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Abstract

We investigate negacyclic and cyclic codes of length ps over the finite field Fpa . Negacyclic codes

of length ps are precisely the ideals of the chain ring
Fpa [x]
〈xps +1〉 . This structure is then used to obtain the

Hamming distance distribution of the class of such negacyclic codes, which also provides Hamming weight
distributions and enumerations of several codes. An one-to-one correspondence between negacyclic and
cyclic codes is established to carry accordingly those results of negacyclic codes to cyclic codes.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Negacyclic and cyclic codes over finite fields have been well studied since the late 1950s.
However, most of the research is concentrated on the situation when the code length n is relatively
prime to the characteristic of the field F . In such case, cyclic codes of length n are classified as
ideals 〈f (x)〉 of F [x]

〈xn−1〉 , where f (x) is a divisor of xn − 1. The case when the code length n

is divisible by the characteristics p of the field yields the so-called repeated-root codes, which
were first studied in the 1990s by Castagnoli et al. [3], and van Lint [25], where they showed
that repeated-root cyclic codes have a concatenated construction, and are asymptotically bad.
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However, such codes are optimal in a few cases, that motivates researchers to further investigate
this class of codes (see, for example, [17,24]).

We have been studied repeated-root negacyclic codes over several classes of finite chain rings.
In 2004, the structure of negacyclic codes of length 2s over Z2a was obtained [9]. In 2005 [7],
we provided the structure of such codes over Galois rings GR(2a,m), a more general class of
rings, and also gave the Hamming distances of most of those codes over Z2a . Recently in 2007,
we computed the Hamming distances of all those codes [8], and furthermore provided the Lee,
homogeneous, and Euclidean distances of all such codes. Our computation in [7–9] were based
on the fact that the characteristic of the residue fields of the rings is 2, which makes it possible
to obtain the structure of the codes under consideration, they are linearly ordered as ideals of a
chain rings. In cases that the characteristic of the residue fields of the chain rings are odd primes,
those codes are no longer linearly ordered.

For example, negacyclic codes of length ps over Zpa , where p is odd, are ideals of the residue

ring
Zpa [x]
〈xps +1〉 . This residue ring is a local ring, but not a chain ring. However, if we replace the

Galois ring Zpa by the Galois field Fpa , where we do not have to deal with abundant zero-

divisors, it can be showed that the residue ring
Fpa [x]
〈xps +1〉 is a chain ring (cf. Proposition 3.2), so the

computation techniques we have used in [7,8] can be extended to study the Hamming distances
of the codes.

The purpose of this paper is to investigate (repeated-root) negacyclic and cyclic codes of
length ps over Fpa , concentrating on the Hamming distance distributions of those classes of
codes, and the Hamming weight distributions and enumerator of each code. The Hamming dis-
tance distribution of a class of codes plays a very important role, for instance, in estimating
decoding error probabilities. This distance distribution is very difficult to compute in general,
however, for the class of negacyclic codes of length ps over Fpa , their chain structure will help
to determine the exact values of their Hamming distances, and furthermore provide Hamming
weight distributions and enumerators of numerous codes.

The rest of this paper is arranged as follows. In Section 2, we give some preliminaries about
codes over finite fields Fpa , i.e., pa-ary codes, including a version for pa-ary codes of the
MacWilliams identities, which will be used in Section 4 to determine the Hamming weight
distributions and enumerations of several negacyclic codes. Section 3 gives a chain structure
of all pa-ary negacyclic codes of length ps , those codes are precisely the ideals 〈(x + 1)i〉,
i = 0,1, . . . , ps , of the chain ring

Fpa [x]
〈xps +1〉 . Using this structure, we are able to compute the

Hamming distances of all such negacyclic codes in Section 4. This computation also helps us,
in Section 5, to determine completely the Hamming weight distributions and enumerations of
numerous negacyclic codes. Finally, Section 6 provides a one-to-one correspondence between
negacyclic codes and cyclic codes of length ps over Fpa , which carries all results we have ob-
tained for negacyclic codes to cyclic codes accordingly.

2. Background and notations

A ring R is called a local ring if it has a unique maximal right (left) ideal. R is called a chain
ring if the set of all right (left) ideals of R is linearly ordered under set-theoretic inclusion.

For a finite field F , consider the set Fn of n-tuples of elements from F as a vector space
over F . Any nonempty subset C ⊆ Fn is called a code of length n over F , the code C is linear
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if in addition, C is a subspace of Fn. Given an n-tuple (x0, x1, . . . , xn−1) ∈ Fn, the cyclic shift
τ and negashift ν on Fn are defined as usual, i.e.,

τ(x0, x1, . . . , xn−1) = (xn−1, x0, x1, . . . , xn−2),

and

ν(x0, x1, . . . , xn−1) = (−xn−1, x0, x1, . . . , xn−2).

A code C is called cyclic if τ(C) = C, and C is called negacyclic if ν(C) = C. Cyclic codes over
finite fields were first studied in the late 1950s by Prange [19–22], while negacyclic codes over
finite fields were introduced by Berlekamp in the late 1960s [1,2].

Each codeword c = (c0, c1, . . . , cn−1) is customarily identified with its polynomial represen-
tation c(x) = c0 + c1x + · · · + cn−1x

n−1, and the code C is in turn identified with the set of
all polynomial representations of its codewords. Then in the ring F [x]

〈xn+1〉 ( F [x]
〈xn−1〉 ), xc(x) corre-

sponds to a nega shift (cyclic shift) of c(x). From that, the following fact is well-known and
straightforward:

2.1. Proposition. A linear code C of length n is negacyclic (cyclic) over F if and only if C is an
ideal of F [x]

〈xn+1〉 ( F [x]
〈xn−1〉 ).

For n-tuples x = (x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1) ∈ Fn, their inner product is de-
fined as usual x · y = x0y0 + x1y1 + · · · + xn−1yn−1. Two n-tuples x, y are called orthogonal if
x · y = 0. For a linear code C over F , its dual code C⊥ is the set of n-tuples over F that are
orthogonal to all codewords of C, i.e.,

C⊥ = {x | x · y = 0, ∀y ∈ C}.
A code C is called self-orthogonal if C ⊆ C⊥, and it is called self-dual if C = C⊥.

Let a = (a1, a2, . . . , an) ∈ Fn, the Hamming weight of a, denoted by wt(a), is the number of
nonzero components of a. The Hamming distance d(a, b) of two codewords a, b is the number
of components in which they differ, which is the Hamming weight wt(a − b) of a − b. For a
linear code C, the Hamming weight and the Hamming distance d(C) are the same, and defined
as the smallest Hamming weight of nonzero codewords of C:

d(C) = min
{
wt(a)

∣∣ a �= 0, a ∈ C
}
.

Furthermore, the Hamming weight enumerator of C is defined by

WC(x, y) =
∑
v∈C

xn−wt(v)ywt(v) =
n∑

j=0

Ajx
n−j yj ,

where the Hamming weight distributions Aj ’s are the number of codewords of Hamming weight
j in C. Although the Hamming weight distributions and Hamming weight enumerators do not
completely specify a code, they give important information on both theoretical and practical
aspects (see for example [10,15,18]). MacWilliams [13–15] provided a relation of the Hamming
weight enumerators of a code C over a finite field and that of its dual C⊥, we include here the
version for pa-ary linear codes.
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2.2. Theorem (MacWilliams identity for pa-ary linear codes). Let C be a pa-ary linear codes
with dual code C⊥, then

WC⊥(x, y) = 1

|C|WC

(
x + (

pa − 1
)
y, x − y

)
.

From Theorem 2.2, we get a connection between the Hamming weight distributions of linear
pa-ary codes C and C⊥ (cf. [15]).

2.3. Proposition. Let Ai and A′
i be the number of codewords of Hamming weight i in C and C⊥,

where the code length is n, then

A′
k = 1

|C|
n∑

i=0

AiPk(i;n),

where Pk(x;n) is the Krawtchouk polynomial in x of degree k, defined by

Pk(x;n) =
k∑

i=0

(−1)i
(
pa − 1

)k−i
(

x

i

)(
n − x

k − i

)
.

The Krawtchouk polynomials Pk(x;n) were named after their originator Krawtchouk (cf. [11,
12,23]). They were first used in coding theory by Delsarte (cf. [4–6]). The binomial coefficients(
x
m

)
in the Krawtchouk polynomials are defined for any real number x as follows:

(
x

m

)
=

⎧⎨
⎩

x(x−1)···(x−m+1)
m! if m is a positive integer,

1 if m = 0,

0 otherwise.

In this paper, we study the structure of negacyclic codes of length ps over the finite field Fpa ,
and establish the Hamming distance of all such negacyclic codes, and Hamming weight distri-
butions and enumerators of several codes. We then build a one-to-one correspondence between
negacyclic and cyclic codes to carry those properties to cyclic codes of length ps over Fpa .
Hereafter, in order to simplify notation, we denote

F(a, s) = Fpa [x]
〈xps + 1〉 .

3. Structure of negacyclic codes

3.1. Proposition. The followings hold true in F(a, s):

(a) For any nonnegative integer t , (x + 1)p
t = xpt + 1.

(b) x + 1 is nilpotent with the nilpotency index ps .
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Proof. We have

(x + 1)p
t = xpt + 1 +

pt−1∑
i=1

(
pt

i

)
xi.

Since, p divides
(
pt

i

)
for 1 � i � pt − 1,

∑pt−1
i=1

(
pt

i

)
xi = 0 in Fpa [x]. Thus, (x + 1)p

t = xpt + 1
in F(a, s), proving (a). (b) is just a direct consequence of (a). �
3.2. Proposition. F(a, s) is a chain ring, with exactly the following ideals:

F(a, s) = 〈
(x + 1)0〉 �

〈
(x + 1)1〉 � · · · �

〈
(x + 1)p

s−1〉 �
〈
(x + 1)p

s 〉 = 〈0〉.

Proof. Let f (x) = a0 +a1x +· · ·+aps−1x
ps−1 ∈ F(a, s), where a0, a1, . . . , aps−1 ∈ Fpa . Then

there are b0, b1, . . . , bps−1 ∈ Fpa , such that f (x) can be represented as

f (x) = b0 + b1(x + 1) + · · · + bps−1(x + 1)p
s−1.

If b0 = 0, then f (x) = (x + 1)g(x), whence, f (x) ∈ 〈x + 1〉. If b0 �= 0, then f (x) = b0 +
(x + 1)g(x), as x + 1 is nilpotent in F(a, s), f (x) is invertible. We have shown that for any
element f (x) in F(a, s), either f (x) is a unit, or f (x) ∈ 〈x + 1〉. That means, F(a, s) is a
local ring with the maximum ideal 〈x + 1〉, hence, F(a, s) is a chain ring (cf. [16]). Since the
nilpotency index of x +1 is ps , the ideals of F(a, s) form the desired strictly inclusive chain. �

Since pa-ary negacyclic codes of length ps are the ideals of F(a, s), we now have a list of all
of them.

3.3. Theorem. pa-ary negacyclic codes of length ps are precisely the ideals 〈(x + 1)i〉, i =
0,1, . . . , ps , of the ring F(a, s).

Clearly, for i = 0,1, . . . , ps , the cardinality of each code 〈(x + 1)i〉 ⊆ F(a, s) is pa(ps−i),
hence, the cardinality of its dual is pai (cf. [16]). Because the dual of a negacyclic code is also a
negacyclic code, it implies that the dual code of 〈(x + 1)i〉 is 〈(x + 1)p

s−i〉. We summarize that
in the following theorem.

3.4. Theorem. Let C be a pa-ary negacyclic codes of length ps , then C = 〈(x + 1)i〉 ⊆ F(a, s),
for some i ∈ {0,1, . . . , ps}, and C has pa(ps−i) codewords. The dual of C is C⊥ = 〈(x +1)p

s−i〉,
which contains pai codewords.

As a direct consequence of Theorem 3.4, we get a result about self-orthogonal pa-ary nega-
cyclic code of length ps , and the existence of self-dual pa-ary negacyclic code of length ps .

3.5. Corollary. A pa-ary negacyclic code of length ps , 〈(x + 1)i〉 ⊆ F(a, s), is self-orthogonal
if and only if ps

2 � i � ps . Self-dual pa-ary negacyclic code of length ps exists if and only if
p = 2. When p = 2, there is only one self-dual 2a-ary negacyclic code of length 2s , namely,
〈(x + 1)2s−1〉 ⊂ F2a [x]

〈x2s +1〉 .
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4. Hamming distances of negacyclic codes

In this section, in order to simplify notation, for i = 0,1, . . . , ps , we denote each code
〈(x + 1)i〉 by C[i], and its Hamming distance by di . Recall that

F(a, s) = C[0] � C[1] � · · · � C
[
ps − 1

]
� C

[
ps

] = 〈0〉.
Hence, dps = 0, and 1 = d0 � d1 � d2 � · · · � dps−1.

4.1. Proposition. For 1 � i � ps−1, C[i] has Hamming distance di = 2.

Proof. Any codeword of Hamming weight 1 is of the form uxj , which is invertible in F(a, s),
hence C[i] cannot contain any codeword of Hamming weight 1. That means di � 2. Obviously,
x + 1 ∈ C[1], and by Proposition 3.1, xps−1 + 1 = (x + 1)p

s−1 ∈ C[ps−1]. Thus,

2 � d1 � d2 � · · · � dps−1 � 2.

Therefore, di = 2, for 1 � i � ps−1. �
4.2. Proposition. Let α be an integer such that 1 � α � p − 1, then C[αps−1] has Hamming
distance 2 � dαps−1 � α + 1.

Proof. As argued in the proof of Proposition 4.1, dαps−1 � 2. Computing in F(a, s), we get

(x + 1)αps−1 = (
xps−1 + 1

)α =
α∑

j=0

(
α

j

)
xps−1j .

Thus, (x + 1)αps−1
has Hamming weight α + 1, implying 2 � dαps−1 � α + 1. �

In order to compute Hamming distances, we need the concept of coefficient weight of poly-
nomials, which we initiated in [8, Definition 3.5]:

4.3. Definition. Given a polynomial of degree n, f (x) = anx
n + an−1x

n−1 + · · · + a1x + a0, we
define the coefficient weight of f , denoted by cw(f ), to be the integer given by

cw(f ) =
{

0, if f is a monomial,

min{|i − j |: ai �= 0, aj �= 0, i �= j}, otherwise.

Note that cw(f ) is the smallest distance among nonzero terms of f (x). Therefore, if g(x) is
a polynomial whose degree is less than cw(f ), then wt(f (x)g(x)) = wt(f (x)) · wt(g(x)).

4.4. Proposition. C[(p − 1)ps−1] has Hamming distance d(p−1)ps−1 = p.

Proof. By Proposition 4.2, d(p−1)ps−1 � p. Let c(x) be a nonzero codeword of C[(p − 1)ps−1],
that means there is a nonzero element f (x) ∈ F(a, s) such that c(x) = f (x) (x + 1)(p−1)ps−1 =
f (x)

∑p−1 (
p−1)

xps−1j . In light of the Division Algorithm, we can assume without loss of
j=0 j
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generality that deg(f ) < ps−1. Now, since cw(
∑p−1

j=0

(
p−1

j

)
xps−1j ) = ps−1, it follows that

wt(c(x)) = wt(
∑p−1

j=0

(
p−1

j

)
xps−1j ) · wt(f (x)) � p. Therefore d(p−1)ps−1 � p, which forces

d(p−1)ps−1 = p. �
4.5. Proposition. Let mk = ps − ps−k = (p − 1)

∑k
i=1 ps−i , for 1 � k � s, then C[mk] has

Hamming distance dmk
= pk .

Proof. First of all,

(x + 1)mk = (x + 1)(p−1)
∑k

i=1 ps−i =
k∏

i=1

(
xps−i + 1

)p−1 =
k∏

i=1

p−1∑
j=0

(
p − 1

j

)
xps−i j .

If k = 1, we get the desired result from Proposition 4.4. For 2 � k � s, we divide our computation
into k − 1 steps as follows.

Step 1.⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cw(
∑p−1

j=0

(
p−1

j

)
xps−1j ) = ps−1,

deg(
∑p−1

j=0

(
p−1

j

)
xps−2j ) = ps−1 − ps−2,

wt(
∑p−1

j=0

(
p−1

j

)
xps−1j ) = p

�⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

wt(
∏2

i=1
∑p−1

j=0

(
p−1

j

)
xps−i j ) = wt(

∑p−1
j=0

(
p−1

j

)
xps−1j ) · wt(

∑p−1
j=0

(
p−1

j

)
xps−2j )

= p2,

cw(
∏2

i=1
∑p−1

j=0

(
p−1

j

)
xps−i j ) = ps−2,

deg(
∏2

i=1
∑p−1

j=0

(
p−1

j

)
xps−i j ) = (p − 1)(ps−1 + ps−2) = ps − ps−2.

Let c2(x) be any nonzero codeword of C[m2], then there is a nonzero element f2(x) ∈ F(a, s)

such that c2(x) = f2(x)
∏2

i=1
∑p−1

j=0

(
p−1

j

)
xps−i j . Since

deg

(
2∏

i=1

p−1∑
j=0

(
p − 1

j

)
xps−i j

)
= ps − ps−2,

by the Division Algorithm, we can assume without loss of generality that deg(f2) < ps−2. Be-
cause cw(

∏2
i=1

∑p−1
j=0

(
p−1

j

)
xps−i j ) = ps−2, we get wt(c(x)) = wt(

∏2
i=1

∑p−1
j=0

(
p−1

j

)
xps−i j ) ·

wt(f2(x)) � p2. Therefore, dm2 � p2, implying dm2 = p2.

Step 2. From Step 1, we get⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cw(
∏2

i=1
∑p−1

j=0

(
p−1

j

)
xps−i j ) = ps−2,

deg(
∑p−1

j=0

(
p−1

j

)
xps−3j ) = ps−2 − ps−3,

wt(
∏2 ∑p−1 (

p−1)
xps−i j ) = p2
i=1 j=0 j
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�⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

wt(
∏3

i=1
∑p−1

j=0

(
p−1

j

)
xps−i j )

= wt(
∏2

i=1
∑p−1

j=0

(
p−1

j

)
xps−i j ) · wt(

∑p−1
j=0

(
p−1

j

)
xps−3j ) = p3,

cw(
∏3

i=1
∑p−1

j=0

(
p−1

j

)
xps−i j ) = ps−3,

deg(
∏3

i=1
∑p−1

j=0

(
p−1

j

)
xps−i j ) = (p − 1)(ps−1 + ps−2 + ps−3) = ps − ps−3.

Let c3(x) be any nonzero codeword of C[m3], then there is a nonzero element f3(x) ∈F(a, s)

such that c3(x) = f3(x)
∏3

i=1
∑p−1

j=0

(
p−1

j

)
xps−i j . Since

deg

(
3∏

i=1

p−1∑
j=0

(
p − 1

j

)
xps−i j

)
= ps − ps−3,

by the Division Algorithm, we can assume without loss of generality that deg(f3) < ps−3. Be-
cause cw(

∏3
i=1

∑p−1
j=0

(
p−1

j

)
xps−i j ) = ps−3, we get wt(c(x)) = wt(

∏3
i=1

∑p−1
j=0

(
p−1

j

)
xps−i j ) ·

wt(f3(x)) � p3. Therefore, dm3 � p3, implying dm3 = p3.

Step k − 1. From Step k − 2, we get

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cw(
∏k−1

i=1
∑p−1

j=0

(
p−1

j

)
xps−i j ) = ps−k+1,

deg(
∑p−1

j=0

(
p−1

j

)
xps−kj ) = ps−k+1 − ps−k,

wt(
∏k−1

i=1
∑p−1

j=0

(
p−1

j

)
xps−i j ) = pk−1

�⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

wt(
∏k

i=1
∑p−1

j=0

(
p−1

j

)
xps−i j )

= wt(
∏k−1

i=1
∑p−1

j=0

(
p−1

j

)
xps−i j ) · wt(

∑p−1
j=0

(
p−1

j

)
xps−kj ) = pk,

cw(
∏k

i=1
∑p−1

j=0

(
p−1

j

)
xps−i j ) = ps−k,

deg(
∏k

i=1
∑p−1

j=0

(
p−1

j

)
xps−i j ) = (p − 1)

∑k
i=1 ps−i = ps − ps−k.

Let ck(x) be any nonzero codeword of C[mk], then there is a nonzero element fk(x) ∈ F(a, s)

such that ck(x) = fk(x)
∏k

i=1
∑p−1

j=0

(
p−1

j

)
xps−i j . Since

deg

(
k∏

i=1

p−1∑
j=0

(
p − 1

j

)
xps−i j

)
= ps − ps−k,

by the Division Algorithm, we can assume without loss of generality that deg(fk) < ps−k . Be-
cause cw(

∏k
i=1

∑p−1
j=0

(
p−1

j

)
xps−i j ) = ps−k , we get wt(c(x)) = wt(

∏k
i=1

∑p−1
j=0

(
p−1

j

)
xps−i j ) ·

wt(fk(x)) � pk. Therefore, dmk
� pk , implying dmk

= pk . �
4.6. Proposition. Let 1 � t � p − 1, and (p − 1)ps−1 + (t − 1)ps−2 + 1 � i � (p − 1)ps−1 +
tps−2. Then C[i] has Hamming distance di = (t + 1)p.
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Proof. Let i = (p − 1)ps−1 + (t − 1)ps−2 + l, 1 � l � ps−2. Then

(x + 1)i = (x + 1)(p−1)ps−1
(x + 1)(t−1)ps−2+l .

Let c(x) be a nonzero codeword of C[i], then there is a nonzero element f (x) ∈ F(a, s) such
that c(x) = (x + 1)i f (x). By the Division Algorithm, we can assume without loss of generality
that deg(f ) < ps − i = ps−1 − (t − 1)ps−2 − l. Now

c(x) = (x + 1)i f (x) = (x + 1)(p−1)ps−1[
(x + 1)(t−1)ps−2+lf (x)

]
.

As in Proposition 4.4, cw((x + 1)(p−1)ps−1
) = ps−1, and wt((x + 1)(p−1)ps−1

) = p. Clearly,

deg
(
(x + 1)(t−1)ps−2+lf (x)

) = (t − 1)ps−2 + l + deg(f ) < ps−1,

therefore

wt
(
c(x)

) = wt
(
(x + 1)(p−1)ps−1) · wt

(
(x + 1)(t−1)ps−2+lf (x)

)
= p · wt

(
(x + 1)(t−1)ps−2+lf (x)

)
.

Now the codeword (x + 1)(t−1)ps−2+lf (x), with deg(f ) < ps−1 − (t − 1)ps−2 − l, can be
viewed as an element of the code 〈(x + 1)(t−1)ps−2〉 ⊂ F(a, s − 1), which has Hamming dis-
tance t + 1 as we will show in Proposition 4.10. Hence, wt((x + 1)(t−1)ps−2+lf (x)) � t + 1,
implying wt(c(x)) � (t + 1)p. Consequently, di = (t + 1)p. �

Using arguements similar to Propositions 4.5 and 4.6, we get the Hamming distances of all
negacyclic codes C[i] when (p − 1)ps−1 � i � ps − 1.

4.7. Proposition. Let t, k be integers such that 1 � t � p − 1, and 1 � k � s − 1. For integer i

with

(p − 1)

k∑
i=1

ps−i + (t − 1)ps−k−1 + 1 � i � (p − 1)

k∑
i=1

ps−i + tps−k−1,

i.e.,

ps − ps−k + (t − 1)ps−k−1 + 1 � i � ps − ps−k + tps−k−1,

the code C[i] has Hamming distance di = (t + 1)pk .

4.8. Lemma. For any prime p, and integer j with 1 � j � p − 1, the following hold:

(a)
(
p−2

j

) ≡ (j + 1)(−1)j (mod p),

(b)
(
p−1

j

) ≡ (−1)j (mod p),

(c) k
(
p−2

j

) + (
p−2
j−1

) ≡ (kj + k − j)(−1)j (mod p).
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Proof. (a) follows from

(
p − 2

j

)
= (p − 2) · · · (p − 1 − j)

j ! ≡ (−1)j (j + 1)!
j ! (mod p) ≡ (j + 1)(−1)j (mod p).

Now using (a), we get

(
p − 1

j

)
=

(
p − 2

j

)
+

(
p − 2

j − 1

)
≡ (j + 1)(−1)j + j (−1)j−1 (mod p) ≡ (−1)j (mod p),

proving (b). Finally, (c) follows from (a) and (b) as

k

(
p − 2

j

)
+

(
p − 2

j − 1

)
= (k − 1)

(
p − 2

j

)
+

(
p − 1

j

)

≡ (k − 1)(j + 1)(−1)j + (−1)j (mod p)

≡ (kj + k − j)(−1)j (mod p). �
4.9. Proposition. Let β be an integer such that 1 � β � p − 2, then the code C[βps−1 + 1] has
Hamming distance dβps−1+1 � β + 2.

Proof. We first show that the assertion holds for β = p − 2. Let c(x) be any nonzero element
of C[(p − 2)ps−1 + 1], then there is a nonzero element f (x) ∈ F(a, s) such that c(x) = (x +
1)(p−2)ps−1

(x + 1)f (x). By the Division Algorithm, we can assume that deg(f ) < ps − (p −
2)ps−1 − 1 = 2ps−1 − 1. Denote g(x) = (x + 1)f (x), then wt(g(x)) � 2, and

c(x) = (x + 1)(p−2)ps−1
g(x) =

p−2∑
j=0

(
p − 2

j

)
xps−1j g(x).

Note that cw(
∑p−2

j=0

(
p−2

j

)
xps−1j ) = ps−1, and wt(

∑p−2
j=0

(
p−2

j

)
xps−1j ) = p−1. We consider five

cases.

Case 1. wt(g(x)) = 2, and cw(g(x)) �= ps−1. Then

wt
(
c(x)

) = wt

(
p−2∑
j=0

(
p − 2

j

)
xps−1j

)
· wt

(
g(x)

) = 2(p − 1) � p.

Case 2. wt(g(x)) = 2, and cw(g(x)) = ps−1. As g(x) = (x + 1)f (x), g(x) must be of the form
g(x) = rxi(xps−1 + 1) = rxi(x + 1)p

s−1
, where 0 � i � ps−1 − 1, and r ∈ Fpa − {0}. Thus,

c(x) = rxi(x + 1)p
s−1

(x + 1)(p−2)ps−1 = rxi (x + 1)(p−1)ps−1 = rxi

p−1∑
j=0

(
p − 1

j

)
xps−1j .

Hence, wt(c(x)) = p.



32 H.Q. Dinh / Finite Fields and Their Applications 14 (2008) 22–40
Case 3. wt(g(x)) � 3, and there is no pair of (nonzero) terms r1x
i1 , r2x

i2 of g(x) such that
|i1 − i2| = ps−1. Then

wt
(
c(x)

) = wt

(
p−2∑
j=0

(
p − 2

j

)
xps−1j

)
· wt

(
g(x)

)
� 3(p − 1) > p.

Case 4. wt(g(x)) � 3, and there is exactly one pair of (nonzero) terms r1x
i1 , r2x

i2 of g(x) such
that |i1 − i2| = ps−1. Let g1(x) = r1x

i1 + r2x
i2 , and g2(x) = g(x) − g1(x). Without loss of

generality, g1(x) can be represented as g1(x) = rxi(kxps−1 + 1), where 0 � i � ps−1 − 1, and
r, k ∈ Fpa − {0}. Therefore,

(x + 1)(p−2)ps−1
g1(x) = rxi

(
kxps−1 + 1

)p−2∑
j=0

(
p − 2

j

)
xps−1j

= rxi

[
kx(p−1)ps−1 +

(
p−2∑
j=1

αjx
ps−1j

)
+ 1

]
,

where, for 1 � j � p − 2,

αj = k

(
p − 2

j

)
+

(
p − 2

j − 1

)
.

By Lemma 4.8(c), in Fpa , αj = (kj + k − j)(−1)j . Thus, αj = 0 if and only if kj + k − j =
0 (mod p), i.e., j (k−1) = −k (mod p). Hence, αj = 0 if and only if k �= 1, and j = −k(k−1)−1.
That means, for 1 � j � p − 2, there is at most one value of j which makes aj = 0. Therefore,

wt((x + 1)(p−2)ps−1
g1(x)) � p − 1. On the other hand,

wt
(
(x + 1)(p−2)ps−1

g2(x)
) = wt

(
p−2∑
j=0

(
p − 2

j

)
xps−1j

)
· wt

(
g2(x)

)
� p − 1.

Hence,

wt
(
c(x)

) = wt
(
(x + 1)(p−2)ps−1

g1(x)
) + wt

(
(x + 1)(p−2)ps−1

g2(x)
)
� 2(p − 1) � p.

Case 5. wt(g(x)) � 3, and there are more than one pairs of (nonzero) terms r1x
i1 , r2x

i2 of g(x)

such that |i1 − i2| = ps−1. It is sufficient to assume that there are two such pairs, i.e., there are
terms r1x

i1 , r2x
i2 , r3x

i3 , r4x
i4 of g(x) such that |i1 − i2| = |i3 − i4| = ps−1. Since, deg(g(x)) <

2ps−1, all terms r1x
i1 , r2x

i2 , r3x
i3 , r4x

i4 are distinct. Let g1(x) = r1x
i1 + r2x

i2 , g3(x) = r3x
i3 +

r4x
i4 , and g2(x) = g(x) − g1(x) − g3(x). As obtained in Case 4, wt((x + 1)(p−2)ps−1

g1(x)) �
p − 1, and wt((x + 1)(p−2)ps−1

g3(x)) � p − 1. Whence,

wt
(
c(x)

) = wt
(
(x + 1)(p−2)ps−1

g1(x)
) + wt

(
(x + 1)(p−2)ps−1

g3(x)
)

+ wt
(
(x + 1)(p−2)ps−1

g2(x)
)
� 2(p − 1) � p.
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Therefore, we have shown that the Hamming weight of any nonzero element c(x) in
C[(p − 2)ps−1 + 1] is at least p, implying C[(p − 2)ps−1 + 1] has Hamming distance
d(p−2)ps−1+1 � p, i.e., the statement is true for β = p − 2. Repeating this process for β =
p − 3,p − 4, . . . ,2,1, we get that the statement holds for all β with 1 � β � p − 2. �
4.10. Proposition. Let β , γ be integers such that 0 � β � p − 2, and βps−1 + 1 � γ �
(β + 1)ps−1, then C[γ ] has Hamming distance dγ = β + 2.

Proof. If β = 0, the statement is true by Proposition 4.1. Consider 1 � β � p − 2, as βps−1 +
1 � γ � (β + 1)ps−1, we get C[βps−1 + 1] � C[γ ] � C[(β + 1)ps−1], and hence, dβps−1+1 �
dγ � d(β+1)ps−1 . On the other hand, in light of Propositions 4.9 and 4.2, dβps−1+1 � β + 2, and
d(β+1)ps−1 � β + 2. Hence, the conclusion follows. �

Thus, we have obtained the Hamming distances of all pa-ary negacyclic codes of length ps .
We summarize that in the following theorem.

4.11. Theorem. Let C be a pa-ary negacyclic codes of length ps , then C = 〈(x +1)i〉 ⊆ Fpa [x]
〈xps +1〉 ,

for i ∈ {0,1, . . . , ps}. The Hamming distance di of C is determined by

di =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if i = 0,

β + 2, if βps−1 + 1 � i � (β + 1)ps−1 where 0 � β � p − 2,

(t + 1)pk, if ps − ps−k + (t − 1)ps−k−1 + 1 � i � ps − ps−k + tps−k−1

where 1 � t � p − 1, and 1 � k � s − 1,

0, if i = ps .

4.12. Corollary. Let C be a 2a-ary cyclic codes of length 2s , then C = 〈(x + 1)i〉 ⊆ F2a [x]
〈x2s +1〉 , for

i ∈ {0,1, . . . ,2s}. The Hamming distance di of C is determined by

di =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if i = 0,

2, if 1 � i � 2s−1,

2k+1, if 2s − 2s−k + 1 � i � 2s − 2s−k + 2s−k−1 where 1 � k � s − 1,

0, if i = 2s .

5. Hamming weight enumerators and distributions of negacyclic codes

5.1. Proposition. Codewords of the code C = 〈(x + 1)p
s−1〉 ⊂ F(a, s) are{

η

[
1 +

(
ps − 1

1

)
x + · · · +

(
ps − 1

ps − 2

)
xps−2 + xps−1

] ∣∣∣ η ∈ Fpa

}
.

In particular, its Hamming weight distributions and enumerator are

Aj =
⎧⎨
⎩

1, if j = 0,

pa − 1, if j = ps ,

0, if 1 � j � ps − 1,

WC(x, y) = xps + (
pa − 1

)
yps

.
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Proof. In F(a, s), (x + 1)p
s−1 = 1 + (

ps−1
1

)
x + · · · + (

ps−1
ps−2

)
xps−2 + xps−1, the result follows

since, by Theorem 3.4, |C| = pa . �
5.2. Proposition. The code C = 〈x + 1〉 ⊂ F(a, s) has Hamming weight distributions and enu-
merator as

Aj = pa − 1

pa

(
ps

j

)[(
pa − 1

)j−1 + (−1)j
]
,

WC(x, y) = pa − 1

pa

ps∑
j=0

(
ps

j

)[(
pa − 1

)j−1 + (−1)j
]
xps−j yj .

Proof. In light of Theorem 3.4, the dual code of C is C⊥ = 〈(x + 1)p
s−1〉. Hence, applying

MacWilliams identities give

WC(x, y) = 1

|C⊥|WC⊥
(
x + (

pa − 1
)
y, x − y

) = 1

pa

[
x + (

pa − 1
)
y
]ps + pa − 1

pa
(x − y)p

s

= 1

pa

ps∑
j=0

(
ps

j

)
xps−j

(
pa − 1

)j
yj + pa − 1

pa

ps∑
j=0

(
ps

j

)
xps−j (−1)j yj

= pa − 1

pa

ps∑
j=0

(
ps

j

)[(
pa − 1

)j−1 + (−1)j
]
xps−j yj . �

5.3. Proposition. The code C = 〈(x + 1)(p−1)ps−1〉 ⊂ F(a, s) has Hamming weight distributions
and enumerator as

Aj =
{(

ps−1

t

)
(pa − 1)t , if j = pt , for 0 � t � ps−1,

0, otherwise,

WC(x, y) =
ps−1∑
t=0

(
ps−1

t

)(
pa − 1

)t
xps−ptypt .

Proof. Each codeword c(x) in C has the form c(x) = (x + 1)(p−1)ps−1
f (x). By the Division

Algorithm, we can assume without loss of generality that deg(f ) < ps − (p − 1)ps−1 = ps−1.
As in Proposition 4.4, wt((x + 1)(p−1)ps−1

) = p, and cw((x + 1)(p−1)ps−1
) = ps−1 > deg(f ).

It means wt(c(x)) = wt((x + 1)(p−1)ps−1
) · wt(f (x)) = p · wt(f (x)). Therefore, the Hamming

weight distributions of C are

Aj =
{(

ps−1

t

)
(pa − 1)t , if j = pt , for 0 � t � ps−1,
0, otherwise,
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and hence the Hamming weight enumerator of C is

WC(x, y) =
ps−1∑
t=0

(
ps−1

t

)(
pa − 1

)t
xps−ptypt . �

More generally, our computation in Proposition 4.5 can be used to give a connection between

the Hamming weight distributions of the code 〈xγ+(p−1)
∑k

i=1 ps−i 〉 ⊂ F(a, s) and that of the
code 〈(x + 1)γ 〉 ⊂ F(a, s − k), for 1 � k � s and 0 � γ � ps−k − 1, as follows.

5.4. Theorem. Let k, γ be integers such that 1 � k � s, and 0 � γ � ps−k − 1. Then the code

C = 〈(x + 1)γ+ps−ps−k 〉 ⊂ F(a, s) has Hamming weight distributions A
γ+ps−ps−k

j (a, s), 0 �
j � ps , and Hamming weight enumerator WC(x, y) as

A
γ+ps−ps−k

j (a, s) =
{

A
γ
t (a, s − k), if j = pkt , for 0 � t � ps−k ,

0, otherwise,

WC(x, y) =
ps−k∑
t=0

A
γ
t (a, s − k)xps−pkt ypkt ,

where A
γ
t (a, s − k) is the number of codewords of length t of the code 〈(x + 1)γ 〉 ⊂ F(a, s − k).

Proof. Note that ps − ps−k = (p − 1)
∑k

i=1 ps−i . Hence, computing in F(a, s),

(x + 1)p
s−ps−k = (x + 1)(p−1)

∑k
i=1 ps−i =

k∏
i=1

(
xps−i + 1

)p−1 =
k∏

i=1

p−1∑
j=0

(
p − 1

j

)
xps−i j .

Also, as computed in Proposition 4.5, we get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt
(
(x + 1)p

s−ps−k ) = wt
(
(x + 1)(p−1)

∑k
i=1 ps−i ) = wt

(
k∏

i=1

p−1∑
j=0

(
p − 1

j

)
xps−i j

)
= pk,

cw
(
(x + 1)p

s−ps−k ) = cw
(
(x + 1)(p−1)

∑k
i=1 ps−i ) = cw

(
k∏

i=1

p−1∑
j=0

(
p − 1

j

)
xps−i j

)
= ps−k,

deg
(
(x + 1)p

s−ps−k ) = ps − ps−k.

Consider an arbitrary nonzero codeword c(x) of C, then there is a nonzero element
f (x) ∈ F(a, s) such that c(x) = (x + 1)γ+ps−ps−k

f (x) = (x + 1)p
s−ps−k

(x + 1)γ f (x). As
deg((x + 1)p

s−ps−k
) = ps − ps−k , by the Division Algorithm, it can be assumed without loss of

generality that deg((x + 1)γ f (x)) < ps−k . Because cw((x + 1)p
s−ps−k

) = ps−k , it follows that

wt
(
c(x)

) = wt
(
(x + 1)p

s−ps−k ) · wt
(
(x + 1)γ f (x)

) = pk · wt
(
(x + 1)γ f (x)

)
.
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As f (x) ∈ F(a, s) with deg((x+1)γ f (x)) < ps−k , (x+1)γ f (x) can be viewed as an element of
the code Cγ = 〈(x + 1)γ 〉 ⊂ F(a, s − k), whose Hamming weight distributions are A

γ
t (a, s − k),

0 � t � ps−k .
Thus, the Hamming weight distributions of C are

A
γ+ps−ps−k

j (a, s) =
{

A
γ
t (a, s − k), if j = pkt , for 0 � t � ps−k ,

0, otherwise,

and the Hamming weight enumerator of C is

WC(x, y) =
ps−k∑
t=0

A
γ
t (a, s − k)xps−pkt ypkt . �

5.5. Corollary. For each code C, let Aj be the number of codewords of Hamming weight j

in C, 0 � j � ps , and WC(x, y) be the Hamming weight enumerator of C. Let 1 � k � s, and
Pm(x;n) be the Krawtchouk polynomials in x of degree m, as defined in Proposition 2.3:

Pm(x;n) =
m∑

i=0

(−1)i
(
pa − 1

)m−i
(

x

i

)(
n − x

m − i

)
.

Then

(i) The code C = 〈(x + 1)p
s−ps−k 〉 ⊂ F(a, s):

Aj =
{(

ps−k

t

)
(pa − 1)t , if j = pkt , for 0 � t � ps−k ,

0, otherwise,

WC(x, y) =
ps−k∑
t=0

(
ps−k

t

)(
pa − 1

)t
xps−pktypkt .

(ii) The code C = 〈(x + 1)1+ps−ps−k 〉 ⊂ F(a, s):

Aj =
{

pa−1
pa

(
ps−k

t

)[(pa − 1)t−1 + (−1)t ], if j = pkt , for 0 � t � ps−k ,

0, otherwise,

WC(x, y) = pa − 1

pa

ps−k∑
t=0

(
ps−k

t

)[(
pa − 1

)t−1 + (−1)t
]
xps−pkt ypkt .

(iii) The code C = 〈(x + 1)p
s−k 〉 ⊂ F(a, s):

Aj = 1

paps−k

ps−k∑ (
ps−k

t

)(
pa − 1

)t
Pj

(
pkt;ps

)
,

t=0
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WC(x, y) = 1

paps−k

ps−k∑
t=0

(
ps−k

t

)(
pa − 1

)t [
x + (

pa − 1
)
y
]ps−pkt

(x − y)p
kt .

(iv) The code C = 〈(x + 1)p
s−k−1〉 ⊂ F(a, s):

Aj = pa − 1

paps−k

ps−k∑
t=0

(
ps−k

t

)[(
pa − 1

)t−1 + (−1)t
]
Pj

(
pkt;ps

)
,

WC(x, y) = pa − 1

paps−k

ps−k∑
t=0

(
ps−k

t

)[(
pa − 1

)t−1 + (−1)t
][

x + (
pa − 1

)
y
]ps−pkt

(x − y)p
kt .

Proof. Using Theorem 5.4 for γ = 0 and γ = 1, we get (i) and (ii). Clearly, 〈(x + 1)p
s−ps−k 〉 is

the dual of 〈(x + 1)p
s−k 〉, and 〈(x + 1)1+ps−ps−k 〉 is the dual 〈(x + 1)p

s−k−1〉, hence, applying
Theorem 2.2 and Proposition 2.3 to (i) and (ii) gives (iii) and (iv). �
6. Cyclic codes

If p = 2, then the classes of negacyclic and cyclic codes over F2a coincide. When p is odd,
let n be an odd integer, and consider the map

ξ :
Fpa [x]

〈xn + 1〉 → Fpa [x]
〈xn − 1〉

given by ξ(f (x)) = f (−x). For polynomial f (x), g(x) ∈ Fpa [x], f (x) ≡ g(x) (mod xn + 1) if
and only if there exists a polynomial h(x) ∈ Fpa [x] such that f (x) − g(x) = h(x)(xn + 1), if
and only if

f (−x) − g(−x) = h(−x)
[
(−x)n + 1

] = −h(−x)
(
xn − 1

)

if and only if f (−x) ≡ g(−x) (mod xn − 1). That means, for f,g ∈ Fpa [x]
〈xn+1〉 , ξ(f (x)) = ξ(g(x))

if and only if f (x) = g(x), whence, ξ is well defined and one-to-one. Clearly, ξ is onto and it is
easy to verify that ξ is a ring homomorphism. Hence, ξ is a ring isomorphism. Thus, we get the
following result.

6.1. Proposition. Let p be an odd prime, then the map ξ :
Fpa [x]
〈xps +1〉 → Fpa [x]

〈xps −1〉 , given by f (x) �→
f (−x), is a ring isomorphism. In particular, for A ⊆ Fpa [x]

〈xps +1〉 ,B ⊆ Fpa [x]
〈xps −1〉 such that ξ(A) = B ,

then A is an ideal of
Fpa [x]
〈xps +1〉 if and only if B is an ideal of

Fpa [x]
〈xps −1〉 . Equivalently, A is a negacyclic

code of length ps over Fpa if and only if B is a cyclic code of length ps over Fpa .

Therefore, our results about negacyclic codes of length ps over Fpa in Sections 3–5 can be
carried correspondingly to cyclic codes of length ps over Fpa .
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6.2. Theorem. (Cf. Theorems 3.3, 3.4.) pa-ary cyclic codes of length ps are precisely the ideals

〈(x − 1)i〉, i = 0,1, . . . , ps , of the ring
Fpa [x]
〈xps −1〉 . A cyclic code C = 〈(x − 1)i〉 has pa(ps−i) code-

words. The dual of C is C⊥ = 〈(x − 1)p
s−i〉, which contains pai codewords.

6.3. Corollary. (Cf. Corollary 3.5.) A pa-ary cyclic code of length ps , 〈(x − 1)i〉 ⊆ Fpa [x]
〈xps −1〉 , is

self-orthogonal if and only if ps

2 � i � ps . Self-dual pa-ary cyclic code of length ps exists if and
only if p = 2. When p = 2, there is only one self-dual 2a-ary cyclic code of length 2s , namely,
〈(x − 1)2s−1〉 ⊂ F2a [x]

〈x2s −1〉 .

6.4. Theorem. (Cf. Theorem 4.11.) Let C be a pa-ary cyclic codes of length ps , then C =
〈(x − 1)i〉 ⊆ Fpa [x]

〈xps −1〉 , for i ∈ {0,1, . . . , ps}. The Hamming distance di of C is determined by

di =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if i = 0,

β + 2, if βps−1 + 1 � i � (β + 1)ps−1 where 0 � β � p − 2,

(t + 1)pk, if ps − ps−k + (t − 1)ps−k−1 + 1 � i � ps − ps−k + tps−k−1

where 1 � t � p − 1, and 1 � k � s − 1,

0, if i = ps .

6.5. Proposition. For each code C, let Aj be the number of codewords of Hamming weight j

in C, and WC(x, y) be the Hamming weight enumerator of C. Let 1 � k � s, and Pm(x;n) be
the Krawtchouk polynomials in x of degree m, as defined in Proposition 2.3:

Pm(x;n) =
m∑

i=0

(−1)i
(
pa − 1

)m−i
(

x

i

)(
n − x

m − i

)
.

Then

(i) The cyclic code C = 〈(x − 1)p
s−1〉 ⊂ Fpa [x]

〈xps −1〉 (cf. Proposition 5.1):

Aj =
⎧⎨
⎩

1, if j = 0,

pa − 1, if j = ps ,

0, if 1 � j � ps − 1.

WC(x, y) = xps + (
pa − 1

)
yps

.

(ii) The cyclic code C = 〈x − 1〉 ⊂ Fpa [x]
〈xps −1〉 (cf. Proposition 5.2):

Aj = pa − 1

pa

(
ps

i

)[(
pa − 1

)i−1 + (−1)i
]
,

WC(x, y) = pa − 1

pa

ps∑
j=0

(
ps

i

)[(
pa − 1

)i−1 + (−1)i
]
xps−iyi .
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(iii) The code C = 〈(x − 1)p
s−ps−k 〉 ⊂ Fpa [x]

〈xps −1〉 (cf. Corollary 5.5(i)):

Aj =
{(

ps−k

t

)
(pa − 1)t , if j = pkt , for 0 � t � ps−k ,

0, otherwise,

WC(x, y) =
ps−k∑
t=0

(
ps−k

t

)(
pa − 1

)t
xps−pktypkt .

(iv) The cyclic code C = 〈(x − 1)1+ps−ps−k 〉 ⊂ Fpa [x]
〈xps −1〉 (cf. Corollary 5.5(ii)):

Aj =
{

pa−1
pa

(
ps−k

t

)[(pa − 1)t−1 + (−1)t ], if j = pkt , for 0 � t � ps−k ,

0, otherwise,

WC(x, y) = pa − 1

pa

ps−k∑
t=0

(
ps−k

t

)[(
pa − 1

)t−1 + (−1)t
]
xps−pkt ypkt .

(v) The cyclic code C = 〈(x − 1)p
s−k 〉 ⊂ Fpa [x]

〈xps −1〉 (cf. Corollary 5.5(iii)):

Aj = 1

paps−k

ps−k∑
t=0

(
ps−k

t

)(
pa − 1

)t
Pj

(
pkt;ps

)
,

WC(x, y) = 1

paps−k

ps−k∑
t=0

(
ps−k

t

)(
pa − 1

)t [
x + (

pa − 1
)
y
]ps−pkt

(x − y)p
kt .

(vi) The cyclic code C = 〈(x − 1)p
s−k−1〉 ⊂ Fpa [x]

〈xps −1〉 (cf. Corollary 5.5(iv)):

Aj = pa − 1

paps−k

ps−k∑
t=0

(
ps−k

t

)[(
pa − 1

)t−1 + (−1)t
]
Pj

(
pkt;ps

)
,

WC(x, y) = pa − 1

paps−k

ps−k∑
t=0

(
ps−k

t

)[(
pa − 1

)t−1 + (−1)t
][

x + (
pa − 1

)
y
]ps−pkt

(x − y)p
kt .

6.6. Theorem (cf. Theorem 5.4). Let k, γ be integers such that 1 � k � s, and 0 � γ � ps−k − 1.

Then the cyclic code C = 〈(x − 1)γ+ps−ps−k 〉 ⊂ Fpa [x]
〈xps −1〉 has Hamming weight distributions

A
γ+ps−ps−k

j (a, s), 0 � j � ps , and Hamming weight enumerator WC(x, y) as

A
γ+ps−ps−k

j (a, s) =
{

A
γ
t (a, s − k), if j = pkt , for 0 � t � ps−k ,
0, otherwise,
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WC(x, y) =
ps−k∑
t=0

A
γ
t (a, s − k)xps−pkt ypkt ,

where A
γ
t (a, s − k) is the number of codewords of length t of the cyclic code 〈(x − 1)γ 〉 ⊂

Fpa [x]
〈xps−k −1〉 .
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