Nested cycles in large triangulations and crossing-critical graphs

César Hernández-Vélez ${ }^{\text {a }}$, Gelasio Salazar ${ }^{\text {a, }}{ }^{1}$, Robin Thomas ${ }^{\text {b,2 }}$
${ }^{\text {a }}$ Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000, Mexico
${ }^{\mathrm{b}}$ School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, United States

ARTICLE INFO

Article history:

Received 24 November 2009
Available online 5 July 2011

Keywords:

Triangulations
Nested cycles
Crossing-critical
Crossing numbers

Abstract

We show that every sufficiently large plane triangulation has a large collection of nested cycles that either are pairwise disjoint, or pairwise intersect in exactly one vertex, or pairwise intersect in exactly two vertices. We apply this result to show that for each fixed positive integer k, there are only finitely many k-crossingcritical simple graphs of average degree at least six. Combined with the recent constructions of crossing-critical graphs given by Bokal, this settles the question of for which numbers $q>0$ there is an infinite family of k-crossing-critical simple graphs of average degree q. © 2011 Gelasio Salazar, César Hernández-Vélez, Robin Thomas. Published by Elsevier Inc. All rights reserved.

1. Introduction

All graphs in this paper are finite, and may have loops and parallel edges. The crossing number of a graph G, denoted by $\operatorname{cr}(G)$, is the minimum, over all drawings γ of G in the plane, of the number of crossings in γ. (We will formalize the notion of a drawing later.)

A graph G is k-crossing-critical if the crossing number of G is at least k and $\operatorname{cr}(G-e)<k$ for every edge e of G. The study of crossing-critical graphs is a central part of the emerging structural theory of crossing numbers. Good examples of this aspect of crossing numbers are Hliněný's proof that k-crossing-critical graphs have bounded path-width [5]; the Fox and Tóth [4] and Černý, Kynčl and Tóth [3] papers on the decay of crossing numbers; and Dvořák and Mohar's ingenious arguments that prove the existence, for each integer $k \geqslant 171$, of k-crossing-critical graphs of arbitrarily large maximum degree [8].

[^0]0095-8956/\$ - see front matter © 2011 Gelasio Salazar, César Hernández-Vélez, Robin Thomas. Published by Elsevier Inc. All rights reserved.
doi:10.1016/j.jctb.2011.04.006

The earliest interesting, nontrivial construction of k-crossing-critical graphs is due to Širáñ [17], who gave examples of infinite families of k-crossing-critical graphs for fixed values of k. These constructions involve graphs with parallel edges. Shortly afterwards, Kochol [7] gave an infinite family of 2-crossing-critical, simple 3-connected graphs.

In their influential paper on crossing-critical graphs, Richter and Thomassen [11] proved that k-crossing-critical graphs have bounded crossing number. Richter and Thomassen also investigated regular simple crossing-critical graphs. They used their aforementioned result to prove that for each fixed k, there are only finitely many k-crossing-critical 6 -regular simple graphs, and also constructed an infinite family of 3 -crossing-critical, simple 4 -connected 4 -regular graphs.

We note that degree two vertices affect neither the crossing number nor the crossing criticality of a graph. Also, the crossing number of a disconnected graph is clearly the sum of the crossing numbers of its connected components. Thus the interest in crossing-critical graphs is focused on connected graphs with minimum degree at least 3 .

The construction of Richter and Thomassen was generalized in [16], where it was shown that for every rational number $q \in[4,6)$, there exists an integer k_{q} such that there is an infinite family of k_{q}-crossing-critical simple graphs with average degree q. Pinontoan and Richter [10] extended the range to every rational $q \in[3.5,6)$, and recently Bokal [2] used his novel technique of zip products to describe a construction that yields an infinite family for every rational $q \in(3,6)$.

What about $q=3$ or $q \geqslant 6$? Let G and H be simple 3-regular graphs. Since G has a subgraph isomorphic to a subdivision of H if and only if H is isomorphic to a minor of G, the Graph Minor Theorem [15] implies that for every integer $k \geqslant 1$ there are only finitely many k-crossing-critical 3-regular simple graphs. In fact, this does not need the full strength of the Graph Minor Theorem; by Hliněný's result [5] that k-crossing-critical graphs have bounded path-width all that is needed is the fact that graphs of bounded path-width are well-quasi-ordered [13], which is a lot easier that the general Graph Minor Theorem.

On the other hand, it follows easily from the techniques in [11] that for each fixed positive integer k and rational $q>6$ there are only finitely many k-crossing-critical simple graphs with average degree q. Thus the only remaining open question is whether for some k there exists an infinite family of k-crossing-critical simple graphs of average degree six. In this paper we answer this question in the negative, as follows.

Theorem 1.1. For each fixed positive integer k, the collection of k-crossing-critical simple graphs with average degree at least six is finite.

In fact, we prove in Theorem 3.4 below that the conclusion holds for graphs of average degree at least $6-c / n$, where c is an absolute constant, and n is the number of vertices of the graph. The assumption that G be simple cannot be omitted: as shown in [11], for each integer $p \geqslant 1$ there is an infinite family of $4 p$-regular $3 p^{2}$-crossing-critical (nonsimple) graphs. Moreover, by adding edges (some of them parallel) to the 4 -regular 3-crossing-critical graphs H_{m} in [11], it is possible to obtain an infinite family of 6 -regular 12 -crossing-critical (nonsimple) graphs.

The crucial new result behind the proof of Theorem 1.1 is the following theorem, which may be of independent interest. It can be regarded as a relative of the result of [9]. Let γ be a drawing in the plane of a graph G, and let H be a subgraph of G. We say that H is crossing-free in γ if no edge of H is crossed in γ by another edge of G. A sequence $C_{1}, C_{2}, \ldots, C_{t}$ of cycles in G is a nest in γ if the cycles are pairwise edge-disjoint, each of them is crossing-free in γ, and for each $i=1,2, \ldots, t-1$ the cycle $\gamma\left(C_{i+1}\right)$ is contained in the closed disk bounded by $\gamma\left(C_{i}\right)$. We say that t is the size of the nest. If $X \subseteq V(G), s:=|X|$ and $V\left(C_{i}\right) \cap V\left(C_{j}\right)=X$ for every two distinct indices $i, j=1,2, \ldots, t$, then we say that $C_{1}, C_{2}, \ldots, C_{t}$ is an s-nest.

Theorem 1.2. For every integer k there exists an integer n such that every planar triangulation on at least n vertices has an s-nest of size at least k for some $s \in\{0,1,2\}$.

To deduce Theorem 1.1 from Theorem 1.2, we use that a k-crossing-critical graph cannot have a large s-nest for any $s \in\{0,1,2\}$. For $s \in\{0,1\}$, this follows from a result proved in [5] under the more
general setting of multicycles (see Lemma 3.3 below). For $s=2$, this follows since k-crossing-critical graphs cannot contain subdivisions of $K_{2,2 t}$ with arbitrarily large t [6 , Theorem 1.3].

We formalize the notion of a drawing in the plane as follows. By a polygonal arc we mean a set $A \subseteq \mathbb{R}^{2}$ which is the union of finitely many straight line segments and is homeomorphic to the interval $[0,1]$. The images of 0 and 1 under the homeomorphism are called the ends of A. A polygon is a set $B \subseteq \mathbb{R}^{2}$ which is the union of finitely many straight line segments and is homeomorphic to the unit circle $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$. Let G be a graph. A drawing of G is a mapping γ with domain $V(G) \cup E(G)$ such that
(i) $\gamma(v) \in \mathbb{R}^{2}$ for every $v \in V(G)$,
(ii) $\gamma(v) \neq \gamma\left(v^{\prime}\right)$ for distinct $v, v^{\prime} \in V(G)$,
(iii) for every non-loop edge $e \in E(G)$ with ends u and v there exists a polygonal arc $A \subseteq \mathbb{R}^{2}$ with ends $\gamma(u)$ and $\gamma(v)$ such that $\gamma(e)=A-\{u, v\} \subseteq \mathbb{R}^{2}-\gamma(V(G))$,
(iv) for every loop $e \in E(G)$ incident with $u \in V(G)$ there exists a polygon $P \subseteq \mathbb{R}^{2}$ containing $\gamma(u)$ such that $\gamma(e)=P-\{u\} \subseteq \mathbb{R}^{2}-\gamma(V(G))$, and
(v) if $e, e^{\prime} \in E(G)$ are distinct, then $\gamma(e) \cap \gamma\left(e^{\prime}\right)$ is finite.

If $e, e^{\prime} \in E(G)$ are distinct and $\gamma(e) \cap \gamma\left(e^{\prime}\right) \neq \emptyset$, then we say that e and e^{\prime} cross in γ and that every point of $\gamma(e) \cap \gamma\left(e^{\prime}\right)$ is a crossing. (Thus a point where $\gamma(e)$ and $\gamma\left(e^{\prime}\right)$ "touch" also counts as a crossing.) If H is a subgraph of G, then by $\gamma(H)$ we denote the image of H under γ; that is, the set of points in \mathbb{R}^{2} that either are equal to $\gamma(v)$ for some $v \in V(H)$ or belong to $\gamma(e)$ for some $e \in E(H)$. A plane graph is a graph G such that $V(G) \subseteq \mathbb{R}^{2}$, every edge of G is a subset of \mathbb{R}^{2}, and the identity mapping $V(G) \cup E(G) \rightarrow V(G) \cup E(G)$ is a drawing of G with no crossings.

We are restricting ourselves to piecewise linear drawings merely for convenience. This restriction does not change the class of graphs that admit drawings with a specified number of crossings, while piecewise linear drawings are much easier to handle.

We prove Theorem 1.2 in Section 2 and Theorem 1.1 in Section 3.

2. Finding a nest

A tree decomposition of a graph G is a triple (T, W, r) where T is a tree, $r \in V(T)$ and $W=$ ($W_{t}: t \in V(T)$) is a collection of subsets of $V(G)$ such that
(T1) $\bigcup_{t \in V(T)} W_{t}=V(G)$ and every edge of G has both ends in some W_{t}, and
(T2) if $t, t^{\prime}, t^{\prime \prime} \in V(T)$ and t^{\prime} belongs to the unique path in T connecting t and $t^{\prime \prime}$, then $W_{t} \cap W_{t^{\prime \prime}} \subseteq$ $W_{t^{\prime}}$.

The width of the tree-decomposition (T, W, r) is the maximum of $\left|W_{t}\right|-1$ over all $t \in V(T)$. Now let G be a plane graph. We say that the tree-decomposition (T, W, r) of G is standard if
(T3) for every edge $e=t t^{\prime} \in E(T)$ the set $W_{t} \cap W_{t^{\prime}}$ is the vertex-set of a cycle C_{e} in G, and
(T4) if $e, e^{\prime} \in E(T)$ are distinct, and e lies on the unique path from r to e^{\prime}, then $C_{e^{\prime}} \neq C_{e}$ and $C_{e^{\prime}}$ belongs to the closed disk bounded by C_{e}.

The cycles C_{e} will be called the rings of (T, W, r).
We will need the following lemma.
Lemma 2.1. Let $k \geqslant 1$ be an integer, and let G be a triangulation of the plane. Then G has either a 0 -nest of size k, or a standard tree-decomposition of width at most $12 k-1$.

Proof. The proof is inspired by [1]. We may assume that G has no 0 -nest of size k. Let (T, W, r) be a standard tree-decomposition of G such that
(a) T has at least one edge and maximum degree at most three,
(b) $\left|W_{t}\right| \leqslant 12 k$ if $t=r$ or if t is not a leaf of T,
(c) each ring of (W, T, r) has length at most $8 k$,
(d) if $t \in V(T)-\{r\}$ and t^{\prime} is the unique neighbor of t in the path in T from t to r, then W_{t} consists precisely of the vertices of G drawn in the closed disk bounded by $C_{t t^{\prime}}$, and subject to (a)-(d),
(e) T is maximal.

Such a choice is possible, because of the following construction. Let T be a tree with vertex-set $\left\{t_{1}, t_{2}\right\}$, let C be the triangle bounding the outer face of G, let $W_{t_{1}}=V(C)$, and let $W_{t_{2}}=V(G)$. Then (T, W, t_{1}) satisfies (a)-(d).

So let (T, W, r) satisfy (a)-(e). We claim that (T, W, r) has width at most $12 k-1$. To prove that suppose to the contrary that $\left|W_{t_{0}}\right|>12 k$ for some $t_{0} \in V(T)$. Then by (b) $t_{0} \neq r$ and t_{0} is a leaf of T. Let t_{1} be the unique neighbor of t_{0} in T, and let C denote the ring $C_{t_{0} t_{1}}$. Then $|V(C)| \leqslant 8 k$ by (c). Let Δ denote the closed disk bounded by C, and let H be the near-triangulation consisting of all vertices and edges of G drawn in Δ. By (d) we have $V(H)=W_{t_{0}}$. For $u, v \in V(C)$, let $c(u, v)$ (respectively, $d(u, v)$) be the number of edges in the shortest path of C (respectively, H) between u and v.
(1) $c(u, v)=d(u, v)$ for all $u, v \in V(C)$.

To prove (1) we certainly have $d(u, v) \leqslant c(u, v)$ since C is a subgraph of H. If possible, choose a pair $u, v \in V(C)$ with $d(u, v)$ minimum such that $d(u, v)<c(u, v)$. Let P be a path of H between u and v, with $d(u, v)$ edges. Suppose that some internal vertex w of P belongs to $V(C)$. Then

$$
d(u, w)+d(w, v)=d(u, v)<c(u, v) \leqslant c(u, w)+c(w, v)
$$

and so either $d(u, w)<c(u, w)$ or $d(w, v)<c(w, v)$, in either case contrary to the choice of u, v. Thus there is no such w. Let C, C_{1}, C_{2} be the three cycles of $C \cup P$, let $\Delta, \Delta_{1}, \Delta_{2}$ be the closed disks they bound, and for $i=1,2$ let H_{i} be the subgraph of H consisting of all vertices and edges drawn in Δ_{i}. Then C_{1} and C_{2} have length at most $8 k$. Let T^{\prime} be the tree obtained from T by adding two vertices r_{1}, r_{2}, both joined to t_{0}. For $t \in V(T)-\left\{t_{0}\right\}$ let $W_{t}^{\prime}=W_{t}$, let $W_{t_{0}}^{\prime}=V(C \cup P)$, let $W_{r_{i}}^{\prime}=V\left(H_{i}\right)$, and let $W^{\prime}=\left(W_{t}^{\prime}: t \in V\left(T^{\prime}\right)\right)$. Then ($\left.T^{\prime}, W^{\prime}, r\right)$ satisfies (a)-(d), contrary to (e). This proves (1).

(2) C has length exactly 8 k .

To prove (2) suppose for a contradiction that C has length at most $8 k-1$. Let $u v$ be an edge of C, and let w be the third vertex of the face incident with $u v$ and contained in the disk bounded by C. Then $w \notin V(C)$ by (1) and the fact that $\left|W_{t_{0}}\right|>12 k$. Let T^{\prime} be obtained from T by adding a new vertex r_{0} joined to t_{0}, for $t \in V(T)-\left\{t_{0}\right\}$ let $W_{t}^{\prime}=W_{t}$, let $W_{t_{0}}^{\prime}=V(C) \cup\{w\}$, let $W_{r_{0}}^{\prime}=W_{t_{0}}$, and let $W^{\prime}=\left(W_{t}^{\prime}: t \in V\left(T^{\prime}\right)\right.$). Then $\left(T^{\prime}, W^{\prime}, r\right)$ is a standard tree-decomposition satisfying (a)-(d), contrary to (e). This proves (2).

Now let $v_{1}, v_{2}, \ldots, v_{8 k}$ be the vertices of C in order. By (1) and [14, Theorem (3.6)] there exist $2 k$ disjoint paths from $\left\{v_{1}, v_{2}, \ldots, v_{2 k}\right\}$ to $\left\{v_{4 k+1}, v_{4 k+2}, \ldots, v_{6 k}\right\}$, and $2 k$ disjoint paths from $\left\{v_{2 k+1}, v_{2 k+2}, \ldots, v_{4 k}\right\}$ to $\left\{v_{6 k+1}, v_{6 k+2}, \ldots, v_{8 k}\right\}$. Using those sets of paths it is easy to construct a 0 -nest in G of size k. In fact, using the argument of [12, Theorem (4.1)] it can be shown that G has a $2 k \times 2 k$ grid minor, and hence a 0 -nest of size k.

Proof of Theorem 1.2. Let $k \geqslant 1$ be a given integer, let h be an integer such that for every coloring of the edges of the complete graph on h vertices using at most $12 k$ colors, there is a monochromatic clique of size $24 k^{2}$, and let $n=36 k \cdot 2^{h+1}$. The integer h exists by Ramsey's theorem. We claim that n satisfies the conclusion of the theorem. To prove the claim let G be a triangulation of the plane on at least n vertices. By Lemma 2.1 we may assume that G has a standard tree-decomposition (T, W, r) of width at most $12 k$. It follows that T has at least $n /(12 k)$ vertices. Thus $|V(T)|>3 \cdot 2^{h+1}-2$, and hence T has a path on $h+1$ vertices starting in r. Let $t_{0}=r, t_{1}, \ldots, t_{h}$ be the vertices of one such path, and for $i=1,2, \ldots, h$ let C_{i} denote the ring $C_{t_{i-1} t_{i}}$. Then by (T3) and (T4) $C_{1}, C_{2}, \ldots, C_{h}$ is a sequence of distinct cycles such that for indices i, j with $1 \leqslant i \leqslant j \leqslant h$ the cycle C_{j} belongs to the closed disk bounded by C_{i}. We shall refer to the latter condition as the nesting property. Let K be a complete
graph with vertex-set $\{1,2, \ldots, h\}$. We color the edges of K by saying that the edge $i j$ is colored using $\left|V\left(C_{i}\right) \cap V\left(C_{j}\right)\right|$. By the choice of n there exist a subsequence $D_{1}, D_{2}, \ldots, D_{24 k^{2}}$ of $C_{1}, C_{2}, \ldots, C_{h}$ and an integer $t \in\{0,1, \ldots, 12 k-1\}$ such that $\left|V\left(D_{i}\right) \cap V\left(D_{j}\right)\right|=t$ for every pair of distinct integers $i, j \in\left\{1,2, \ldots, 24 k^{2}\right\}$. Since the sequence $D_{1}, D_{2}, \ldots, D_{24 k^{2}}$ satisfies the nesting property, we deduce that there exists a set X such that $V\left(D_{i}\right) \cap V\left(D_{j}\right)=X$ for every pair of distinct integers $i, j \in\left\{1,2, \ldots, 24 k^{2}\right\}$. If $|X| \leqslant 1$, then the sequence $D_{1}, D_{2}, \ldots, D_{k}$ satisfies the conclusion of the theorem. We may therefore assume that $|X| \geqslant 2$. Let the elements of X be numbered $x_{1}, x_{2}, \ldots, x_{t}=x_{0}$ in such a way that they appear on D_{1} in the order listed. It follows that they appear on each cycle D_{j} in the order listed. Now for $i=1,2, \ldots, t$ and $j=1,2, \ldots, 24 k^{2}$ let $P_{i j}$ be the subpath of D_{j} with ends x_{i-1} and x_{i} that is disjoint from $X-\left\{x_{i-1}, x_{i}\right\}$ (if $|X|=2$ we number the two subpaths of D_{j} arbitrarily). Since the cycles D_{j} are pairwise distinct and $t \leqslant 12 k-1$, we deduce that there exists an index $i \in\{1,2, \ldots, t\}$ such that the path $P_{i j}$ has at least one internal vertex for at least $2 k$ distinct integers $j \in\left\{1,2, \ldots, 24 k^{2}\right\}$. Let us fix this index i, and let $Q_{1}, Q_{2}, \ldots, Q_{2 k}$ be a subsequence of $P_{i 1}, P_{i 2}, \ldots$ such that each Q_{j} has at least one internal vertex. It follows that the paths $Q_{1}, Q_{2}, \ldots, Q_{2 k}$ are internally disjoint and pairwise distinct. Thus $Q_{1} \cup Q_{2 k}, Q_{2} \cup Q_{2 k-1}, \ldots, Q_{k} \cup Q_{k+1}$ is a 2-nest in G of size k, as desired.

3. Using a nest

To prove Theorem 1.1 we need several lemmas, but first we need a couple of definitions. We say that an s-nest $C_{1}, C_{2}, \ldots, C_{t}$ in a drawing γ of a graph G is clean if every crossing in γ belongs either to the open disk bounded by $\gamma\left(C_{t}\right)$, or to the complement of the closed disk bounded by $\gamma\left(C_{1}\right)$. We say that a drawing γ of a graph G is generic if it satisfies (i)-(v) and
(vi) every point $x \in \mathbb{R}^{2}$ belongs to $\gamma(e)$ for at most two edges $e \in E(G)$, and
(vii) if $\gamma(e) \cap \gamma\left(e^{\prime}\right) \neq \emptyset$ for distinct edges $e, e^{\prime} \in E(G)$, then e and e^{\prime} are not adjacent.

Lemma 3.1. For every three integers $\ell, r, t \geqslant 0$ there exists an integer n_{0} such that for every simple graph G on $n \geqslant n_{0}$ vertices of average degree at least $6-r / n$ and every generic drawing γ of G with at most ℓ crossings there exists an s-nest in γ of size t for some $s \in\{0,1,2\}$.

Proof. Let ℓ, t, r be given, and let n_{0} be an integer such that Theorem 1.2 holds when k is replaced by $t^{\prime}:=t+2 \ell+r-6$ and n is replaced by n_{0}. We will prove that n_{0} satisfies the conclusion of the theorem. To that end let G be a simple graph on $n \geqslant n_{0}$ vertices of average degree at least $6-r / n$ and let γ be a generic drawing of G with at most ℓ crossings. We will prove that γ has a desired s-nest. Let G^{\prime} denote the plane graph obtained from γ by converting each crossing into a vertex. Let V_{4} be the set of these new vertices. Then $\left|V_{4}\right| \leqslant \ell$. By (vi) each vertex in V_{4} has degree four in G^{\prime}, and since G is simple it follows from (vii) that G^{\prime} is simple. Let $\operatorname{deg}(v)$ denote the degree of v in G^{\prime}, let \mathcal{F} denote the set of faces of G^{\prime}, and for $f \in \mathcal{F}$ let $|f|$ denote the length of the boundary of f; that is, the sum of the lengths of the walks forming the boundary of f. By Euler's formula we have

$$
\sum_{v \in V\left(G^{\prime}\right)}(6-\operatorname{deg}(v))+\sum_{f \in \mathcal{F}} 2(3-|f|)=12 .
$$

But $\sum_{v \in V(G)-V_{4}}(6-\operatorname{deg}(v)) \leqslant r$ by hypothesis, and so

$$
\sum_{f \in \mathcal{F}}(|f|-3) \leqslant \frac{1}{2} \sum_{v \in V_{4}}(6-\operatorname{deg}(v))-6+r=\left|V_{4}\right|-6+r \leqslant \ell+r-6,
$$

because every vertex in V_{4} has degree four in G^{\prime}. Thus G^{\prime} has at most $\ell+r-6$ non-triangular faces, each of size at most $\ell+r-3$.

Let $G^{\prime \prime}$ be the triangulation obtained from G^{\prime} by adding a vertex into each non-triangular face and joining it to each vertex on the boundary of that face. Thus every added vertex has degree in $G^{\prime \prime}$ at most $\ell+r-3$. By Theorem 1.2 the triangulation $G^{\prime \prime}$ has an s-nest $C_{1}, C_{2}, \ldots, C_{t^{\prime}}$ of size t^{\prime} for
some $s \in\{0,1,2\}$. Let X be the set of vertices every two distinct cycle C_{i} and C_{j} have in common. Then every vertex of X has degree at least $2 t^{\prime}$, and hence belongs to $V(G)$, because every vertex of $V\left(G^{\prime \prime}\right)-V(G)$ has degree four or at most $\ell+r-3$. Thus at most $\ell+(\ell+r-6)=2 \ell+r-6$ cycles C_{i} contain a vertex not in G, and by removing all those cycles we obtain a desired s-nest in γ.

Lemma 3.2. Let $k \geqslant 0$ and $t \geqslant 1$ be integers, let $s \in\{0,1,2\}$, let G be a graph, and let γ be a drawing of G with at most k crossings and an s-nest of size $(k+1)(t-1)+1$. Then γ has a clean s-nest of size t.

Proof. Let $C_{1}, C_{2}, \ldots, C_{(k+1)(t-1)+1}$ be an s-nest in G. For $i=1,2, \ldots,(k+1)(t-1)$ let Ω_{i} denote the subset of \mathbb{R}^{2} obtained from the closed disk bounded by $\gamma\left(C_{i}\right)$ by removing the open disk bounded by $\gamma\left(C_{i+1}\right)$. Since there are at most k crossings in γ, it follows that Ω_{i} includes no crossing of γ for $t-1$ consecutive integers in $\{1,2, \ldots,(k+1)(t-1)\}$, say $i, i+1, \ldots, i+t-2$. Then $C_{i}, C_{i+1}, \ldots, C_{i+t-1}$ is a clean s-nest of size t, as desired.

We now show that a drawing of a k-crossing-critical graph cannot contain an arbitrarily large clean s-nest, for $s \in\{0,1\}$. As we shall see, this follows easily from a result proved by Hliněný in the more general setting of multicycles [5].

Lemma 3.3. Let $k \geqslant 1$ be an integer, let $s \in\{0,1\}$ and let γ be a drawing of a graph G with a clean s-nest of size $12 k-5$. Then G is not k-crossing-critical.

Proof. Suppose, by way of contradiction, that G is k-crossing-critical.
If C is a cycle of G that is crossing-free in γ, then we denote by $\Delta(C)$ the closed disk bounded by $\gamma(C)$.

Let $D_{1}, D_{2}, \ldots, D_{12 k-5}$ be a clean s-nest in γ of size $12 k-5$. We may assume that the s-nest is chosen so that
(1) for $i=2,3, \ldots, 3 k-1$ or $i=6 k-1,6 k, \ldots, 9 k-4$, if D is a cycle in G such that D_{i-1}, D, D_{i+1} is an s-nest in γ and $\Delta\left(D_{i}\right) \subseteq \Delta(D)$, then $D_{i}=D$, and
(2) for $i=3 k, 3 k+1, \ldots, 6 k-3$ or $i=9 k-3,9 k-2, \ldots, 12 k-6$, if D is a cycle in G such that D_{i-1}, D, D_{i+1} is an s-nest in γ and $\Delta(D) \subseteq \Delta\left(D_{i}\right)$, then $D_{i}=D$.

Suppose that the block (2-connected component) B of G that contains $D_{6 k-2}$ contains neither D_{1} nor $D_{12 k-5}$. The cleanness of the s-nest $D_{1}, D_{2}, \ldots, D_{12 k-5}$ implies that B is planar. But this contradicts the easy to verify fact that a graph is k-crossing-critical only if each of its blocks is k^{\prime}-crossingcritical for some $k^{\prime} \leqslant k$. Thus B contains either D_{1} or $D_{12 k-5}$. Using again that $D_{1}, D_{2}, \ldots, D_{12 k-5}$ is a clean s-nest, it follows that in the former case, (I) B contains $D_{1} \cup D_{2} \cup \cdots D_{6 k-2}$; and in the latter, (II) B contains $D_{6 k-2} \cup D_{6 k-1} \cup \cdots \cup D_{12 k-5}$. Note that it may be that both (I) and (II) hold.

Let γ_{B} the restriction of γ to B. Let M_{0} be the subgraph of B that consists of all crossed edges (and their ends) in γ_{B}. If (I) holds, then for $j=1,2, \ldots, 3 k-1$, let $M_{j}:=\left\{D_{j}, D_{6 k-j-1}\right\}$. Otherwise (II) holds, and in this case for $j=1,2, \ldots, 3 k-1$, let $M_{j}:=\left\{D_{6 k+j-3}, D_{12 k-j-4}\right\}$. Under the terminology in [5], for $j=1,2, \ldots, 3 k-1, M_{j}$ is a multicycle in γ_{B}, and $M_{0}, M_{1}, M_{2}, \ldots, M_{3 k-1}$ is a $(3 k-1)$ nesting sequence in γ_{B} (we note that condition (N3) in [5] for a c-nesting sequence holds because the s-nest $D_{1}, D_{2}, \ldots, D_{12 k-5}$ satisfies (1) and (2)).

Since B is 2-connected, [5, Lemma 4.2] applies, and we conclude that B cannot be k^{\prime}-crossingcritical for any $k^{\prime} \leqslant k$. This contradicts our previous observation that each block of a k-crossing-critical graph must be k^{\prime}-crossing-critical for some $k^{\prime} \leqslant k$.

In the first version of this paper, posted on arXiv.org, we gave a proof of a version of Lemma 3.3 from first principles. We proved the lemma for all $s \in\{0,1,2\}$ with the quantity $12 k-5$ replaced by $4 k+1$. We are indebted to an anonymous referee for pointing out that the current Lemma 3.3 follows from [5].

We are now ready to prove Theorem 1.1, which we restate in a slightly stronger form.
Theorem 3.4. For all integers $k \geqslant 1, r \geqslant 0$ there is an integer $n_{0}:=n_{0}(k, r)$ such that if G is a k-crossingcritical simple graph on n vertices with average degree at least $6-r / n$, then $n<n_{0}$.

Proof. Let $k \geqslant 1, r \geqslant 0$ be integers, let $\ell:=2.5 k+16$, let $t:=(12 k-6)(\ell+1)+1$, let n_{0} be an integer such that Lemma 3.1 holds, and let G be a k-crossing-critical simple graph on n vertices with average degree at least $6-r / n$.

Suppose, by way of contradiction, that $n \geqslant n_{0}$. Let γ be a drawing of G with at most ℓ crossings; such a drawing exists by [11, Theorem 3]. By a standard and well-known argument we may assume that γ is generic. By Lemma 3.1 there is an integer $s \in\{0,1,2\}$ and an s-nest in γ of size t.

By Lemma 3.2 there is a clean s-nest in γ of size $12 k-5$. This contradicts Lemma 3.3 if $s \in\{0,1\}$. Now if $s=2$, then the existence of a 2-nest of size t implies that G contains a subdivision of $K_{2,2 t}$. Since $2 t>30 k^{2}+200 k$ for all $k \geqslant 1$, this contradicts [6 , Theorem 1.3], which states that no graph that contains a subdivision of $K_{2,30 k^{2}+200 k}$ is k-crossing-critical.

References

[1] N. Alon, P. Seymour, R. Thomas, Planar separators, SIAM J. Discrete Math. 7 (2) (1994) 184-193.
[2] D. Bokal, Infinite families of crossing-critical graphs with prescribed average degree and crossing number, J. Graph Theory 65 (2010) 139-162.
[3] J. Černý, J. Kynčl, G. Tóth, Improvement on the decay of crossing numbers, Lecture Notes in Comput. Sci. 4875 (2008) 25-30.
[4] J. Fox, C.D. Tóth, On the decay of crossing numbers, J. Combin. Theory Ser. B 98 (1) (2008) 33-42.
[5] P. Hliněný, Crossing-number critical graphs have bounded path-width, J. Combin. Theory Ser. B 88 (2) (2003) 347-367.
[6] P. Hliněný, G. Salazar, Stars and bonds in crossing-critical graphs, J. Graph Theory 65 (2010) 198-215.
[7] M. Kochol, Construction of crossing-critical graphs, Discrete Math. 66 (3) (1987) 311-313.
[8] Z. Dvořák, B. Mohar, Crossing-critical graphs with large maximum degree, J. Combin. Theory Ser. B 100 (2010) 413-417.
[9] B. Oporowski, J. Oxley, R. Thomas, Typical subgraphs of 3- and 4-connected graphs, J. Combin. Theory Ser. B 57 (2) (1993) 239-257.
[10] B. Pinontoan, R.B. Richter, Crossing numbers of sequences of graphs. II. Planar tiles, J. Graph Theory 42 (4) (2003) 332-341.
[11] R.B. Richter, C. Thomassen, Minimal graphs with crossing number at least k, J. Combin. Theory Ser. B 58 (2) (1993) 217224.
[12] N. Robertson, P.D. Seymour, Graph minors. III. Planar tree-width, J. Combin. Theory Ser. B 36 (1984) 49-63.
[13] N. Robertson, P.D. Seymour, Graph minors. IV. Tree-width and well-quasi-ordering, J. Combin. Theory Ser. B 48 (2) (1990) 227-254.
[14] N. Robertson, P.D. Seymour, Graph minors. VI. Disjoint paths across a disc, J. Combin. Theory Ser. B 41 (1986) 115-138.
[15] N. Robertson, P.D. Seymour, Graph minors. XX. Wagner's conjecture, J. Combin. Theory Ser. B 92 (2) (2004) 325-357.
[16] G. Salazar, Infinite families of crossing-critical graphs with given average degree, Discrete Math. 271 (1-3) (2003) 343-350.
[17] J. Širáň, Infinite families of crossing-critical graphs with a given crossing number, Discrete Math. 48 (1) (1984) $129-132$.

[^0]: ${ }^{1}$ Partially supported by CONACYT Grant 106432.
 2 Partially supported by NSF grant DMS-0739366.

