Postlethwait and Schneiderman, 1969; Wellik, 2009). In
vertebrate deuterostomes, Hox cluster genes control the anterior–
posterior body axis, including the identity of vertebrae and pharyn-
geal arches and the axes of body appendages (Krumlauf, 1994), and
they are important for the development of mesodermal organ systems
(Di-Poi et al., 2010). Hox clusters evolved by tandem gene duplication
followed by whole genome duplication events in vertebrates that
provided tetrapods with four Hox clusters and most teleost fish with
seven or eight (Amores et al., 1998, 2004; Chambers et al., 2009;
Gehring et al., 2009; Graham et al., 1989; Woltering and Durston,
2006).

Hox genes are expressed in a collinear fashion along the anterior–
posterior body axis during early development, with genes located 3′
in the cluster controlling anterior development and those located 5′
regulating more posterior organ development (Duboule and Morata,
1994; Graham et al., 1989); as a result, Hox gene mutations can delete
vertebrae or transform vertebral identity and remove or reduce limb
skeletal elements (Chen and Capecchi, 1997; Davis et al., 1995). Hox
genes act by controlling downstream transcription factors that
regulate signaling events controlling body segmentation and organ
initiation. Some Hox genes are themselves directly regulated by the
extracellular signaler retinoic acid (RA), which controls axis and
pectoral appendage development (Grandel et al., 2002; Hoffman et al.,
2002; Nolte et al., 2003).

Bilaterian Hox clusters contain protein-coding genes and genes
encoding microRNAs (miRNAs), small non-coding RNAs that gener-
ally bind to 3′ untranslated regions (UTRs) of messenger RNAs and
regulate their stability or translation (Fjose and Zhao, 2010; Vella
et al., 2004). The human genome has three Hox cluster miRNA genes,
MIR10, MIR196, and MIR615. The MIR10 gene is broadly distributed
among bilaterians; MIR196 is conserved among vertebrates; and
MIR615 is restricted to mammalian genomes (see miRBase collection
at http://www.miRBase.org (Griffiths-Jones et al., 2008; Yekta et al.,
2008)). In zebrafish, the hoxdb cluster lost all of its protein-coding
genes (Amores et al., 1998), but surprisingly, retained mir10
(Woltering and Durston, 2006). The similarity of Hox cluster miRNA
expression patterns to those of nearby hox genes suggested that Hox
cluster miRNAs and Hox cluster genes share regulatory mechanisms
(Wienholds et al., 2005). Furthermore, the discovery that the 3′ UTRs
of several Hox cluster genes contain predicted binding sites for either
miR-196 or miR-10 suggested that some Hox genes might be
regulated by Mir10 and/or Mir196 (He et al., 2009; Hornstein et al.,
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2005; Kawasaki and Taira, 2004; Woltering and Durston, 2008; Yekta
et al., 2004; Yekta et al., 2008). For example, mir10 is involved in the
regulation of metastasis by controlling Hoxd10 in cell culture and
hoxb1a and hoxb3a in vivo (Lund, 2009; Ma et al., 2007;Woltering and
Durston, 2008). miR-196 binds to Hoxb8 mRNA, thereby accelerating
its cleavage, and this interaction has been hypothesized to be
important for the outgrowth of hindlimb buds (Hornstein et al.,
2005; Kawasaki and Taira, 2004; Yekta et al., 2004). In the CNS,
miR-196 restricts motor neuron differentiation by regulating Hoxb8
(Asli and Kessel, 2010). miR-196 is also involved in cancer progression
by interaction with other Hox8 paralogs (Li et al., 2010) (Chen et al.,
2011). miRNA-196 can also repress BACH1 expression in human liver
cells (Hou et al., 2010) and is important for tail regeneration in the
axolotl (Sehm et al., 2009). Knockdown of miR-196 in chick embryos
leads to a homeotic transformation of a cervical vertebra to thoracic
identity (McGlinn et al., 2009). Because no phenotype has yet been
described for the overexpression of mir196 in embryos and no
phenotype has been described in other tissues where it is expressed,
we do not yet fully understand its roles in development or the
mechanisms by which it acts.

Here we show that precise levels of mir196 are required to initiate
development of the pectoral appendage, to develop the correct
number of pharyngeal arches, and to specify the number and identity
of rostral vertebrae and ribs.We show thatmiR-196 can alter hox gene
expression patterns and that miR-196 acts on pectoral appendage
development by altering retinoic acid signaling via fine-tuning the
expression of the retinoic acid receptor Rarab.

Results

mir196 genomics

The human genome has three copies of MIR196 located between
paralogy groups 9 and 10 (Yekta et al., 2008), but due to the teleost
miR-196a1(ca) TAGGTAGTTTCATGTTGTTGGG

miR-196a2(aa) TAGGTAGTTTCATGTTGTTGGG
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Fig. 1. Sequence and expression of mir196 genes. (A) Alignment of mature miR-196 encoded
(bactin1) was used as control for contaminating genomic DNA (ctrl lane). M, size marker; 1c,
10 hpf; 24 h, 24 hpf; ctrl, genomic DNA control. (C–H)Whole mount in situ hybridization for m
nucleic acid (LNA) probe for miR-196a showed an expression pattern similar to the primary tra
nerve system; pf, pectoral fin.
genome duplication (Amores et al., 1998; Postlethwait et al., 1998;
Taylor et al., 2003), zebrafish has five mir196 genes (Supplementary
Fig. S1A). The teleost whole genome duplication would have initially
produced six mir196 genes, but one of the two hoxbb mir196
duplicates was lost and duplicates of only the hoxa and hoxc cluster
genes were maintained. The five zebrafish mir196 paralogs encode
four different mature miR-196 sequences with a central nucleotide
trio containing (C/G/T) A (A/T). The duplicate hoxa and hoxc clusters
havemir196 paralogs that differ by one nucleotide [(C/T) AT and (C/G)
AT], respectively (Fig. 1A). Because miRNAs often bind their targets
with some mismatch (He and Hannon, 2004; Yekta et al., 2004), all
four miR-196 sequences probably regulate the same targets.

mir196 expression patterns

mir196 genes and nearby hox genes share spatial expression
patterns in the central nervous system (CNS) and pectoral fin bud
(Wienholds et al., 2005; Woltering and Durston, 2006; Yekta et al.,
2008) (compare Fig. 1C–J and Supplementary Fig. S1B–M). This result
suggests that hox cluster miRNAs may share regulatory mechanisms
with neighboring hox genes. To investigate temporal aspects ofmir196
expression, we used gene-specific primers for mir196 primary
transcripts and RT-PCR to discover that mir196a1(hoxca) transcript
had begun to accumulate at 24 h post-fertilization (hpf), butmir196a2
(hoxaa) transcript, which encodes the same mature miRNA sequence
as mir196a1(hoxca), was maternally expressed (Fig. 1B). Transcripts
frommir196b(hoxba) andmir196c(hoxcb) genes first appeared at bud
stage, and transcript from mir196d(hoxab) first accumulated at 5 hpf
(Fig. 1B) when gastrulation initiates. This gene-specific timing
suggests that different mir196 genes experience different regulations
and may play different roles in development. In addition, whole
mount in situ hybridization experiments showed that mir196 genes
are expressed in a pattern similar to but different from each other at
24 hpf (Fig. 1C–J).
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mir196 and hox targets

Sequence comparisons revealed that the 3′UTRs of several zebrafish
hox cluster genes surroundingmir196 contain predictedmiR-196 targets
((Yekta et al., 2008) and Supplementary Fig. S1A, Supplementary Table
S1). Themir196 genes lie between posterior hox paralogy groups 9 and
10, and ten hox cluster genes ranging from paralogy groups 5 to 13
contain predicted miR-196 binding sites. Conversely, mir10 genes lie
between anterior paralogy groups 4 and 5 and predicted targets are in
anterior hox paralogy groups 1 to 4 and in hoxd10a (Supplementary Fig.
S1A and Supplementary Table S1). This conserved non-random
organization of hox cluster miRNA genes and their predicted targets
suggests a conserved functional role between hox cluster genes and
their neighboring miRNA genes (Yekta et al., 2008).

To test whether miR-196 regulates transcript levels of predicted
hox cluster targets, we overexpressed miR-196 duplex or knocked
down mir196 expression with morpholino antisense oligonucleotide
(Mo) designed to inhibit miR-196 maturation or control morpholino
and then examined transcript levels by in situ hybridization in 24 hpf
embryos using the hindbrain marker egr2a as internal control. Results
showed that after overexpression of mir196, hox genes that have
mismatch target sites and are expressed early in the region of the
pectoral fin bud, including hoxb5a, hoxb5b, hoxb6b and hoxc6a, mostly
retained their native expression level, but with a weakened anterior
boundary (Supplementary Fig. S2A–L). Quantifying miR-196 by qPCR
confirmed that overexpression elevated miR-196 levels 10–20 times
normal and that knockdown resulted in 20% or less of normalmiR-196
amounts, but that mis-matched miR-196 overexpression and control
morpholino had no effect (Fig. S3A). We conclude that miR-196 can
fine-tune the anterior expression border of hoxb5a, hoxb5b, hoxb6b,
and hoxc6a either as direct targets or because they are downstream of
a miR-196 target.

Zebrafish hoxb8a mRNA has a perfect target site for miR-196a like
its ortholog HOXB8 in human and mouse (Yekta et al., 2008). After
overexpression of mir196, the level of hoxb8a transcript was
diminished (Supplementary Fig. S2M–P). This result can be explained
if hoxb8a transcript is degraded after miRNA binding like other
transcripts with perfect matches between miRNAs and their target
sites (Hornstein et al., 2005; Kawasaki and Taira, 2004; McGlinn et al.,
2009; Yekta et al., 2004). To confirm the miR-196-related inhibition of
hoxb8a, we made a reporter gene construct by attaching the 3′UTR of
hoxb8a to the coding region of GFP (Supplementary Fig. S2Q). Results
showed that co-injection of mRNA for the reporter with either miR-
196a or miR-196b duplex inhibited fluorescence signal, and recipro-
cally, fluorescence increased after co-injection of the reporter mRNA
and mir196-morpholino (Supplementary Fig. S2R–U). These results
showed that both endogenous and injected miR-196 inhibit hoxb8a
expression by degrading hoxb8amRNA in zebrafish as in other species
(Hornstein et al., 2005; Yekta et al., 2004).

miR-196 can block induction of zebrafish pectoral fin initiation

To learn the roles of miR-196 in embryonic development, we
overexpressedmiR-196duplex by injection into early cleavage embryos
and inhibited miR-196 processing and binding with morpholinos.
Resulting animals survived to adulthood but showed highly specific
phenotypes in the pectoral appendage, pharyngeal arches, and rostral
vertebrae and ribs.

AftermiR-196 duplex injection, at least one pectoral finwas absent
in 161 of 183 injected animals (Fig. 2A–G) and fin loss persisted into
adulthood (Fig. 2H–J). At 5 dpf (days post-fertilization), the pectoral
apparatus from 234 animals overexpressing miR-196 either lacked
the endochondral disc and scapulocoracoid (42.3%, Fig. 2L), lacked the
endochondral disc only (6.0%, Fig. 2M), or had normal fin buds (51.7%,
Fig. 2N). The cleithrum, a dermal bone that does not form in fin
mesenchyme (Mercader, 2007), was always present (Fig. 2K–N).
We conclude that miR-196 blocks an early stage in pectoral fin
development.

To learn how miR-196 acts to block pectoral fin formation, we
interrogated steps in appendage development. In pectoral fin
development (Fig. 3A), somite-derived retinoic acid (RA) acts on
intermediate mesoderm to induce wnt2ba, which, along with RA
acting via the retinoic acid receptor Rarab and prdm1a (Linville et al.,
2009; Mercader et al., 2006), causes lateral plate mesoderm (LPM) to
express tbx5a (Garrity et al., 2002), which turns on fgf24 leading to
expression of fgf10a, which activates the apical epidermal fold (AEF),
thereby promoting fin bud outgrowth followed by the development of
lbx1b-expressing fin muscle (Mercader, 2007;Wotton et al., 2008). To
discover which step is sensitive to miR-196, we examined pectoral fin
gene expression after mir196 manipulation. miR-196-injected em-
bryos lost expression of lbx1b, showing that miR-196 acts before fin
muscle induction (Fig. 3B, C). Working backward through develop-
ment, miR-196 injection blocked expression of fgf10a, fgf24, and tbx5a,
the earliest expressed pectoral fin specific gene (Fig. 3D–I). Because
wnt2ba is weakly expressed even in wild types (Koudijs et al., 2008;
Mercader et al., 2006), it was difficult to detect whether its expression
changed in the fin field region after miR-196 overexpression (data not
shown). Expression of prdm1a is downstream of RA signaling in the
pectoral fin bud (Mercader et al., 2006), and we found that miR-196
injection inhibited the expression of prdm1a in the pectoral fin field
without affecting its expression in the CNS or pharyngeal arches
(Fig. 3J, K), implying thatmiR-196 acts upstream of prdm1a in pectoral
fin. RA induces Hoxc6 expression in the mesenchyme of chick wing
bud (Oliver et al., 1990) and we found that miR-196 injection
inhibited the expression of hoxc6a in the pectoral fin field (Fig. 3L, M).
This result is consistent either with the direct action of miR-196 on
hoxc6a activity or an indirect action via retinoic acid signaling. The
knockdown of miR-196 disrupted neither the expression of fgf24 and
tbx5a in the pectoral fin field (data not shown) nor the development
of pectoral fins.

miR-196, fin buds, and retinoic acid signaling

Our gene expression analyses showed that the mechanism of
action of miR-196 lies upstream of prdm1a, and hence pointed to a
problem in RA signaling. To learn ifmir196 overexpression disrupts RA
signaling, we utilized transgenic animals in which RA signaling
activates a retinoic acid response element leading to expression of
Yellow Fluorescent Protein (YFP) (Perz-Edwards et al., 2001) in the
CNS by 43 hpf (Fig. 4A–D, left embryo). These reporter animals were
injected with miR-196 duplex, or with mis-matched miR-196 duplex
as control, or with miR-196 morpholino. Embryos overexpressing
miR-196 displayed less fluorescence than controls, signifying reduced
RA signaling (Fig. 4A, B, right embryo, Supplementary Fig. S4).
Conversely,mir196 knockdown gave elevated fluorescence compared
to controls, and hence enhanced RA signaling (Fig. 4C, D, right
embryo, Supplementary Fig. S4). These results demonstrate that miR-
196 can inhibit RA signaling in the CNS, and, coupledwith the fact that
mutation of aldh1a2, which encodes an RA-synthesizing enzyme can
delete the fin bud (Begemann et al., 2001), suggest the hypothesis that
the pectoral fin phenotype of miR-196 overexpression results from
decreased RA signaling.

The hypothesis thatmiR-196 negatively regulates RA signaling in fin
bud initiation predicts that the inhibition of RA signaling by other
methods should lead to the same phenotype. To test this prediction,
we used DEAB, a reversible inhibitor of RA-synthesizing enzymes
(Perz-Edwards et al., 2001). RA inhibition, like miR-196 overexpression
(Fig. 2), caused a loss of pectoral fin outgrowth (Supplementary Fig.
S5A–F) that persisted to adulthood (Supplementary Fig. S5G, H) and
inhibited expression of fgf24, tbx5a, fgf10a, and lbx1b (Supplementary
Fig. S5I–R). These results are as expected if miR-196 blocks fin bud
development by inhibiting RA signaling.



UIC

UIC

UIC

UIC

UIC

miR-196oe

miR-196oe

miR-196oe

miR-196oe

miR-196oe

miR-196oe miR-196oe

miR-196mm

miR-196mm

28hpf

28hpf

48hpf

48hpf

120hpf

45dpf

120hpf

cl
sco

ed

pf

pf

ov

ov

ovov

pf pf

cl cl clsco

ed

sco

pv pv pv

120hpf120hpf

45dpf45dpf

120hpf120hpf120hpf

A

B

E

H

K

F

I

G

J

L M N

C

D

Fig. 2.miR-196 overexpression inhibits pectoral fin initiation. (A, C) Pectoral fin buds are readily detectable at 28 hpf and 48 hpf in normally developing uninjected control animals,
but embryos overexpressing miR-196 (B, D) showed no evidence of a pectoral fin bud. Arrowheads mark the edges of pectoral fin buds. (E, F, H, I) Uninjected controls or miR-196
mismatch injected controls showed normal pectoral fins by 5 and 45 days post-fertilization (dpf), but larvae overexpressing miR-196 had not recovered pectoral fins by 5 dpf and
became paraplegic adults (G, J, arrows point to missing pectoral fins). Pelvic fins were normal in fish with pectoral fin defects (J). (K–N) Dissected pectoral fins of 5 dpf larvae stained
with Alcian blue for cartilage and Alizarin red for bone showed skeletal defects ranging from absence of the endochondral disc and scapulocoracoid (L, 42.3%, 234 total fins) to
missing the endochondral disc but having part of scapulocoracoid (M, just 6%) to normal (N, 51.7%,). Abbreviations: cl, cleithrum; ed, endochondral disc; ov, otic vesicle; pf, pectoral
fin or bud; pv, pelvic fin; sco, scapulocoracoid.

466 X. He et al. / Developmental Biology 357 (2011) 463–477
If miR-196 inhibits RA signaling, then excess RA should partially
reverse this inhibition and rescue the fin phenotype of miR-196
overexpression; conversely, knockdown of endogenous miR-196
should partially relieve the inhibition of RA signaling and thus rescue
a situation with diminished RA signaling. We increased RA signaling
either by exposing 12 hpf embryos to synthetic RA (10−7 M) for 2 h or
by reducing RA degradation using a mutation in cyp26a1, which
encodes the enzyme that destroys RA (Emoto et al., 2005). At 120 hpf,
both treatments resulted in short or absent pectoral fins (Grandel
et al., 2002) (Supplementary Fig. S6A–F). In homozygous cyp26a1rw716

mutants, the endochondral disc was more sensitive than the
scapulocoracoid (Supplementary Fig. S6G–J). While 89% (n=63) of
animals overexpressing miR-196 (5 nL) had no pectoral fin (Fig. 4E),
only 48% of animals co-injected with miR-196 and treated with
10−7 M RA lacked pectoral fins (n=81). Reciprocally, the knockdown
of endogenous miR-196 partially rescued defective fins resulting from
DEAB-inhibited RA signaling (Fig. 4F). We interpret this rescue to
mean that with less endogenous miR-196, its target becomes more
active, which partially overcomes diminished RA signaling caused by
DEAB. These results show that not only injected miR-196, but also
endogenous miR-196 inhibits pectoral fin bud initiation by interfering
with RA signaling.
A target for miR-196 in fin bud development

To identify a molecular target related to RA signaling, we looked
for potential miR-196 binding sites in the 3′UTRs of genes that are
related to RA signaling, as well as genes known to be involved in
pectoral fin initiation. A check of binding site prediction software
(miRbase and MicroInspector (Rusinov et al., 2005)) showed that
transcripts encoding Cyp26a1 and the retinoic acid receptor Rarab
have predicted miR-196 target sites (Supplementary Fig. S6K and Fig.
6F, respectively), but other RA-pathway genes, including aldh1a2, all
other rar and rxr genes, prdm1a, fibin, tbx5a,wnt2b and fgf ligands and
receptor genes lacked such sites.

The target of miR-196 should possess at least three properties:
knockdown of the target should (a) mimic the loss of fin bud initiation
caused by miR-196 overexpression, (b) delete the pectoral fin bud
expressiondomainof tbx5a asdoesmiR-196overexpression, and(c) lead
to decreased RA signaling as we observed after miR-196 overexpression.
A comparisonof cyp26a1and rarab in these regards should suggestwhich
is abetter candidate as amiR-196 target. In cyp26a1mutants, thepectoral
fin bud in zebrafish initiates and the animals form the scapulocoracoid
(Supplementary Fig. S6G–J and (Emoto et al., 2005)), but after rarab
knockdown and miR-196 overexpression, animals fail to initiate fin
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bud development and become adults lacking pectoral fins (Fig. 4G–N
and (Linville et al., 2009)). After rarab knockdown, pectoral fins either
lacked the endochondral disc and scapulocoracoid or had normal fins
(70% and 30%, respectively, n=101). The expression domain of tbx5a is
shifted anteriorly in cyp26a1 mutants (Emoto et al., 2005) but in rarab
knockdown and in miR-196 overexpression, we found that the tbx5a
expression domainwas deleted (Fig. 3H, I; Fig. 4O, P). Finally, inhibition
of Cyp26a1, an RA degrading enzyme, augments RA signaling rather
than reduces RA signaling as after rarab knockdown and mir196
overexpression. Furthermore, overexpressing rarab by injecting rarab
mRNA did not give a pectoral fin phenotype (data not shown),
mimicking results for mir196 knockdown. To further test whether
Cyp26a1 is a target for miR-196 in pectoral fin initiation, we made a
luciferase reporter construct by ligating the cyp26a1 3′UTR to the firefly
luciferase coding region (Supplementary Fig. S6L). Co-transfection of
tissue culture cells with this construct along with miR-196 showed
that cyp26a1 3′UTR is insensitive to miR-196 (Supplementary Fig.
S6M). These data make it unlikely that cyp26a1 is the major miR-196
target relevant for the fin bud phenotype but are all consistent with
rarab being the target.

If miR-196 attenuates rarab, then bothmir196 and rarab transcripts
should be expressed in the same cells. Analysis showed that the
expression of rarab (Hale et al., 2006; Linville et al., 2009) is similar to
that of miR-196 in fin bud initiation (Fig. 5A–D, and shown in two-
color double in situ hybridizations in Supplementary Fig. S7, along
with double in situs of rarab and tbx5a). To see if miR-196 could target
the rarab 3′UTR, we used a firefly luciferase assay in cultured cells
using Renilla luciferase as an internal standard. We attached the rarab
3′UTR with its three predicted miR-196 binding sites to luciferase
coding sequence (Fig. 5E, F) and co-transfected this construct and
miR-196 into human 293 T cells. miR-196 led to reduced luciferase
fluorescence from the rarab 3′UTR construct compared to the control
(Fig. 5G), showing that miR-196 can act on the rarab 3′UTR to inhibit
message stability and/or translation. To test this interaction in living
embryos, we co-injected a construct containing the GFP coding region
followed by the rarab 3′UTR (Fig. 5E) and then overexpressed or
knocked downmiR-196. Embryos injected with miR-196 had less GFP
fluorescence than uninjected controls or controls injected with miR-
196mismatch duplex, but embryos experiencingmiR-196 knockdown
had more fluorescence than controls (Fig. 5H–K, Supplementary Fig.
S8). Deletion of the three predicted binding sites for miR-196 in the
rarab 3′UTR led to no significant difference in GFP fluorescence
compared to controls (Fig. 5L–O). This reporter assay confirmed direct
interaction between miR-196 and the rarab 3′UTR in living embryos.
We conclude that rarab is the miR-196 target responsible for the
pectoral fin initiation phenotype. Because miR-196 overexpression or
knockdown did not change the amount of rarab transcript (Supple-
mentary Fig. S9), miR-196 is likely to act more strongly on rarab
translation than on message stability. To determine whether miR-196
is itself a target of RA signaling, we treated animals with RA or with
DEAB, an inhibitor of RA synthesis, andmeasured levels of miR-196 by
qPCR. Results showed that, relative to untreated controls and DMSO
carrier treated controls, RA treatments slightly decreased miR-196
levels and RA knockdown increased miR-196 levels to a small degree
(Fig. S3B). We conclude that, if there is an effect of RA on miR-196
levels, it is in the direction of RA down-regulatingmiR-196 expression,
but the effect is not strong.

mir196 inhibits branchial arch segmentation

Animals overexpressing mir196 lacked not only pectoral fins, but
also lacked one, and only one, pharyngeal arch (PA). Zebrafish have
seven PAs, including mandibular (PA1), hyoid (PA2), and five
branchial (gill) arches (PA3-7). After miR-196 overexpression, PA1
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and PA2, as well as the tooth-bearing PA7, were normal. In 84%
(n=254) of miR-196 duplex-injected animals, however, one or both
sides of the animal had four rather than five branchial arches (Fig. 6A, B).
PA3 to PA5 were always normal in morphology, but occasionally a
short PA6 was fused to PA7 after miR-196 overexpression (Fig. 6B,
insert). This malformation suggests that the missing arch was PA6.
This result shows that overexpression or ectopic expression of
mir196 is sufficient to reduce the number of branchial arch segments.
We infer that miR-196 inhibits a process necessary to add branchial
arches, probably PA6.

To distinguish between the hypotheses that the loss of PA6 arises
from overexpression or ectopic expression of miR-196, we knocked
down miR-196 with a morpholino designed to inhibit miRNA proces-
sing. Results showed that 33% of injected animals (n=140) had six
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rather than the normal five branchial arches (Fig. 6C). Some animals
with five branchial arches had an additional skeletal element fused to
PA7, suggesting that endogenous miR-196 normally inhibits the arch
just anterior to PA7. This result shows that endogenous miR-196 is
necessary to prevent the addition of supernumerary branchial arches.
Because themiR-196 knockdown phenotype is opposite to that of miR-
196 overexpression, we conclude that precisely adjusted levels of miR-
196 are required for proper branchial arch segmentation.

Cartilage-forming cells in pharyngeal arches arise from post-
migratory neural crest that is divided into several streams by
endodermal pouches (Fig. 6D and Crump et al. (2004)). To determine
whether miR-196 acts primarily on the endodermal pouches or only on
the neural crest, we used transgenic fli-GFP fish in which the
skeletogenic crest fluoresces green (Lawson and Weinstein, 2002) and
then stained animals with the antibody zn-8 as amarker for pharyngeal
endoderm (Trevarrow et al., 1990). In contrast to normal 36 hpf
embryoswith sevenpharyngeal arches (Fig. 6D),mir196overexpression
embryos lacked one endodermal pouch (Fig. 6E). Conversely, mir196
knockdownembryoshad anextra endodermal pouch that resulted in an
extra pharyngeal arch precursor (Fig. 6F). These result in embryos that
correspond to the cartilage phenotype of miR-196 manipulated larvae
and support the hypothesis that miR-196 derived defects in pharyngeal
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arch patterning arise from initial effects on the patterning of pharyngeal
pouch endoderm. Together, these results lead to the conclusion that
mir196 acts in pharyngeal arch endoderm to suppress the formation of a
posterior pharyngeal pouch.

Normal miR-196 levels are essential to pattern the axial skeleton

Controlled levels of miR-196 are important for proper segmenta-
tion not only of branchial arches but also of the rostral axial skeleton.
The anterior four vertebrae of zebrafish and other Otophysi form the
Weberian apparatus, bones that transmit sound from the swim
bladder to the inner ear (Grande and Young, 2005). Caudal to the
Weberian apparatus, normal animals have about ten rib-bearing
precaudal vertebrae (Fig. 7A, D and Bird and Mabee (2003)). Adult
fish developing from embryos injected with miR-196 duplex showed
disrupted rostral axial skeletons, including axial shifts in the
patterning of the Weberian apparatus and fewer precaudal vertebrae
and ribs (Fig. 7B, D, E–L). Adult fish developing from embryos injected
withmiR-196Mo did not show defects in theWeberian apparatus but
they had more ribs and rib-bearing precaudal vertebrae than normal
(Fig. 7C, D). Statistically, miR-196 injected animals had on average
0.7 fewer segments in theWeberian apparatus than wild types (73.2%
of 56 injected animals were affected), and 2.5 fewer ribs (81.8%
affected), and 2.1 fewer rib-bearing precaudal vertebrae than normal
(36.2% affected) (Fig. 7D).

In wild-type fish, the Weberian apparatus has four highly modified
vertebrae, each with bone and cartilage morphologies that specify
their identity (Fig. 7E, F, I, J). The lateral process-1 (lp1), -2 (lp2), the
intercalarium (in), the tripus bones (tr), the neural arch-3 (na3), neural
arch-4 (na4), the highly modified rib-4 (r4) ,os suspensorium (os),
supranueral-3 (sn3), and -4 (sn4) are attached to one of the four
vertebra in theWeberian apparatus. Analysis of these skeletal structures
showed that the overexpression of miR-196 provoked fate trans-
formations in the Weberian apparatus. For example, in the animal in
Fig. 8G, the second segment (segment #2) had the joint for the
intercalarium, which is appropriate for a normal vertebra-2, but this
segment possessed a dorsal projection that appeared similar to, but not
as broad as, neural arch-3 (asterisk in Fig. 7G). The morphology of this
animal's segment #3 was similar to the normal v4 with a neural arch-4
and rib-4 like rib (arrow in Fig. 7G). Segment #4 had a rib appropriate
for v5 (arrowhead in Fig. 7G).We conclude that in this fish, the identity
of segments #2–4 were partially transformed into more posterior fates,
an apparent homeotic transformation. Alternatively, v2 or v3 was
deleted and segment #2 assumed an identity intermediate between v2
and v3. The animal in Fig. 7H had a normal v1 with a normal lateral
process-1, but segment #2 had an abnormally short lateral process-2;
segment #3 had a ventral projection intermediate in character between
the tripus (Fig. 7E, F) andanteriorlyprojecting, forked rib-4 (r4)which is
more appropriate for the next segment more posterior (arrow in
Fig. 7H), and a neural arch more similar to neural arch-4 than neural
arch-3; in addition, segment #4 had a rib with the morphology of rib-5
rather than rib-4 (arrowhead in Fig. 7H). Fig. 7K is a ventral view of the
Weberian apparatus of an animal overexpressing miR-196 with
relatively normal v1 and v2, but v3 showed partial posterior
transformation on the right sidewith a forked tripus anteriorly oriented
like rib-4, although the left side was relatively normal; segment #4 had
a rib on the left side thatwas appropriate for rib-4, but on the right side,
the rib pointed backwards andwas not forked, which are characteristics
of the more posterior rib-5. The Weberian apparatus of the animal
in Fig. 7L had a segment #2 with a normal tripus on the right side
(rather than on the normal v3) and a malformed tripus on the left
side; segment #3 of this animal had a DEL id="del105" orig="n";
rib-4-like structure on the right side and a nearly normal tripus on
the left side (arrows in Fig. 7L); segment #4 on both sides had ribs
appropriate for rib-5 (arrowheads in Fig. 7L). This phenotypeoccurred
repeatedly in affected animals (see supplementary Table S2). In
summary, analysis of miR-196 overexpression animals suggests that
the identities of rostral vertebrae are transformed into structures
appropriate for more posterior elements.

In contrast to the overexpression results, in which the Weberian
apparatus showed posterior phenotypes and fewer than normal ribs,
knockdownofmiR-196 resulted infish thathadamorphologicallynormal
Weberian apparatus but tended to have extra ribs and extra rib-bearing
precaudal vertebrae (Fig. 7C, D). This result shows that native miR-196
expression levels are important for axial segment morphology. With
regard to rib and precaudal vertebrae number, the results from miR-196
knockdown (segment gain) were opposite that of miR-196 overexpres-
sion (segment loss). In summary, the manipulation of miR-196 levels
resulted in altered numbers and homeotic-like fate transformations and
segmentation abnormalities along the axial skeletal system.
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Axial skeletal segmentation depends on early somitogenesis
(Bagnall et al., 1988) (Morin-Kensicki et al., 2002) (Sparrow et al.,
2007). To understand how miR-196 regulates axial skeleton segmen-
tation, we scored larval somite numbers aftermiR-196 overexpression
or knockdown (Supplementary Fig. S10). By 4 dpf, wild-type zebrafish
embryos had developed about 30 or 31 somites (78.4%, n=74). We
found that overexpression of miR196 reduced total somite number
(81.1% of 53 animals had fewer than 30 somites), while knockdown
of mir196 induced more somites than control fish (62.1% of 66
animals had more than 31 somites). This result is consistent with our
counts of ribs and vertebrae in adults, and shows that miR-196
regulates somitogenesis.

Discussion

Overexpressing miR-196 caused four highly specific phenotypes—
failure of pectoral appendage initiation, deletion of onepharyngeal arch,
transformation of vertebral identity and number, and change in somite
number.
The interaction of hox cluster protein-coding genes and mir196 genes

The similar expression patterns of miR-196 genes and their
neighboring hox cluster protein-coding genes would be expected if
they share regulatory mechanisms (Yekta et al., 2008). Hox cluster
protein-coding genes are rich in miR-196 targets in zebrafish as they
are in tetrapods (Yekta et al., 2008). Like its tetrapod ortholog,
zebrafish hoxb8a is has a site with perfect complementarity to miR-
196 and our results showed that in zebrafish, as in tetrapods, miR-196
acts on hoxb8a expression by decreasing messenger stability. Other
predicted hox cluster target genes for miR-196 have only partially
complementarymatches withmiR-196, suggesting that miR-196 does
not regulate these genes by message degradation. We observed
changes in transcript distribution for hoxb5a, hoxb5b, hoxb6b and
hoxc6a at their anterior expression borders, suggesting that miR-196
may regulate a factor upstream of these hox cluster protein-coding
genes. Mutations in genes that encode retinoic acid synthesizing or
degrading enzymes (raldh1a2 or cyp26a1, respectively) (Begemann
et al., 2001; Emoto et al., 2005) shift the anterior border of hox cluster
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protein-coding genes, with up-regulation of RA signaling causing
rostral expansion, implying that the phenotype we saw may be a
combination of direct control (miR-196 binds and inhibits translation
of hox target genes) and indirect regulation (miR-196 regulates RA
signaling, which secondarily regulates hox gene expression); alterna-
tively, miR-196 may regulate these hox cluster protein-coding genes
by an unknown regulatory mechanism.
miR-196 inhibits pectoral fin induction by inhibiting rarab expression

Animals injected with miR-196 duplex lacked pectoral fins and
showed diminished expressions of even the earliest fin bud markers.
We conclude that miR-196 overexpression inhibits the initiation,
rather than the patterning or elongation of pectoral fin buds. No
conclusions can be drawn with respect to the effect of miR-196 on the
pelvic fin bud because it developsmore than 2 weeks after fertilization
(Grandel et al., 2002), which is long after the injectedmiRNAwould be
effective. Other miRNAs are involved in zebrafish fin regeneration
(Thatcher et al., 2008). Retinoic acid signaling acts upstream of
pectoral appendage initiation (Gibert et al., 2006; Grandel et al., 2002;
Linville et al., 2009; Mercader et al., 2006; Waxman et al., 2008).
Because we found that miR-196 knockdown partially rescued
diminished RA signaling, we conclude that endogenous miR-196
plays a role in normally developing zebrafish. Transcript from rarab
appears in both the CNS and lateral plate mesoderm (Hale et al., 2006;
Linville et al., 2009) and contains three predicted partially comple-
mentary binding sites for miR-196, suggesting the hypothesis that
miR-196 attenuates RA signaling by lowering levels of Rarab protein
production. Furthermore, rarab knockdown blocks pectoral append-
age initiation (Linville et al., 2009), which would be expected if miR-
196 inhibits pectoral fin initiation by limiting rarab function. Likewise,
miR-196 overexpression diminished RA signaling in the CNS as
detected in the RARE-YFP transgenic line, and the same result was
obtained in the same line after direct rarab knockdown (Linville et al.,
2009). Finally, a luciferase assay in tissue culture cells and a GFP assay
in living embryos both showed thatmiR-196 functions via the 3′UTRof
rarab. Because miR-196 overexpression does not inhibit the accumu-
lation of significant quantities of rarab transcript and similar
experiments showed a substantial decrease of transcript levels for
hoxb8a, which serves as a positive control, we conclude that miR-196
acts more on translation than on message stability to modulate
expression of rarab. These results are as predicted by the hypothesis
thatmiR-196overexpressionblocksfinbud initiation, at least partially,
by binding the rarab 3′UTR in lateral plate mesoderm to inhibit its
translation, thereby diminishing the ability of lateral plate cells to
detect somite-derived RA, which leads to lack of tbx5a induction,
without which the fin bud cannot initiate. Although miR-196
morpholino knockdown did not give a pectoral fin bud phenotype in
otherwise normal development, evidence that endogenousmiR-196 is
involved in pectoral fin bud initiation comes from the demonstration
that miR-196 knockdown rescued diminished RA signaling. Thus, we
conclude that rarab is a target ofmiR-196 for pectoral fin bud initiation
in zebrafish.

Tetrapods have three Rar genes (Rara, Rarb, Rarg), and zebrafish has
duplicate copies of Rara and Rarg but no Rarb gene (Hale et al., 2006).
The functions of the three tetrapod Rar genes appear to have partitioned
among the four zebrafish raraa, rarab, rarga and rargb genes (Linville
et al., 2009). As in zebrafish, pectoral appendage initiation in mouse
requires RA signaling (Niederreither et al., 1999), and double knockout
of Rara and Rarg in mouse causes hypoplastic pectoral limb buds
(Wendling et al., 2001). Thus, the mechanism of pectoral appendage
initiation is generally conserved between zebrafish and tetrapods,
but because none of the Rar or Rxr genes in mouse, human, or chicken
have predicted miR-196 targets, the role of miR-196 may differ in
zebrafish and tetrapods.
Although several hox genes that are expressed in pectoral fins have
predicted miR-196 binding sites, they are unlikely to be responsible
for the fin bud phenotype because most are expressed downstream of
RA signaling in the fin bud and their temporal–spatial expression
patterns exclude them from functioning during pectoral fin bud
induction. For example, although hoxb5b is an RA-responsive gene
expressed in the forelimb field, its function is dispensable for forelimb
formation (Waxman et al., 2008). Furthermore, although miR-196
causes a decrease in hoxb8amessage levels in zebrafish as in tetrapods
(Kawasaki and Taira, 2004; McGlinn et al., 2009; Yekta et al., 2004),
hoxb8a is unlikely to be the gene responsible formiR-196 regulation of
pectoral fin bud initiation because (1) it is expressed in zebrafish
pectoral fin buds well after initiation, (2) because our experiments
showed that hoxb8a knockdown in zebrafish does not affect pectoral
fin development (data not shown), and (3) because hoxb8a mutants
in medaka initiate fin bud development normally but are defective in
the maintenance of pectoral fin bud outgrowth (Sakaguchi et al.,
2006). In addition, we used morpholinos to knockdown individually
the expression of hoxb5a, hoxb5b, hoxb6b, hoxc6a and none of them
showed pectoral fin defects (data not shown). Thus none of the five
hox genes we checked are required for pectoral fin initiation. We
conclude that miR-196 regulates pectoral fin bud initiation primarily
by inhibiting rarab expression.

miR-196 and pharyngeal arch patterning

Overexpression experiments showed that miR-196 inhibits the
formation of a posterior arch, probably PA6, and knockdown experi-
ments showed that this mechanism applies to endogenous miR-196 as
well. In principle, miR-196 could perform this role bymodulating either
hox gene expression, RA signaling, or FGF signaling. In mouse, Hox2
paralogs help control PA2 and PA1 identity (Minoux et al., 2009) and
Hox3 paralogs help specify PA3 and PA4 (Minoux et al., 2009), but the
mechanisms that control the identity of PA5 to PA7 are as yet unclear. In
zebrafish, hoxb5a is expressed strongly and hoxb5b weakly in PA3–7
(Bruce et al., 2001; Jarinova et al., 2008), suggesting that Hox5 paralogs
could help pattern posterior arches. Although hoxb5a and hoxb5b are
both predictedmiR-196 targets, are both expressed in the posterior PAs,
and our experiments show that both are sensitive to miR-196, the
knockdownofhoxb5aandhoxb5b in zebrafishandHoxb5 inmouse is not
reported to give an arch phenotype (McIntyre et al., 2007; Waxman
et al., 2008) (and our unpublished experiments). These considerations
make it unlikely that hoxb5 genes are the miR-196 targets responsible
for the arch phenotype.

Because retinoic acid is a posteriorizing factor in pharyngeal
endoderm (Bayha et al., 2009) and suppression of RA signaling deletes
branchial arches (Begemann et al., 2001; Birkholz et al., 2009), it is
possible that miR-196 acts on pharyngeal endoderm to inhibit RA
signaling. The rather broad and general phenotype arches after the
manipulation of RA signaling, however, contrasts with the highly
specific effect of miR-196 overexpression. Inhibiting RA signaling
progressively between 16 and 30 hpf results in fewer deleted PAs
(Kopinke et al., 2006), suggesting that, if miR-196 acts through RA
signaling to suppress PA6, it must act at or after 30 hpf. Double
knockout of Rara and Rarb alters development of posterior PAs in
mouse (Dupe et al., 1999) inways thatmimicmiR-196 overexpression
in zebrafish. These considerations suggest that pharyngeal phenotypes
of miR-196 manipulated zebrafish might, like the fin phenotype, be
mediated by rarab. Although rarab is expressed in PAs (Hale et al.,
2006; Linville et al., 2009), rarabmorpholino knockdown had no effect
on the branchial arch phenotype ((Linville et al., 2009) and our
unpublished data). In contrast, knockdown of rarga, which did not
predict miR-196 binding sites, did alter gill arch formation (Linville
et al., 2009). Thus, either rarab inhibition does not explain the gill arch
phenotype of miR-196 manipulation, or the knockdown of rarab
activity by miR-196 overexpression is more profound than rarab
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knockdown by morpholino. The endoderm of the pharyngeal arches
expresses cyp26a1 and the cyp26a1 3′UTR has miR-196 binding sites,
but PA3-7 are normal in cyp26a1 mutants (Emoto et al., 2005), thus
ruling out cyp26a1 as the miR-196 target responsible for the arch
phenotype. Thus, in pharyngeal arches, miR-196 appears likely to act
either on a component of the pharyngeal segmentation mechanism or
on an as yet unknown gene essential for the specification of PA6.

Mesoderm- and CNS-derived Fgf3 and Fgf8 help direct the
segmentation of pharyngeal pouches (Crump et al., 2004), suggesting
that miR-196 may alter Fgf signaling. Our finding that manipulating
miR-196 levels alters RA signaling in the hindbrain could lead to
alterations in Fgf signaling that promote the loss or gain of PA6. Again,
however, the great specificity of the miR-196 phenotype contrasts
to the broader perturbation of PA3-7 development caused by Fgf
manipulations, and suggests that, if miR-196 acts on Fgf signaling, it
must be through a tissue-specific downstream target of Fgf because
none of the zebrafish fgf, fgfr and other Fgf pathway genes have
predicted miR-196 binding sites.

These considerations lead us to propose that in normal develop-
ment, miR-196 attenuates action of a gene essential to direct the
formation of pharyngeal pouches between PA5 and PA7. The identity
of this target is as yet unknown.
miR-196 and axial skeleton patterning

Manipulating miR-196 levels provoked patterning anomalies
specifically in regions of the axial skeleton that express hox genes
with predicted miR-196 targets. The predicted miR-196 target hoxb5a
is expressed in somites-2 and -3 but the target hoxb5b is not
expressed in the somites (Bruce et al., 2001; Jarinova et al., 2008).
Somites-1 and -2 and the anterior of somite-3 do not contribute to
vertebrae in zebrafish or tetrapods, but in tetrapods at least, they
contribute to the caudal part of the skull (Huang et al., 2000; Morin-
Kensicki et al., 2002), which was morphologically normal in zebrafish
over- or under-expressing miR-196. Furthermore, altered patterning
of the zebrafish axial skeleton is not seen after knockdown of hoxb5a
or hoxb5b ((Waxman et al., 2008), confirmed in our unpublished
experiments). In mouse, Hoxb5 mutants show an anteriorizing
homeotic transformation of the caudal cervical and first thoracic
(rib-bearing) vertebrae (Rancourt et al., 1995); while, conversely, we
observed a posteriorizing effect in the homologous vertebrae after
miR-196 overexpression. This result argues against the hypothesis
that miR-196 acts on hoxb5a or hoxb5b to regulate anterior axial
skeleton patterning.

Five predicted miR-196 targets (hoxb6b, hoxc6a, hoxb8a, hoxb8b
and hoxc8a) are expressed with anterior borders in somites-3 to -7,
which form the Weberian apparatus (Bruce et al., 2001; Morin-
Kensicki et al., 2002; Prince et al., 1998). Morpholino knockdown of
these genes, however, did not result in changes in the Weberian
apparatus (our data, not shown). Correspondingly, we found thatmiR-
196 injection led to posteriorizing homeotic transformations or
vertebral segment deletion in Weberian vertebrae, which are
homologous to vertebrae surrounding the cervical-to-thoracic transi-
tion in tetrapods (Burke et al., 1995; Morin-Kensicki et al., 2002). If
miR-196 inhibits expressionof thesehox genes, thenmiR-196-injected
animals should show hox loss-of-function phenotypes and miR-196
knockdown animals should show hox gain-of-function phenotypes, as
observed in chick after miR-196 knockdown (McGlinn et al., 2009). In
contrast, loss-of-function mutations for mouse orthologs of hoxb6b,
hoxc6a, hoxb8a and hoxb8b give rise to anteriorizing, not poster-
iorizing, homeotic transformations at the cervical/thoracic transition
(Garcia-Gasca and Spyropoulos, 2000; Rancourt et al., 1995; van den
Akker et al., 2001), and Hoxc8 mutations cause anteriorization of the
caudal thoracic vertebrae (van den Akker et al., 2001). How can we
understand this discrepancy?
In contrast to most Hox genes, Hoxa5 and Hoxa6 mutants show a
posterior homeotic transformation in the rostral mouse vertebral
column (Jeannotte et al., 1993; Kostic and Capecchi, 1994). Mouse
Hoxa5 is expressed with an anterior border in the third cervical
vertebra and continuing expression into thoracic vertebrae (Jeannotte
et al., 1993); this region is homologous to the zebrafish Weberian
vertebrae. Zebrafish has no hoxa6 gene and has a single hoxa5 gene
(Amores et al., 1998), which is not a predicted miR-196 target and is
not expressed in somites (Thisse and Thisse, 2005); the final zebrafish
hox5 paralogy group gene, hoxc5a, is also not expressed in somites
(Ericson et al., 1993). In addition, genes of the hoxb cluster (hoxb1a and
hoxb1b) have newly assumed, or have maintained ancestral, functions
equivalent to the sameparalogygroupbut to adifferent cluster inmouse
(Hoxa1), a process called ‘function shuffling’ (McClintock et al., 2002).
The hox1 findings suggest the analogous hypothesis that function
shuffling could have occurred between the zebrafish hoxb5 dupli-
cates and themouseHoxa5 gene. According to this interpretation, the
posterior transformations at the cervical/thoracic transition found
after Hoxa5 knockout in mouse, which are similar to the posterior
transformations of the homologous region in zebrafish after miR-196
action, are caused by the miR-196-induced inhibition of zebrafish
hoxb5a, which is expressed in a pattern homologous to that of mouse
paralog Hoxa5 and which we showed to respond to miR-196, at least
in the CNS, by changed transcript patterns.

An alternative explanation formiR-196 induced re-patterning is that
a Weberian vertebra is missing rather than showing homeotic trans-
formations. Loss ofHoxa3 andHoxd3 function deletes a cervical vertebra
in mouse (Horan et al., 1995), and deletion of a zebrafish homolog of a
cervical vertebra could mimic the observed posteriorization, causing,
for example, the third segment to have the morphology of the fourth
vertebra.

miR-196 alters the number of elements in the axial skeleton

Besides pattern changes among Weberian vertebrae, increased and
decreased miR-196 levels produced animals with fewer and more ribs
than normal, respectively. Morpholino knockdown of hoxb5a, hoxb5b,
hoxb6b and hoxc6a did not cause changes in rib and vertebral number,
whileknockdownofhoxb8a resulted inoneextra rib in54.5% (n=33)of
the animals checked, contradicting the prediction that knockdown of
Hox gene targets formir196 should result in missing ribs and vertebrae.
The predicted miR-196 target hoxa10b is expressed in somites that give
rise to rib-bearing (precaudal) vertebrae with the same anterior border
as thenon-targetshoxb10a andhoxd10a (Morin-Kensicki et al., 2002). In
mouse, knockdown of Hoxa10, a predicted target of miR-196, gives rise
to posterior transformations of caudal thoracic vertebrae (Rijli et al.,
1995). Overexpression of miR-196 should knockdown hoxa10b func-
tion, and an accompanying posterior transformation as in mouse could
change precaudal, rib-bearing vertebrae into caudal, non-rib-bearing
vertebrae, thereby decreasing rib number. Conversely, knockdown of
miR-196 could cause overexpression or ectopic expression of hoxa10b,
which could transform caudal vertebrae to precaudal, rib-bearing
vertebrae, thereby increasing the number of vertebrae, as we observed.

A simple one-to-one fate transformation model caudal to the
Weberian apparatus does not provide a full explanation of our results
because the total number of vertebrae decreased after miR-196 over-
expression (up to seven fewer somites than controls) and, reciprocally,
increased after miR-196 knockdown (up to four more somites). In
normal zebrafish, length variation arisesmostly from variation in caudal
vertebrae (Morin-Kensicki et al., 2002), whereas length variation in
miR-196-manipulated fish involved mostly Weberian and precaudal
vertebrae, indicating a difference between the mechanism of miR-196
action and the origin of naturally occurring variation. Somite number
variation suggests that miR-196 may interfere with the segmentation
clock, the mechanism that dictates the rhythm of somitogenesis from
pre-segmental mesoderm (Lewis et al., 2009). Direct players in the
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zebrafish segmentation clock (her1, her4, her7, notch1a, notch1b, notch5,
notch6, deltaC, deltaD, Mespa/b, ephA4, ephrinAl1 and ephrin-B2) (Lewis
et al., 2009) donot have predictedmiR-196binding sites, suggesting that
miR-196doesnot acton somitenumberdirectly by inhibitingexpression
of these genes. The expression of miR-196 and several caudal hox genes
with predicted miR-196 binding sites are co-expressed in the tailbud,
and one or more of these are potential targets to explain the somite
number effectofmiR-196.Our experiments suggest thatmiR-196plays a
role in somite number, but further work is required to identify the
mechanism by which it controls the length of time the segmentation
clock continues to run.
Conclusions

These experiments revealed four exquisitely specific viable pheno-
types caused by up- or down-regulation of miR-196 levels in zebrafish
embryos. Analysis showed that the miR-196-induced failure of fin bud
initiation arises from the suppression of retinoic acid signaling in lateral
plate mesoderm by fine-tuning expression of the retinoic acid receptor
rarab, which had previously been shown to be essential for fin bud
outgrowth. The inhibition of pharyngeal arch 6 by endogenous or
exogenous miR-196 does not arise from the inhibition of any single
predicted hox target, but from the inhibition of pharyngeal pouch
segmentation, about which we currently know little. The posteriorizing
effect ofmiR-196onvertebraeat a level that corresponds to the cervical-
to-thoracic transition are best understood by the differential sorting
out of ancestral functions common to Hoxa and Hoxb genes in zebrafish
and tetrapod lineages. Finally, the inhibitory effect of exogenous and
endogenous miR-196 on somite number is due to its inhibition of an
unknown target, perhaps one or more hox genes. These experiments
show remarkable parallels between the patterning functions of the
protein-coding genes of the Hox clusters and a microRNA gene
embedded between them.
Methods

Animals

Wild-type fish were ABC/TU hybrids and the Tg(fli1:EGFP)y1 line
(alias fli-GFP) (Lawson and Weinstein, 2002) provided ani-
mals with labeled cranial crest. The Tg(RARE-gata2:NTD-eYFP)ld1 line
(Perz-Edwards et al., 2001) provided RA signaling reporters. The
cyp26a1rw716 mutant fish was kindly provided by Lei Feng (C. Moens
laboratory). Skeleton preparations were as described (Walker and
Kimmel, 2007). Experiments involving animals used protocols ap-
proved by the University of Oregon IACUC.
Injections

Morpholino oligonucleotide (MO, Gene Tools) sequences were:
mir196a-MO: AATCCCAACAACATGAAACTACCTAA, mir196b mutiple
blocking (MB) -MO: ACGTCCAGCCCAACAACTTGAAACTACCTAA. Experi-
ments utilized the GeneTools ‘control’morpholino CCTCTTACCTCAGTTA-
CAATTTATA. We injected one-cell stage zebrafish embryos with
approximately 3 nL of these two MOs at a final concentration of 1.5 mM
mir196aMO and 0.5 mMmir196bMB-MO. The rarab-MOwas as reported
(Linville et al., 2009). RNA oligonucleotide (Integrated DNA Technology)
sequences were: miR-196a: UAGGUAGUUUCAUGUUGUUGGG; miR-
196a*: CGACAACAAGAAACUGCCUUGA; miR-196b UAGGUAGUUUCAA-
GUUGUUGGG; miR-196b*: CAGGAACCUGAAACUGCCUGAA; miR-
196bmm (mismatch control): UUCCGUCAAUCAAGUUGUUGGG. Because
3 nL of 12.5 μMstock ofmiR-196a ormiR-196b duplexes yielded identical
phenotypes, we used miR-196b duplex for most experiments.
Reporter constructs

FromgenomicDNA,we amplified a 1349 nt fragment of the 3′UTR of
rarab (primers: rarab+314: GTAGACTTTGACCCGGACTGAACA and
rarab-1639: AGAAGGCTTTTGGGTGAACTATCC) containing all three
predicted miR-196 binding sites and inserted it into pCR4-TOPO
(Invitrogen). To fuse GFP with the rarab 3′ UTR, we used Notl and Spel
to liberate the rarab 3′UTR from pCR4-TOPO and used NotI and XhoI to
extract GFP from pEGFP-N3 (Clontech). To make the GFP-rarab3′UTR
construct, we ligated fragments into PCRII-TOPO (Invitrogen) between
SpeI andXhoI sites. Tomake the luciferase reporter, ptkLuc+vectorwas
digested with NgoMIV and KpnI and the fragment was ligated to the
rarab 3′UTR that was cloned from genomic DNA by the above primers
containing NgoMIV and KpnI sites (primers: rarab+314NgoMIV:
gggccggcGTAGACTTTGACCCGGACTGAACA and rarab-1639KpnI:
ggggtaccAGAAGGCTTTTGGGTGAACTATCC; small letters represent
linkers added for cloning). To make GFP-rarab3′UTR mRNA, the
construct PCRII-GFP-rarab3′UTR was linearized with SpeI and tran-
scribed in vitro using mMESSAGE mMACHINE T7 kit (Ambion). GFP-
rarab3′UTR mRNA was purified with an RNA clean-up kit (Zymo
Research) and diluted to 15 μL with nuclease-free water to store in
−80 °C. For co-injections, we injected first 200 ng/μL of the synthetic
GFP-rarab 3′UTR mRNA and then mir196 morpholino mix or 12.5 μM
miR-196 duplex or miR-196bmm control.

To make the GFP-rarab-mut3′UTR construct, the following primers
wereused to skip the predicted binding sites formiR-196 in the 3′UTRof
rarab: rarab+314NotI gggcggccgcTAGACTTTGACCCGGACTGAACA; rar-
abUTR-430XhoI ggctcgagGCTCTTGTAGTCGCTGAATC; rarabUTR+
468XhoI ggctcgagCTTCACAGAGATGACAGAACA; rarabUTR-1393sacII
ttggccgcggTAAAGTACAGAAGAAGAGGAA; rarabUTR+1479sacII
ttccgcggTGTGACAATCACTTCAAGTAA; and rarabUTR-1639SpeI ggactag-
tAGAAGGCTTTTGGGTGAACTATCC. PCR products were digested by
restriction enzymes identified in the primer names and were sequen-
tially ligated for insertion into GFP downstream of the same vector for
GFP-rarab3′UTR. mRNAwas synthesized and injected and scored as for
GFP-rarab3′UTR.

Similarly, The hoxb8a 3′UTR was cloned into pCR4 vector by the
primer pairs: hoxb8a+1081 CCGGCGAAGACTGCGACAA; hoxb8a-1731
ACCCCAAGAAAGGAAGACAACAAA and replaced rarab 3′UTR in pCRII-
GFP for GFP reporter assay. The 3′UTR of cyp26a1was cloned using the
primer pair: cyp26a1+NgoMIV ggcgccggcGGACCCCCGACAATGAAAAC;
cyp26a1-KpnI: ggcggtacCGAACAGTCTGGGTATGTTAAAT (small letters
represent linkers added for the cloning) and replaced rarab 3′UTR of
ptkLuc-rarab3′UTR for the cyp26a1 3′UTR reporter assay.

Reporter assay

One cell embryos were injectedwith 3 μL of a 200 ng/μL solution of
GFP-rarab3′UTR or GFP-hoxb8a3′UTR mRNA and then were co-
injected with 1 μL of a solution of 12.5 μM miR-196 duplex or 2 mM
mir196-MO. Embryos raised at 28.5 °C to 28 hpf were imaged in 3%
methylcellulose. To quantify GFP intensity, we used Photoshop,
selected fuzziness to 40 and used the “select” and “color range”
function to set a threshold, then used the histogram function to
calculate the numbers and standard deviation of the green pixels.
For the luciferase assay in 293T cells, we used the original ptkLuc+
vector for which luciferase expression is driven by a thymidine
kinase promoter with luciferase flanked by either rarab 3′UTR or SV40
polyadenylation signal as a control. For the assay, either 50 ng of
ptkLuc+ control plasmid or ptKLuc-rarab 3′UTR with 10 ng of CMV-
Renilla plasmid and 200 ng miR-196 duplex were co-transfected. Cells
were harvested at 2-hour intervals from 4 to 12 h after transfection.
Firefly and Renilla (sea pansy) luciferase activities were both directly
quantified within each sample directly after cell lysis (Dual-Luciferase
Reporter Assay System, Promega) and the firefly luciferase activity
was calculated relative to the Renilla luciferase control. In addition, the



475X. He et al. / Developmental Biology 357 (2011) 463–477
relative luciferase activity of ptkLuc-rarab 3′UTR construct was
normalized to the ptkLuc+ control.

For the ptkLuc-cyp26a13′UTR assay, 50 ng of ptkLuc-cyp26a13′UTR
construct or ptkLuc+ control vector together with 10 ng of Renilla
luciferase construct, 40 ng ofmiR196duplex ormiR196mmduplex per
well were mixed and transfected with 0.3 μL FuGENE HD transfection
reagent (http://www.roche.com) into 293T cells in a 96-well plate.
Twenty-four hours after transfection, firefly and Renilla luciferase
activity was assayed by using the Promega Dual-Glo Luciferase Assay
System (http://www.promega.com). This experiment was repeated 6
times. Standard deviation was plotted as error bars.

RA treatment

A stock solution of 10−3 M all-trans retinoic acid (RA) (Sigma cat#
R2625) was prepared in DMSO and stored at −80 °C. Zebrafish
embryos were dechorionated in embryo medium and the stock DEAB
solution was added to 5 mL embryo medium at a final concentration
of 10−5 M or 5×10−6 M. Twelve hours post-fertilization embryos
were treated for 2 h to elevate the level of RA during pectoral fin
induction. Treatment was carried out in a dark environment. After
treatment, embryos were washed in fresh medium twice and then
cultured in fresh medium until fixed. 0.5 μL DMSO was added to the
control embryo medium as a negative control.

DEAB treatment

A stock solution of 10−2 M 4-Diethylaminobenzaldehyde (DEAB)
(Sigma cat# R86256) was prepared in DMSO and stored at −80 °C.
Zebrafish embryos were dechorionated in embryo medium before
treatment. DEAB at a final concentration of 10 μM was added into
fresh embryo medium from 100% epiboly to 24 hpf and then were
fixed at various times later. Treatment was carried out in a dark
environment. After treatment, embryoswerewashed twice in embryo
medium and cultured in fresh medium until fixed. DMSO with the
same concentration was used as a negative control.

Cloning and in situ hybridization

To generate PCR products containing partial mir196 primary
transcript, we used 1 dpf zebrafish whole embryo cDNA reverse
transcribed with oligo-dT primer. Cloning of mir196 primary tran-
scripts used the primers: mir196a1+523 ATTAAATGAACGC-
TAGCGGCTGTATGATG, mir196a1-1014 TTTTGCTAGCGCTTTG-
TCTTTGTAACCA; mir196a2+1349 GCAGACAGGAGAGCGGCAAGAA,
mir196a2-1891 AGCAGGCAAGGCAAGATTATGGTA; mir196b+756
GTATCTCTTTGCCCCGCTGTGG, mir196b-1292 TGGAAAAACGATGGG-
AAAGTATTG; mir196c+1016 ATTGCTTTAGATTATGCGCGGGTATTT,
mir196c-1339 CAAGCTATGTCAAGGCGTGTCTGTCT; mir196d+467
TATGCTACCTGGTGCCGTGAAG, mir196d-1325 CCGCTGATAATGGAA-
GACAACC. Gene sequences were submitted to NCBI GenBank with the
following nucleotide sequence accession numbers: dre-mirn196a-1,
GU188984; dre-mirn196a-2, GU188985; dre-mirn196b, GU188986;
dre-mirn196c, GU188987; and dre-mirn196d, GU188988. Other
probeswere clonedwith primers: beta actin+184 TGGTTGGCATGGG-
ACAGAAAGA, bactin-556 ATGGCATGGGGAAGAGCGTAAC; tbx5+305
TCAACAGGGAATGGAGGGAATCAAA, tbx5-1213 AGAGTAGCTT-
AGGGGCCGGTAGTAGTGGT; fgf10a+11 ATGCCCCTCGTCGCCTCTTA
TTCTG, fgf10a-1458 TTCCCTGGTGCCAATAACTTAAACAA; wnt2b+
344 GGTGGTACATTGGTGCGTTAGGAG, wnt2b-1304 GCCAGTC-
GGGTTTCTTGTGTAGTT; prdm1+2208 GAGGGCATGGTGGAGAAGCA-
GATA, prdm1-3391 AAAGGCCGAGGTGACGTGAAGAGT; lbx1b was
from Dr. Haruki Ochi (nt 67 to 810 of NM_001025532) and fgf24
probe was as described (Fischer et al., 2003). PCR products were
cloned into pCR4-TOPO (Invitrogen) vector and in situ hybridization
was as described (Hale et al., 2006). Antisense LNA (locked nucleic
acid) probe for miR-196a with the sequence, 5′Dig/CCCAACAACAT-
GAAACTACCTA/3′Dig, was ordered from Exiqon (http://Exiqon.com)
and in situ hybridization was according to the manufacturer.

RT-PCR and qPCR analyses

From each experimental and control group, total RNA was isolated
from 50 zebrafish embryos at 27 hpf using the RoboZol RNA
extraction reagent for total RNA including microRNA (Amresco Cat:
N580-100ML). Two micrograms total RNA from each sample was
reverse transcribed into cDNA for qPCR using Mir-X™ miRNA First-
Strand Synthesis and SYBR® qRT-PCR (Clontech, cat:PT4445-1). A
1/70th aliquot of each microRNA cDNA reaction was used in a 20 μL
qPCR amplification reaction and qPCR assayed in StepOnePlus
(Applied Biosystem). Primer sequences were miR-196a TAGG-
TAGTTTCATGTTGTTGGG and miR-196b TAGGTAGTTTCAA
GTTGTTGGG. The relative expressions of miR-196a and miR196b
were normalized to the U6 spliceosomal RNA provided in the Mir-X™
miRNA First-Strand Synthesis and SYBR® qRT-PCR kit (Clontech). The
comparative CT experimental method was used to calculate the
normalized relative expression level of the target gene from triplicate
measurements. Averaged plots for triplicate qPCR reactions for each
relative quantitation are shown in Supplemental Fig. 10. Cycling
conditions for KAPA SYBR® FAST ABI Prism® 2× qPCR Master Mix
(KAPA Biosystems, Cat: KK4603) consisted of 95 °C, 10 min followed
by 40 cycles of 95 °C, 60 °C 20 s and then dissociate at 95 °C, 1 min,
55 °C, 30 s and 95 °C, 30 s.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.ydbio.2011.07.014.
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