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We show that every sufficiently large plane triangulation has
a large collection of nested cycles that either are pairwise disjoint,
or pairwise intersect in exactly one vertex, or pairwise intersect in
exactly two vertices. We apply this result to show that for each
fixed positive integer k, there are only finitely many k-crossing-
critical simple graphs of average degree at least six. Combined
with the recent constructions of crossing-critical graphs given by
Bokal, this settles the question of for which numbers q > 0 there
is an infinite family of k-crossing-critical simple graphs of average
degree q.
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1. Introduction

All graphs in this paper are finite, and may have loops and parallel edges. The crossing number of a
graph G , denoted by cr(G), is the minimum, over all drawings γ of G in the plane, of the number of
crossings in γ . (We will formalize the notion of a drawing later.)

A graph G is k-crossing-critical if the crossing number of G is at least k and cr(G − e) < k for
every edge e of G . The study of crossing-critical graphs is a central part of the emerging structural
theory of crossing numbers. Good examples of this aspect of crossing numbers are Hliněný’s proof
that k-crossing-critical graphs have bounded path-width [5]; the Fox and Tóth [4] and Černý, Kynčl
and Tóth [3] papers on the decay of crossing numbers; and Dvořák and Mohar’s ingenious arguments
that prove the existence, for each integer k � 171, of k-crossing-critical graphs of arbitrarily large
maximum degree [8].
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The earliest interesting, nontrivial construction of k-crossing-critical graphs is due to Širáň [17],
who gave examples of infinite families of k-crossing-critical graphs for fixed values of k. These con-
structions involve graphs with parallel edges. Shortly afterwards, Kochol [7] gave an infinite family of
2-crossing-critical, simple 3-connected graphs.

In their influential paper on crossing-critical graphs, Richter and Thomassen [11] proved that
k-crossing-critical graphs have bounded crossing number. Richter and Thomassen also investigated
regular simple crossing-critical graphs. They used their aforementioned result to prove that for each
fixed k, there are only finitely many k-crossing-critical 6-regular simple graphs, and also constructed
an infinite family of 3-crossing-critical, simple 4-connected 4-regular graphs.

We note that degree two vertices affect neither the crossing number nor the crossing criticality of a
graph. Also, the crossing number of a disconnected graph is clearly the sum of the crossing numbers
of its connected components. Thus the interest in crossing-critical graphs is focused on connected
graphs with minimum degree at least 3.

The construction of Richter and Thomassen was generalized in [16], where it was shown that for
every rational number q ∈ [4,6), there exists an integer kq such that there is an infinite family of
kq-crossing-critical simple graphs with average degree q. Pinontoan and Richter [10] extended the
range to every rational q ∈ [3.5,6), and recently Bokal [2] used his novel technique of zip products to
describe a construction that yields an infinite family for every rational q ∈ (3,6).

What about q = 3 or q � 6? Let G and H be simple 3-regular graphs. Since G has a subgraph
isomorphic to a subdivision of H if and only if H is isomorphic to a minor of G , the Graph Minor
Theorem [15] implies that for every integer k � 1 there are only finitely many k-crossing-critical
3-regular simple graphs. In fact, this does not need the full strength of the Graph Minor Theorem;
by Hliněný’s result [5] that k-crossing-critical graphs have bounded path-width all that is needed is
the fact that graphs of bounded path-width are well-quasi-ordered [13], which is a lot easier that the
general Graph Minor Theorem.

On the other hand, it follows easily from the techniques in [11] that for each fixed positive integer
k and rational q > 6 there are only finitely many k-crossing-critical simple graphs with average de-
gree q. Thus the only remaining open question is whether for some k there exists an infinite family of
k-crossing-critical simple graphs of average degree six. In this paper we answer this question in the
negative, as follows.

Theorem 1.1. For each fixed positive integer k, the collection of k-crossing-critical simple graphs with average
degree at least six is finite.

In fact, we prove in Theorem 3.4 below that the conclusion holds for graphs of average degree
at least 6 − c/n, where c is an absolute constant, and n is the number of vertices of the graph. The
assumption that G be simple cannot be omitted: as shown in [11], for each integer p � 1 there is
an infinite family of 4p-regular 3p2-crossing-critical (nonsimple) graphs. Moreover, by adding edges
(some of them parallel) to the 4-regular 3-crossing-critical graphs Hm in [11], it is possible to obtain
an infinite family of 6-regular 12-crossing-critical (nonsimple) graphs.

The crucial new result behind the proof of Theorem 1.1 is the following theorem, which may be of
independent interest. It can be regarded as a relative of the result of [9]. Let γ be a drawing in the
plane of a graph G , and let H be a subgraph of G . We say that H is crossing-free in γ if no edge of
H is crossed in γ by another edge of G . A sequence C1, C2, . . . , Ct of cycles in G is a nest in γ if the
cycles are pairwise edge-disjoint, each of them is crossing-free in γ , and for each i = 1,2, . . . , t − 1
the cycle γ (Ci+1) is contained in the closed disk bounded by γ (Ci). We say that t is the size of the
nest. If X ⊆ V (G), s := |X | and V (Ci) ∩ V (C j) = X for every two distinct indices i, j = 1,2, . . . , t , then
we say that C1, C2, . . . , Ct is an s-nest.

Theorem 1.2. For every integer k there exists an integer n such that every planar triangulation on at least n
vertices has an s-nest of size at least k for some s ∈ {0,1,2}.

To deduce Theorem 1.1 from Theorem 1.2, we use that a k-crossing-critical graph cannot have a
large s-nest for any s ∈ {0,1,2}. For s ∈ {0,1}, this follows from a result proved in [5] under the more
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general setting of multicycles (see Lemma 3.3 below). For s = 2, this follows since k-crossing-critical
graphs cannot contain subdivisions of K2,2t with arbitrarily large t [6, Theorem 1.3].

We formalize the notion of a drawing in the plane as follows. By a polygonal arc we mean a
set A ⊆ R

2 which is the union of finitely many straight line segments and is homeomorphic to the
interval [0,1]. The images of 0 and 1 under the homeomorphism are called the ends of A. A polygon
is a set B ⊆ R

2 which is the union of finitely many straight line segments and is homeomorphic to
the unit circle {(x, y) ∈ R

2: x2 + y2 = 1}. Let G be a graph. A drawing of G is a mapping γ with
domain V (G) ∪ E(G) such that

(i) γ (v) ∈ R
2 for every v ∈ V (G),

(ii) γ (v) �= γ (v ′) for distinct v, v ′ ∈ V (G),
(iii) for every non-loop edge e ∈ E(G) with ends u and v there exists a polygonal arc A ⊆ R

2 with
ends γ (u) and γ (v) such that γ (e) = A − {u, v} ⊆ R

2 − γ (V (G)),
(iv) for every loop e ∈ E(G) incident with u ∈ V (G) there exists a polygon P ⊆ R

2 containing γ (u)

such that γ (e) = P − {u} ⊆ R
2 − γ (V (G)), and

(v) if e, e′ ∈ E(G) are distinct, then γ (e) ∩ γ (e′) is finite.

If e, e′ ∈ E(G) are distinct and γ (e) ∩ γ (e′) �= ∅, then we say that e and e′ cross in γ and that every
point of γ (e)∩ γ (e′) is a crossing. (Thus a point where γ (e) and γ (e′) “touch” also counts as a cross-
ing.) If H is a subgraph of G , then by γ (H) we denote the image of H under γ ; that is, the set of
points in R

2 that either are equal to γ (v) for some v ∈ V (H) or belong to γ (e) for some e ∈ E(H).
A plane graph is a graph G such that V (G) ⊆ R

2, every edge of G is a subset of R
2, and the identity

mapping V (G) ∪ E(G) → V (G) ∪ E(G) is a drawing of G with no crossings.
We are restricting ourselves to piecewise linear drawings merely for convenience. This restriction

does not change the class of graphs that admit drawings with a specified number of crossings, while
piecewise linear drawings are much easier to handle.

We prove Theorem 1.2 in Section 2 and Theorem 1.1 in Section 3.

2. Finding a nest

A tree decomposition of a graph G is a triple (T , W , r) where T is a tree, r ∈ V (T ) and W =
(Wt : t ∈ V (T )) is a collection of subsets of V (G) such that

(T1)
⋃

t∈V (T ) Wt = V (G) and every edge of G has both ends in some Wt , and
(T2) if t, t′, t′′ ∈ V (T ) and t′ belongs to the unique path in T connecting t and t′′ , then Wt ∩ Wt′′ ⊆

Wt′ .

The width of the tree-decomposition (T , W , r) is the maximum of |Wt | − 1 over all t ∈ V (T ). Now let
G be a plane graph. We say that the tree-decomposition (T , W , r) of G is standard if

(T3) for every edge e = tt′ ∈ E(T ) the set Wt ∩ Wt′ is the vertex-set of a cycle Ce in G , and
(T4) if e, e′ ∈ E(T ) are distinct, and e lies on the unique path from r to e′ , then Ce′ �= Ce and Ce′

belongs to the closed disk bounded by Ce .

The cycles Ce will be called the rings of (T , W , r).
We will need the following lemma.

Lemma 2.1. Let k � 1 be an integer, and let G be a triangulation of the plane. Then G has either a 0-nest of
size k, or a standard tree-decomposition of width at most 12k − 1.

Proof. The proof is inspired by [1]. We may assume that G has no 0-nest of size k. Let (T , W , r) be a
standard tree-decomposition of G such that

(a) T has at least one edge and maximum degree at most three,
(b) |Wt | � 12k if t = r or if t is not a leaf of T ,
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(c) each ring of (W , T , r) has length at most 8k,
(d) if t ∈ V (T ) − {r} and t′ is the unique neighbor of t in the path in T from t to r, then Wt consists

precisely of the vertices of G drawn in the closed disk bounded by Ctt′ , and subject to (a)–(d),
(e) T is maximal.

Such a choice is possible, because of the following construction. Let T be a tree with vertex-set
{t1, t2}, let C be the triangle bounding the outer face of G , let Wt1 = V (C), and let Wt2 = V (G). Then
(T , W , t1) satisfies (a)–(d).

So let (T , W , r) satisfy (a)–(e). We claim that (T , W , r) has width at most 12k − 1. To prove that
suppose to the contrary that |Wt0 | > 12k for some t0 ∈ V (T ). Then by (b) t0 �= r and t0 is a leaf of T .
Let t1 be the unique neighbor of t0 in T , and let C denote the ring Ct0t1 . Then |V (C)| � 8k by (c). Let
� denote the closed disk bounded by C , and let H be the near-triangulation consisting of all vertices
and edges of G drawn in �. By (d) we have V (H) = Wt0 . For u, v ∈ V (C), let c(u, v) (respectively,
d(u, v)) be the number of edges in the shortest path of C (respectively, H) between u and v .

(1) c(u, v) = d(u, v) for all u, v ∈ V (C).

To prove (1) we certainly have d(u, v) � c(u, v) since C is a subgraph of H . If possible, choose a
pair u, v ∈ V (C) with d(u, v) minimum such that d(u, v) < c(u, v). Let P be a path of H between u
and v , with d(u, v) edges. Suppose that some internal vertex w of P belongs to V (C). Then

d(u, w) + d(w, v) = d(u, v) < c(u, v) � c(u, w) + c(w, v)

and so either d(u, w) < c(u, w) or d(w, v) < c(w, v), in either case contrary to the choice of u, v .
Thus there is no such w . Let C , C1, C2 be the three cycles of C ∪ P , let �, �1, �2 be the closed disks
they bound, and for i = 1,2 let Hi be the subgraph of H consisting of all vertices and edges drawn
in �i . Then C1 and C2 have length at most 8k. Let T ′ be the tree obtained from T by adding two
vertices r1, r2, both joined to t0. For t ∈ V (T )−{t0} let W ′

t = Wt , let W ′
t0

= V (C ∪ P ), let W ′
ri

= V (Hi),
and let W ′ = (W ′

t : t ∈ V (T ′)). Then (T ′, W ′, r) satisfies (a)–(d), contrary to (e). This proves (1).

(2) C has length exactly 8k.

To prove (2) suppose for a contradiction that C has length at most 8k − 1. Let uv be an edge of C ,
and let w be the third vertex of the face incident with uv and contained in the disk bounded by C .
Then w /∈ V (C) by (1) and the fact that |Wt0 | > 12k. Let T ′ be obtained from T by adding a new
vertex r0 joined to t0, for t ∈ V (T ) − {t0} let W ′

t = Wt , let W ′
t0

= V (C) ∪ {w}, let W ′
r0

= Wt0 , and let
W ′ = (W ′

t : t ∈ V (T ′)). Then (T ′, W ′, r) is a standard tree-decomposition satisfying (a)–(d), contrary
to (e). This proves (2).

Now let v1, v2, . . . , v8k be the vertices of C in order. By (1) and [14, Theorem (3.6)] there ex-
ist 2k disjoint paths from {v1, v2, . . . , v2k} to {v4k+1, v4k+2, . . . , v6k}, and 2k disjoint paths from
{v2k+1, v2k+2, . . . , v4k} to {v6k+1, v6k+2, . . . , v8k}. Using those sets of paths it is easy to construct a
0-nest in G of size k. In fact, using the argument of [12, Theorem (4.1)] it can be shown that G has a
2k × 2k grid minor, and hence a 0-nest of size k. �
Proof of Theorem 1.2. Let k � 1 be a given integer, let h be an integer such that for every coloring
of the edges of the complete graph on h vertices using at most 12k colors, there is a monochromatic
clique of size 24k2, and let n = 36k · 2h+1. The integer h exists by Ramsey’s theorem. We claim that n
satisfies the conclusion of the theorem. To prove the claim let G be a triangulation of the plane on at
least n vertices. By Lemma 2.1 we may assume that G has a standard tree-decomposition (T , W , r) of
width at most 12k. It follows that T has at least n/(12k) vertices. Thus |V (T )| > 3 ·2h+1 −2, and hence
T has a path on h + 1 vertices starting in r. Let t0 = r, t1, . . . , th be the vertices of one such path, and
for i = 1,2, . . . ,h let Ci denote the ring Cti−1ti . Then by (T3) and (T4) C1, C2, . . . , Ch is a sequence of
distinct cycles such that for indices i, j with 1 � i � j � h the cycle C j belongs to the closed disk
bounded by Ci . We shall refer to the latter condition as the nesting property. Let K be a complete
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graph with vertex-set {1,2, . . . ,h}. We color the edges of K by saying that the edge i j is colored us-
ing |V (Ci) ∩ V (C j)|. By the choice of n there exist a subsequence D1, D2, . . . , D24k2 of C1, C2, . . . , Ch
and an integer t ∈ {0,1, . . . ,12k − 1} such that |V (Di) ∩ V (D j)| = t for every pair of distinct in-
tegers i, j ∈ {1,2, . . . ,24k2}. Since the sequence D1, D2, . . . , D24k2 satisfies the nesting property, we
deduce that there exists a set X such that V (Di) ∩ V (D j) = X for every pair of distinct integers
i, j ∈ {1,2, . . . ,24k2}. If |X | � 1, then the sequence D1, D2, . . . , Dk satisfies the conclusion of the the-
orem. We may therefore assume that |X | � 2. Let the elements of X be numbered x1, x2, . . . , xt = x0 in
such a way that they appear on D1 in the order listed. It follows that they appear on each cycle D j in
the order listed. Now for i = 1,2, . . . , t and j = 1,2, . . . ,24k2 let Pij be the subpath of D j with ends
xi−1 and xi that is disjoint from X −{xi−1, xi} (if |X | = 2 we number the two subpaths of D j arbitrar-
ily). Since the cycles D j are pairwise distinct and t � 12k − 1, we deduce that there exists an index
i ∈ {1,2, . . . , t} such that the path Pij has at least one internal vertex for at least 2k distinct integers
j ∈ {1,2, . . . ,24k2}. Let us fix this index i, and let Q 1, Q 2, . . . , Q 2k be a subsequence of Pi1, Pi2, . . .

such that each Q j has at least one internal vertex. It follows that the paths Q 1, Q 2, . . . , Q 2k are in-
ternally disjoint and pairwise distinct. Thus Q 1 ∪ Q 2k, Q 2 ∪ Q 2k−1, . . . , Q k ∪ Q k+1 is a 2-nest in G of
size k, as desired. �
3. Using a nest

To prove Theorem 1.1 we need several lemmas, but first we need a couple of definitions. We say
that an s-nest C1, C2, . . . , Ct in a drawing γ of a graph G is clean if every crossing in γ belongs either
to the open disk bounded by γ (Ct), or to the complement of the closed disk bounded by γ (C1). We
say that a drawing γ of a graph G is generic if it satisfies (i)–(v) and

(vi) every point x ∈ R
2 belongs to γ (e) for at most two edges e ∈ E(G), and

(vii) if γ (e) ∩ γ (e′) �= ∅ for distinct edges e, e′ ∈ E(G), then e and e′ are not adjacent.

Lemma 3.1. For every three integers �, r, t � 0 there exists an integer n0 such that for every simple graph G on
n � n0 vertices of average degree at least 6 − r/n and every generic drawing γ of G with at most � crossings
there exists an s-nest in γ of size t for some s ∈ {0,1,2}.

Proof. Let �, t , r be given, and let n0 be an integer such that Theorem 1.2 holds when k is replaced
by t′ := t + 2� + r − 6 and n is replaced by n0. We will prove that n0 satisfies the conclusion of the
theorem. To that end let G be a simple graph on n � n0 vertices of average degree at least 6 − r/n
and let γ be a generic drawing of G with at most � crossings. We will prove that γ has a desired
s-nest. Let G ′ denote the plane graph obtained from γ by converting each crossing into a vertex. Let
V 4 be the set of these new vertices. Then |V 4| � �. By (vi) each vertex in V 4 has degree four in G ′ ,
and since G is simple it follows from (vii) that G ′ is simple. Let deg(v) denote the degree of v in G ′ ,
let F denote the set of faces of G ′ , and for f ∈ F let | f | denote the length of the boundary of f ;
that is, the sum of the lengths of the walks forming the boundary of f . By Euler’s formula we have

∑

v∈V (G ′)

(
6 − deg(v)

) +
∑

f ∈F
2
(
3 − | f |) = 12.

But
∑

v∈V (G)−V 4
(6 − deg(v)) � r by hypothesis, and so

∑

f ∈F

(| f | − 3
)
� 1

2

∑

v∈V 4

(
6 − deg(v)

) − 6 + r = |V 4| − 6 + r � � + r − 6,

because every vertex in V 4 has degree four in G ′ . Thus G ′ has at most � + r − 6 non-triangular faces,
each of size at most � + r − 3.

Let G ′′ be the triangulation obtained from G ′ by adding a vertex into each non-triangular face
and joining it to each vertex on the boundary of that face. Thus every added vertex has degree in
G ′′ at most � + r − 3. By Theorem 1.2 the triangulation G ′′ has an s-nest C1, C2, . . . , Ct′ of size t′ for
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some s ∈ {0,1,2}. Let X be the set of vertices every two distinct cycle Ci and C j have in common.
Then every vertex of X has degree at least 2t′ , and hence belongs to V (G), because every vertex of
V (G ′′) − V (G) has degree four or at most � + r − 3. Thus at most � + (� + r − 6) = 2� + r − 6 cycles
Ci contain a vertex not in G , and by removing all those cycles we obtain a desired s-nest in γ . �
Lemma 3.2. Let k � 0 and t � 1 be integers, let s ∈ {0,1,2}, let G be a graph, and let γ be a drawing of G
with at most k crossings and an s-nest of size (k + 1) (t − 1) + 1. Then γ has a clean s-nest of size t.

Proof. Let C1, C2, . . . , C(k+1)(t−1)+1 be an s-nest in G . For i = 1,2, . . . , (k + 1)(t − 1) let Ωi denote the
subset of R

2 obtained from the closed disk bounded by γ (Ci) by removing the open disk bounded by
γ (Ci+1). Since there are at most k crossings in γ , it follows that Ωi includes no crossing of γ for t −1
consecutive integers in {1,2, . . . , (k + 1)(t − 1)}, say i, i + 1, . . . , i + t − 2. Then Ci, Ci+1, . . . , Ci+t−1 is
a clean s-nest of size t , as desired. �

We now show that a drawing of a k-crossing-critical graph cannot contain an arbitrarily large clean
s-nest, for s ∈ {0,1}. As we shall see, this follows easily from a result proved by Hliněný in the more
general setting of multicycles [5].

Lemma 3.3. Let k � 1 be an integer, let s ∈ {0,1} and let γ be a drawing of a graph G with a clean s-nest of
size 12k − 5. Then G is not k-crossing-critical.

Proof. Suppose, by way of contradiction, that G is k-crossing-critical.
If C is a cycle of G that is crossing-free in γ , then we denote by �(C) the closed disk bounded by

γ (C).
Let D1, D2, . . . , D12k−5 be a clean s-nest in γ of size 12k − 5. We may assume that the s-nest is

chosen so that

(1) for i = 2,3, . . . ,3k − 1 or i = 6k − 1,6k, . . . ,9k − 4, if D is a cycle in G such that Di−1, D, Di+1 is
an s-nest in γ and �(Di) ⊆ �(D), then Di = D , and

(2) for i = 3k,3k + 1, . . . ,6k − 3 or i = 9k − 3,9k − 2, . . . ,12k − 6, if D is a cycle in G such that
Di−1, D, Di+1 is an s-nest in γ and �(D) ⊆ �(Di), then Di = D .

Suppose that the block (2-connected component) B of G that contains D6k−2 contains neither D1
nor D12k−5. The cleanness of the s-nest D1, D2, . . . , D12k−5 implies that B is planar. But this contra-
dicts the easy to verify fact that a graph is k-crossing-critical only if each of its blocks is k′-crossing-
critical for some k′ � k. Thus B contains either D1 or D12k−5. Using again that D1, D2, . . . , D12k−5 is
a clean s-nest, it follows that in the former case, (I) B contains D1 ∪ D2 ∪ · · · D6k−2; and in the latter,
(II) B contains D6k−2 ∪ D6k−1 ∪ · · · ∪ D12k−5. Note that it may be that both (I) and (II) hold.

Let γB the restriction of γ to B . Let M0 be the subgraph of B that consists of all crossed edges
(and their ends) in γB . If (I) holds, then for j = 1,2, . . . ,3k −1, let M j := {D j, D6k− j−1}. Otherwise (II)
holds, and in this case for j = 1,2, . . . ,3k − 1, let M j := {D6k+ j−3, D12k− j−4}. Under the terminology
in [5], for j = 1,2, . . . ,3k − 1, M j is a multicycle in γB , and M0, M1, M2, . . . , M3k−1 is a (3k − 1)-
nesting sequence in γB (we note that condition (N3) in [5] for a c-nesting sequence holds because
the s-nest D1, D2, . . . , D12k−5 satisfies (1) and (2)).

Since B is 2-connected, [5, Lemma 4.2] applies, and we conclude that B cannot be k′-crossing-
critical for any k′ � k. This contradicts our previous observation that each block of a k-crossing-critical
graph must be k′-crossing-critical for some k′ � k. �

In the first version of this paper, posted on arXiv.org, we gave a proof of a version of Lemma 3.3
from first principles. We proved the lemma for all s ∈ {0,1,2} with the quantity 12k − 5 replaced by
4k + 1. We are indebted to an anonymous referee for pointing out that the current Lemma 3.3 follows
from [5].

arXiv.org
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We are now ready to prove Theorem 1.1, which we restate in a slightly stronger form.

Theorem 3.4. For all integers k � 1, r � 0 there is an integer n0 := n0(k, r) such that if G is a k-crossing-
critical simple graph on n vertices with average degree at least 6 − r/n, then n < n0 .

Proof. Let k � 1, r � 0 be integers, let � := 2.5k + 16, let t := (12k − 6)(�+ 1)+ 1, let n0 be an integer
such that Lemma 3.1 holds, and let G be a k-crossing-critical simple graph on n vertices with average
degree at least 6 − r/n.

Suppose, by way of contradiction, that n � n0. Let γ be a drawing of G with at most � crossings;
such a drawing exists by [11, Theorem 3]. By a standard and well-known argument we may assume
that γ is generic. By Lemma 3.1 there is an integer s ∈ {0,1,2} and an s-nest in γ of size t .

By Lemma 3.2 there is a clean s-nest in γ of size 12k − 5. This contradicts Lemma 3.3 if s ∈ {0,1}.
Now if s = 2, then the existence of a 2-nest of size t implies that G contains a subdivision of K2,2t .
Since 2t > 30k2 + 200k for all k � 1, this contradicts [6, Theorem 1.3], which states that no graph that
contains a subdivision of K2,30k2+200k is k-crossing-critical. �
References

[1] N. Alon, P. Seymour, R. Thomas, Planar separators, SIAM J. Discrete Math. 7 (2) (1994) 184–193.
[2] D. Bokal, Infinite families of crossing-critical graphs with prescribed average degree and crossing number, J. Graph The-

ory 65 (2010) 139–162.
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