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Objective: A major site of action for the atheroprotective drug nicotinic acid (NA) is adipose tissue,
via the G-protein-coupled receptor, GPR109A. Since, adipose tissue is an active secretory organ that
contributes both positively and negatively to systemic inflammatory processes associated with cardio-
vascular disease, we hypothesized that NA would act directly upon adipocytes to alter the expression of
pro-inflammatory chemokines, and the anti-inflammatory adipokine adiponectin.
Methods and results: TNF-� treatment (1.0 ng/mL) of 3T3-L1 adipocytes resulted in an increase in gene
expression of fractalkine (9 ± 3.3-fold, P < 0.01); monocyte chemoattractant protein-1 (MCP-1) (24 ± 1.2-
fold, P < 0.001), ‘regulated upon activation, normal T cell expressed and secreted’ (RANTES) (500 ± 55-fold,
P < 0.001) and inducible nitric oxide synthase (iNOS) (200 ± 70-fold, P < 0.05). The addition of NA (10−4 M)
to TNF-�-treated adipocytes attenuated expression of fractalkine (50 ± 12%, P < 0.01); MCP-1 (50 ± 6%,
P < 0.01), RANTES (70 ± 3%, P < 0.01) and iNOS (60 ± 16%). This pattern was mirrored in protein released
from the adipocytes into the surrounding media. The effect on gene expression was neutralised by pre-

treatment with pertussis toxin. NA attenuated macrophage chemotaxis (by 27 ± 3.5%, P < 0.001) towards
adipocyte conditioned media. By contrast, NA, (10−6–10−3 M) increased, in a dose-dependent manner,
mRNA of the atheroprotective hormone adiponectin (3–5-fold n = 6, P < 0.01).
Conclusions: NA suppresses pro-atherogenic chemokines and upregulates the atheroprotective
adiponectin through a G-protein-coupled pathway. Since adipose tissue has the potential to contribute to
both systemic and local (perivascular) inflammation associated with atherosclerosis our results suggest

or NA
a new “pleiotropic” role f

. Introduction

There is ample epidemiological evidence linking obesity, and
he related ‘metabolic syndrome’, with vascular disease [1]. Con-
entionally, adipose tissue has been regarded as an inert store of
riglycerides and fatty acids, but there is accumulating evidence
hat adipose tissue is involved in more diverse activity, including
ro-inflammatory processes [2]. Several secreted factors, termed

adipokines’ influence local and distant inflammatory processes. For
nstance, mature adipocytes upregulate the transcriptional regula-
or NF-�B leading to secretion of interleukin-6 (IL-6) and tumour

ecrosis factor-� (TNF-�) [3] and to recruitment of macrophages
4]. Mesenteric adipose tissue has been associated with distant
therosclerosis, assessed by measurement of carotid intima thick-
ess using ultrasound [5]. Similarly abdominal visceral fat appears

∗ Corresponding author at: Department of Cardiovascular Medicine, John Rad-
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to be associated with aortic [6] and carotid artery [7] stiffness and
with elevated IL-6 and CRP, which have been postulated as media-
tors [7].

Furthermore, there is emerging evidence that perivascular
adipose tissue influences vascular function and may have the
potential to alter susceptibility to atherosclerosis in adjacent
arteries in a paracrine manner [8]. Mazurek et al. found greater
expression of pro-inflammatory cytokines in epicardial adipose
tissue than in subcutaneous fat in patients undergoing coronary
artery bypass grafting [9], while Henrichot et al. have identified
pro-inflammatory cytokines IL-8 and monocyte chemoattractant
protein-1 (MCP-1) in human peri-aortic white adipose tissue and
demonstrated the potential of this tissue to promote recruitment
of peripheral blood leucocytes [10].

Adipose tissue is an important target for nicotinic acid [11]. A
G-protein-coupled receptor (GPCR), that binds NA, GPR109A has

Open access under CC BY license.
recently been given the HGNC approved gene symbol, NIACR1
but is also termed HM74a, in humans and ‘protein upregulated in
macrophages by interferon-gamma’ or ‘PUMA-G’, in mice [12,13].
Activation of the receptor in adipocytes inhibits lipolysis via Gi
mediated effects on adenylate cyclase, with decreased cellular
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Table 1
Primer sequences for quantitative real-time RT-PCR.

Gene Primer sequence

Cyclophilin Sense, 5′-GGCCGATGACGAGCCC-3′

Antisense, 5′-TGTCTTTGGAACTTTGTCTGCAA-3′

Adiponectin Sense, 5′-GTTGCAAGCTCTCCTGTTCC-3′

Antisense, 5′-ATCCAACCTGCACAAGTTCC-3′

CCL5 Sense, 5′-TCCAATCTTGCAGTCGTGTTTG-3′

Antisense, 5′-TCTGGGTTGGCACACACTTG-3′

MCP-1 Sense, 5ı̌-TTCCTCCACCACCATGCAG-3ı̌
0 J.E. Digby et al. / Ather

AMP levels [12], reduced lipolysis and a reduction in free
atty acids flux to the liver as substrate for VLDL synthesis. In
atients nicotinic acid reduces LDL-cholesterol and increases HDL-
holesterol [14]. The observed reduction in the progression of
therosclerosis and cardiovascular morbidity with NA may be due
olely to its lipid modifying effects [15]. However, niacin treatment
as also been shown to increase plasma levels of the adipocyte-
erived atheroprotective hormone, adiponectin [16] raising the
ossibility that some of the effects of NA may be mediated through

ipid-independent pathways. Here, we show that NA acts directly
pon adipocytes to reduce the expression of pro-inflammatory
hemokines; fractalkine, MCP-1 and RANTES with inhibitory effects
n monocyte chemotaxis, but with increase in the atheroprotective
dipokine, adiponectin.

. Materials and methods

.1. Cell culture

3T3-L1 preadipocytes (ATCC, Teddington, UK) were seeded in
-well plates at a density of 105 per well and cultured with Dul-
ecco’s modified Eagle’s medium (DMEM) supplemented with,
-glutamine (4 mM), 10% fetal calf serum, penicillin, 100 IU and
treptomycin, 100 �g/mL, in a humidified atmosphere of 95% air/5%
O2 at 37 ◦C. At confluence, cells were differentiated into adipocytes
y the addition insulin (100 nM) and dexamethasone (100 nM).
orphological analysis showed that typically 80 to 90% of cells had

ifferentiated by 10 days of incubation with differentiation media.
ll cell culture reagents were purchased from Sigma Aldrich (Poole,
K).

.2. Cell treatments

Prior to treatments, cells were cultured in media without insulin
nd dexamethasone for 24 h then serum starved for 4 h. Cells
ere treated for 4 or 24 h with nicotinic acid (10−3–10−6 M,

igma Aldrich, Poole, UK), and/or TNF-� 0.1, 0.5 1,0 or 10 ng/mL
R and D Systems, Abingdon, UK). For the pertussis treatments,
ells were incubated with pertussis toxin (Calbiochem, MERK,
ottingham, UK) for 16 h to activate the toxin, then treated
ith nicotinic acid and/or TNF-� for 4 h. At the end of the

ncubation times, the surrounding cell culture media, ‘adipocyte
onditioned media’ (ACM) was collected and snap frozen then
tored at −80 ◦C until analysis. Cells were lysed on ice in RNA lysis
uffer supplied with the Qiagen RNEasy mini kit (Qiagen, Crawley,
K).

.3. Measurement of adipokines and chemokine gene expression

Total RNA was prepared using Qiagen RNEasy mini columns and
�g was reverse transcribed using a QuantiTect® Reverse Tran-

cription Kit using Oligo dT’s and random hexamers as primers.
eal-time PCR was carried out with 1 �L of cDNA in a 10 �L reac-
ion mix consisting of Sybr Green Mastermix (Applied Biosystems,

arrington, UK) and sense and antisense primers (0.25 �M final
oncentration). Primer sequences are shown in Table 1. Cycling
arameters were as follows: activation of Taq polymerase, 10 min
t 95 ◦C, then 40 cycles at 95 ◦C for 15 s, then extension at 60 ◦C for
min, followed by a melt curve analysis.
.4. Measurement of secreted adipokines and chemokines

Secreted chemokines, MCP-1, fractalkine, RANTES and
diponectin were measured in the media removed from adipocytes
fter 24 h incubation by a LuminexTM Multiplex bead-based system
Antisense, 5ı̌-CCAGCCGGCAACTGTGA-3ı̌

Fractalkine Sense, 5′-CCAAGACGCCATGAAGCAT-3′ ,
Antisense, 5′-TCAAACTTGCCACCATTTTTAGTG-3′

using MilliplexTM MAP kits, from the mouse cytokine/chemokine
panel according to manufacturer’s instructions.

2.5. Chemotaxis and chemokinesis assays

To investigate the biological response resulting from of nico-
tinic acid treatment, we used a chemotaxis assay to measure
macrophage migration towards ACM from differentiated treated
3T3-L1 adipocytes. Cells were exposed to TNF-� (1.0 ng/mL) with
or without nicotinic acid 10−3 M for 24 h, then media collected and
stored at −80 ◦C prior to chemotaxis transwell assays.

Murine macrophages were harvested by peritoneal lavage with
PBS and 5 mM EDTA 4–5 days after intraperitoneal injection
of 2% Bio-gel in PBS. Chemotaxis was measured using pooled
macrophages obtained from two C57/BL6 mice subjected to peri-
toneal lavage and repeated on three separate experiments.

For the chemotaxis assays, cells were suspended in chemotaxis
buffer; RPMI with HEPES (25 mM), and 0.1% BSA, and applied to a
96-well Neuroprobe ChemoTxTM membrane (Receptor Technolo-
gies, Adderbury, UK), 8 �M pore size at a density of approximately
400,000 cells per well. The lower chamber contained either 1:3
diluted ACM or chemotaxis buffer alone. As negative controls, wells
included chemotaxis migration buffer only, and migration buffer
with TNF-� (1.0 ng/mL) to ensure that there was no chemotaxis to
TNF-� alone. For the chemokinesis assay, macrophages were sus-
pended in ACM from TNF-�-treated cells and placed on the upper
side of the membrane with the lower chamber containing the same
concentration of ACM. After 4-h incubation at 37 ◦C in a 5% CO2 cell
culture incubator, the cells on the upper layer of the membrane
were removed with a cotton swab and the membrane rinsed with
PBS. Migrated cells attached to the lower area of the membrane
were fixed in paraformaldehyde (4%) then mounted with mounting
media containing DAPI. Migration of the cells was quantified by tak-
ing 2 images under a fluorescent microscope from each membrane
with a minimum of 4 membranes per treatment. Stained nuclei
were then counted using image software Image Pro PlusTM (Media
Cybernetics, Silver Spring, Maryland).

2.6. Cell viability assay

Please see Supplementary methods and figures.

2.7. iNOS mRNA expression

Please see Supplementary methods and figures.
2.8. Demonstration of GPR109a gene expression in 3T3-L1
adipocytes

Please see Supplementary methods and figures.
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Fig. 1. The effect of varying doses of TNF-� on mRNA levels of Fractalkine (A), MCP-
1 (B) and RANTES (C) determined by real-time RT-PCR using the 2-��CT method,
J.E. Digby et al. / Ather

. Results

.1. TNF-˛ increases the expression of chemokines in 3T3-L1
dipocytes

We quantified expressions levels of the CC chemokines, MCP-
and RANTES and the CX3C chemokine, fractalkine, all of which

re chemoattractant factors involved in monocyte recruitment.
xpression was measured under basal conditions and after stim-
lation with varying doses of TNF-�. Non-stimulated 3T3-L1
dipocytes expressed measurable mRNA levels for MCP-1, RANTES
nd fractalkine. Expression of each was significantly upregulated
y exposure to TNF-�. The optimal concentration of TNF-� was
stablished by testing a concentration range of 0.1, 0.5, 1.0 and
0 ng/mL. Maximal chemokine mRNA upregulation in response
o TNF-� treatment was achieved using 1.0 ng/mL (Fig. 1, n = 6).
n addition, a cell viability assay in response to TNF-� and NA
reatment was undertaken. TNF-� exposure of ≥10 ng significantly
educed cell viability (see Supplementary on-line Fig. i). Therefore,
or subsequent experiments, a concentration of 1.0 ng/mL was used
o induce a maximal inflammatory response without causing cell
oxicity.

.2. Nicotinic acid suppresses expression and secretion of
nflammatory chemokines in 3T3-L1 adipocytes exposed to TNF-˛

To determine the effect of NA on gene expression and secre-
ion of pro-inflammatory chemokines in differentiated 3T3-L1
dipocytes, cells were exposed to TNF-� (1.0 ng/mL) with or with-
ut the addition of NA. At 4 h there were significant increases in
RNA for fractalkine (5 ± 1.3-fold, P < 0.01), MCP-1 (24 ± 1.2-fold,
< 0.001), and RANTES (500 ± 55-fold, P < 0.001) (Fig. 2, n = 6). The
ddition of NA (10−4 and 10−3 M) to TNF-�-treated adipocytes
ttenuated expression of fractalkine (40 ± 14%: P < 0.01); MCP-1
50 ± 6%: P < 0.01) and RANTES (68 ± 2%: P < 0.001).

In media taken from cells incubated for 24 h protein for
ractalkine, MCP-1 and RANTES were all significantly increased fol-
owing treatment with TNF-� 1.0 ng mL (7.6 ± 5.4-fold, 21.8 ± 4.6-
old, P < 0.05 and 80.8 ± 4.1-fold, P < 0.01, respectively). The addition
f NA 10−3 M resulted in a reduction in fractalkine, MCP-

and RANTES protein measured in the media (19.2 ± 5.0%,
< 0.05, 54.8 ± 15.4% and P < 0.05, 74 ± 15%, P < 0.01, respectively).

Fig. 1D–F, n = 4.)
As inducible nitric oxide synthase (iNOS) is also strongly affected

y exposure to TNF-� in adipose tissue and is involved in activa-
ion of inflammatory pathways [17] the effects of niacin on iNOS

RNA expression levels were tested in this cellular model. iNOS
RNA levels measured in untreated cells was almost undetectable,

owever, treatment with TNF-� (1.0 ng/mL) for 4 h resulted in
significant upregulation of gene expression. The addition of

A (10−4 and 10−3 M) to TNF-� treated adipocytes again atten-
ated expression of iNOS mRNA (63 ± 21% and 160 ± 17%). This
ffect was abolished by pre-treatment with pertussis. Details of
ethods and results are shown in Supplementary methods and

ig. ii.

.3. Inhibition of G-protein-coupled receptor signalling by
ertussis abolishes the inhibitory effect of nicotinic acid on
hemokine expression

To assess whether the anti-inflammatory effects of NA were

ediated by Gi-protein-coupled receptor (GPCR) signalling, these

xperiments were repeated following pre-incubation with pertus-
is toxin (PTX.) which uncouples GPCR signalling form Gi and Go.
re-incubation with PTX (100 ng/mL) for 18 h prior to TNF-� and
A treatment abolished the observed reduction in gene expres-
normalised to the housekeeping gene cyclophilin. n = 6 for each treatment, **P < 0.01,
***P < 0.001 via one-way ANOVA with Bonferroni’s multiple comparison post-hoc
test.

sion of MCP-1, RANTES and fractalkine (Fig. 3, n = 6). Similar effects
were demonstrated with iNOS expression, see Supplementary
Fig. ii(B).

3.4. GPR109a gene expression and the effect of exposure to TNF-˛

Gene expression of the G-protein-coupled receptor, GPR 109a
was measured using quantitative RT-PCR and was 100-fold greater
in 3T3-L1 adipocytes compared to that measured in the mouse

macrophage cell line RAW 264.7 (data not shown). Furthermore,
exposure to TNF-� resulted in a 2-fold increase in mRNA expres-
sion compared to basal levels in 3T3-L1 adipocytes (P < 0.05, n = 6)
(See Supplementary on-line Fig. ii).
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Fig. 2. Gene expression and protein secretion. mRNA levels of Fractalkine (A), MCP-1 (B) and RANTES (C) determined by real-time RT-PCR using the 2-��CT method,
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ormalised to the housekeeping gene cyclophilin. Secreted protein (pg/mL) of fract
edia analysis cells were incubated for 24 h, with DMEM only (Basal), DMEM + TN

r DMEM + TNF-� 1.0 ng/mL + nicotinic acid 10−3 M (TNF-� + NA−3). n = 6 for each t
omparison post-hoc test.

.5. Nicotinic acid increases gene expression of the
nti-inflammatory adipokine, adiponectin in 3T3-L1 adipocytes

We tested whether NA could directly alter expression of
diponectin in adipocytes by analysis of mRNA taken from
dipocytes exposed to varying doses of NA, (10−6–10−3 M) resulted
n an increase in adiponectin mRNA in a dose-dependent manner
3–6-fold n = 6, P < 0.01 after 4 h) (Fig. 4). Total adiponectin pro-
ein released into the media was 17–20 ng/mL and was unchanged
elative to basal levels regardless of treatment as measured by
uminexTM assay, data not shown.

.6. Nicotinic acid reduces the chemoattractant properties of
dipocyte conditioned media

To investigate whether changes in gene expression resulting
rom nicotinic acid treatment had a physiological effect, we used

chemotaxis assay to measure macrophage migration towards
hemo-attractants released by the adipocytes into the surrounding
edia, ‘adipocyte conditioned media’, (ACM) from differentiated

reated 3T3-L1 adipocytes. Neither media alone nor media spiked
ith TNF-� stimulated chemotaxis (Fig. 5). However, ACM col-
ected from adipocytes that had been exposed to TNF-� provoked
n 80% increase in macrophage migration compared to that of
asal media collected from unstimulated 3T3-L1 adipocytes. The

ncrease in chemotaxis observed with ACM from TNF-� treated
ells was ameliorated by 27% ± 3.5%, (P < 0.001) with ACM from
(D), MCP-1 (E), RANTES (F). For RNA analyses, cells were incubated for 4 h and for
.0 ng/mL (TNF-�), DMEM + TNF-� 1.0 ng/mL + nicotinic acid 10−4 M (TNF-� + NA−4)
ent, *P < 0.05, **P < 0.01, ***P < 0.001 via one-way ANOVA with Bonferroni’s multiple

TNF-� challenged cells that had been treated with nicotinic acid
(Fig. 5). To confirm that the ACM induced true chemotaxis rather
than an increase in haptotactic movement due to cellular activa-
tion, chemokinesis experiments were carried out. There was no net
migration macrophages that were suspended in the ACM collected
from TNF-�-stimulated cells and placed over the same concentra-
tion of ACM in the transwell (Fig. 5).

4. Discussion

This study investigated potential anti-inflammatory actions of
NA. The data demonstrate, for the first time that, in adipocytes,
NA potently suppresses TNF-�-induced expression and release of
the pro-atheorgenic chemokines, MCP-1, RANTES and fractalkine.
The reduction in pro-inflammatory chemokine gene expression
observed with NA was abolished by pre-treatment with pertus-
sis, indicating that these effects are receptor-mediated via GPCR
signalling. Furthermore, the NA treatment was associated with
a reduction in macrophage chemotaxis using conditioned media
taken from adipocytes treated with TNF-�. These observations
demonstrate pleiotropic lipid-independent effects of NA on the
release of inflammatory molecules from adipocytes.
NA is well established as a treatment for dyslipidaemia as
it has a potent effect on lowering plasma LDL-cholesterol and
raising HDL-cholesterol. Numerous clinical studies have demon-
strated a significant reduction in cardiac events and cardiovascular
disease-related mortality with nicotinic acid treatment [15,18,19].



J.E. Digby et al. / Atherosclerosis 209 (2010) 89–95 93

F
s
f
m

H
f
N
h
p
s
i
r
s

F
2
b
e
p

Fig. 5. (A) Chemotaxis of mouse macrophages to “adipocyte conditioned media”
from 3T3-L1 cells, 4-h treatments with TNF-� and Nicotinic acid. ***Basal vs. TNF-�,
P < 0.001, TNF-� vs. TNF-� and NA−3 M. There was no significant difference in cell
migration between the chemotaxis buffer alone and chemotaxis buffer with TNF-a
ig. 3. The effect of pre-treatment with pertussis (PTX) on adipocyte mRNA expres-
ion of fractalkine (A), MCP-1 (B) and RANTES (C) treated with TNF� and NA. n = 6
or each treatment, **P < 0.01, ***P < 0.001 via one-way ANOVA with Bonferroni’s

ultiple comparison post-hoc test.

owever, the exact mechanism of action of this drug is still not
ully understood. The discovery of a GPCR, GPR109a which binds
A with a high affinity is very highly expressed in adipocytes,
as directed research into the anti-lipolytic effects of NA in adi-

ose tissue [12,13]. Acting via GPR109a, NA has been shown to
uppress free fatty acid (FFA) release from adipose tissue and it
s thought that the subsequent reduction in FFA flux to the liver
educes triglyceride synthesis and production VLDL, by depleting
ubstrate.

ig. 4. mRNA levels of adiponectin determined by real-time RT-PCR using the
-��CT method, normalised to the housekeeping gene cyclophilin. Cells were incu-
ated for 4 h with DMEM only (Basal), DMEM + nicotinic acid 10−6–10−3 M. n = 6 for
ach treatment, **P < 0.01, ***P < 0.001 via one-way ANOVA with Bonferroni’s multi-
le comparison post-hoc test.

1.0 ng/mL added to the chemotaxis buffer. (B) Chemokinesis of mouse macrophages
to “adipocyte conditioned media” (ACM) from 3T3-L1 cells, 4-h treatments with

***
TNF-� and nicotinic acid. Basal vs. TNF-�, P < 0.001. The lower panels show rep-
resentative images of DAPI fluorescence from the nuclei of migrated macrophages
under each of the conditions.

In addition to its well-described effects on lipid profiles, sev-
eral studies have shown that NA treatment increases serum levels
of the atheroprotective adipokine adiponectin [16,20]. In a recent
study by Linke et al. [21], NA treatment was associated with a
significant increase in adiponectin. This study also reported sig-
nificant reduction in mean adipocyte size, which was coupled
to an increase in insulin sensitivity both in vivo as judged by
euglycaemic-hyperinsulinemic clamp, and by insulin-stimulated
glucose transport in isolated subcutaneous adipocytes. Although
adiponectin secretion is usually related inversely to adipose tissue
mass, the observed increase in adiponectin in NA-treated patients
was not associated with any alteration in body mass index (BMI),
suggesting a qualitative alteration in the regulation and secretion

of adiponectin from adipocytes.

Adipose tissue has the capacity to contribute to both systemic
and local (perivascular) inflammation associated with atheroscle-
rosis. Since adipose tissue is an important site of action for NA, we
hypothesized that NA could directly affect the inflammatory profile
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f adipose tissue and that this might be mediated by chemokines
nd adiponectin.

In the current study, we have demonstrated a dose-dependent
ncrease in gene expression of adiponectin in response to NA treat-

ent after 4 h. This finding supports previous studies showing that
erum adiponectin and adiponectin gene expression is increased
fter treatment with NA in human isolated adipocytes [21]. We
ave shown elsewhere that serum adiponectin is increased in
atients treated for 6 months with extended release nicotinic acid
ompared to placebo [22] Despite these observations, adiponectin
rotein secretion was not altered in the current study, after treat-
ent for 24 h with nicotinic acid (10−4 and 10−3 M). Others have
ade similar observations in 3T3-L1 adipocytes [20]. This appar-

nt anomaly is possibly due to regulation or deficiency of normal
eceptor mediated secretory pathways in this cell line. [20]

Under conditions of inflammation associated with cardiovascu-
ar disease, as well as an increase in mobilisation of fatty acids from
dipose tissue, there is increased secretion of pro-atherogenic, pro-
nflammatory adipocytokines and chemokines [23]. In the present
tudy, the chemokines from the CC and CX3 families, MCP-1,
ANTES and fractalkine were studied since they contribute signifi-
antly to the recruitment of inflammatory T cells and macrophages
nto atherosclerotic lesions [24]. In addition, by micro-array screen-
ng these chemokines have shown not only to be expressed in
T3-L1 adipocytes but are also upregulated by a 24-h exposure
o the T-helper 1 cytokine, interferon-� [25]. Furthermore, MCP-1
nd RANTES play a role in the early progression of atherosclero-
is by induction of transendothelial migration via CCR2 and CCR5
hemokine receptors [26].

TNF-� was chosen as the pro-inflammatory stimulus since
t is an important cytokine in the progression of atheroscle-
osis wherein it exerts pro-inflammatory effects on endothelial
ells, smooth muscle cells and macrophages [27]. Furthermore, in
umans, enhanced TNF-� expression in adipose tissue is associ-
ted with insulin resistance and obesity [28]. In addition, TNF-� also
lays a crucial role in mediation of the inflammatory process in adi-
ose tissue [29]. Crosstalk between adipocytes and macrophages
as elegantly demonstrated by Suganami et al. who reported that

o-culture of 3T3-L1 cells and the mouse macrophage cell line,
AW264.7 resulted in upregulation of MCP-1 gene expression in
dipocytes, which was abolished by incubation with anti-TNF-�
ntibody [2].

In the present study we demonstrated that TNF-� treatment
t as low a concentration of 0.5 ng/mL resulted in a significant
pregulation of MCP-1, RANTES and fractalkine, with the response
eing maximal at 1 ng/mL. These chemokines are important mod-
lators inflammation that are secreted from adipose tissue and are
esponsive to the pro-inflammatory cytokine TNF-� thus provid-
ng a possible link between inflammation in adipose tissue and the
rogression of atherosclerosis.

. Conclusions

In this study, we have shown that NA can reduce the inflam-
atory profile of adipocytes. This may contribute to the overall

enefits of NA in vivo by reducing potentially harmful effects of
ithin-adipose tissue inflammation and suppressing the contribu-

ion of adipose tissue to systemic and perivascular inflammation.
hese findings demonstrate lipid-independent effects of NA, which
ould have important implications in the treatment of cardiovas-
ular disease, and warrant further investigation.
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