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a b s t r a c t

Phospholipids are essential for vesicle fusion and fission and both are fundamental events for Entamoeba
histolytica phagocytosis. Our aim was to identify the lysobisphosphatidic acid (LBPA) in trophozoites and
investigate its cellular fate during endocytosis. LBPA was detected by TLC in a 0.5 Rf spot of total lipids,
which co-migrated with the LBPA standard. The 6C4 antibody, against LBPA recognized phospholipids
extracted from this spot. Reverse phase LC-ESI-MS and MS/MS mass spectrometry revealed six LBPA
species of m/z 772.58–802.68. LBPA was associated to pinosomes and phagosomes. Intriguingly, during
pinocytosis, whole cell fluorescence quantification showed that LBPA dropped 84% after 15 min in-
cubation with FITC-Dextran, and after 60 min, it increased at levels close to steady state conditions.
Similarly, during erythrophagocytosis, after 15 min, LBPA also dropped in 36% and increased after 60 and
90 min. EhRab7A protein appeared in some vesicles with LBPA in steady state conditions, but after
phagocytosis co-localization of both molecules increased and in late phases of erythrophagocytosis they
were found in huge phagosomes or multivesicular bodies with many intraluminal vacuoles, and sur-
rounding ingested erythrocytes and phagosomes. The 6C4 and anti-EhADH (EhADH is an ALIX family
protein) antibodies and Lysotracker merged in about 50% of the vesicles in steady state conditions and
throughout phagocytosis. LBPA and EhADH were also inside huge phagosomes. These results demon-
strated that E. histolytica LBPA is associated to pinosomes and phagosomes during endocytosis and
suggested differences of LBPA requirements during pinocytosis and phagocytosis.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Entamoeba histolytica is the protozoan causative agent of hu-
man amoebiasis. It affects 50 million people around the world
producing dysentery and liver abscesses [1]. Trophozoites are
professional phagocytes and constitute the mobile and invasive
phase of the parasite. Several proteins participating in phagocy-
tosis have been identified, among them the Gal/GalNac lectin [2],
EhC2PK, EhCaBP1, EhAK1 [3,4], several EhRab proteins [5–9] and
the EhCPADH complex [10]. EhCPADH is formed by a protease
(EhCP112) and an adhesin (EhADH) [10], a member of the ALIX
family [11,12]. Lipids also influence the endosome membrane
properties by changing biophysical characteristics and by recruit-
ing proteins involved in membrane remodeling [13]. In addition,
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they protect trophozoites from the huge amount of endogenous
proteases and amoebapore-forming proteins [14]. It has been re-
ported that phosphoinositides are involved in the phagocytic cup
formation, but not in the initial host cell interaction, neither at
intermediate and late phases of phagocytosis and nor during pi-
nocytosis [15,16]; though, earlier publications suggested that PI3-
kinase inhibitors, diminish pinocytosis and parasite-host ad-
herence [17]. Cholesterol is not synthesized by the parasite, even
when it is essential for virulence expression [17,18]. Another in-
triguingly fact is that trophozoites have a higher ceramide pro-
portion in comparison with mammalian cells [13,19]. However, the
biological significance of this has not been fully elucidated.

In eukaryotes, plasma membrane invagination to trap the prey
or cargo molecules is followed by endosomes and multivesicular
bodies (MVBs) formation. In MVBs, some intraluminal vesicles
(ILVs), carrying cargo molecules, are fused to other vesicles and
lysosomes; whereas, vesicles carrying receptors are recycled to
plasma membrane and other organelles [20]. Throughout
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maturation, endosomes modify pH, size, appearance and protein
and lipids content [21,22]. The endosomal-sorting complex re-
quired for transport (ESCRT) and its accessory proteins, Alix and
Vps4 ATPasa [23,24], participate in endocytosis. In addition, PI3P
[25], PI(3,5)P2 [26], cholesterol [27] and the phospholipid lysobi-
sphosphatidic acid (LBPA), also named bis(monoacyl)glycerolpho-
sphate(BMP) confer to the membranes specific characteristics to
be remodeled during endocytosis [28,29].

Functional LPBA presents one fatty acid chain attached to the
C2 of the two-glycerol backbones [30,31] and in general, its pro-
portion of polyunsaturated acyl chains is higher than in other
phospholipids [32–34]. LBPA is found mainly in acidic vesicles
with high hydrolases content [35,36] and it is highly resistant to
lipases and phospholipases. LBPA is present in animal tissues in a
small amount, but it is enriched in vesicles inside late endosomes
[37–39]. Using BHK cell membranes of late endosomes, Kobayashi
et al. [38] generated a monoclonal antibody (6C4) against LBPA.
LBPA is associated with Rab7, and interacts Alix, Niemann-Pick C
(NPC) and saposin-C proteins during endocytosis. It participates in
cholesterol distribution and homeostasis [28,37,38,40,41], sphin-
golipid metabolism [42], viral infection [43] and autoimmune
diseases. Thus, LBPA is a critical component of endosomal/lyso-
somal network and it is essential for MVBs formation.

LBPA had not been identified in E. histolytica trophozoites. Here,
we used the 6C4 antibody, reverse phase HPLC coupled to elec-
trospray ionization mass spectrometry (ESI-MS) and tandem mass
spectrometry (MS/MS) techniques, to reveal LBPA as a component
of its phospholipid fraction. Our results demonstrated that LBPA is
in endosomes during dextran uptake and erythrophagocytosis and
it appeared associated to EhRab7A and EhADH proteins.
2. Materials and methods

2.1. Reference standards

(S,S)-2,2´-bisoleoyl-LBPA phospholipid standard was purchased
from Echelon Bioscience in its lyophilized tetrabutylammonium
salt.
2.2. Reagents

Dextran and FITC-dextran (mol wt 70,000) were from Sigma–
Aldrich. Solvents for high performance liquid chromatography
(HPLC) water (ChromARs) and n-hexane (UltimARs) were ob-
tained from Macron Fine Chemicals. Anti-LBPA monoclonal anti-
bodies (6C4 supernatant) were purchased from Echelon
Bioscience. Secondary antibodies were purchased from Zymed and
Invitrogen; anti-EhADH antibodies were generated in our group by
immunizing rabbits twice each two weeks with 120 μg of a
polypeptide corresponding to the EhADH C-terminus (566-
QCVINLLKEFDNTKNI-582) coupled to the carrier protein Keyhole
limpet hemocyanin (KLH), using TiterMax Classical Adjuvant (1:1
v/v) (Sigma-Aldrich). Anti-EhRab7A antibodies were kindly given
by Dr. Tomoyoshi Nozaki [7].

2.3. E. histolytica cultures

Trophozoites of E. histolytica (strain HM1:IMSS) were axenically
cultured in TYI-S-33 medium at 37 °C and harvested after 72 h
[44]. Cell viability was monitored by optical microscopy and using
Trypan blue dye exclusion test. Experiments presented here were
performed at least three times in duplicate.
2.4. Lipids extraction procedure

Total lipids were extracted according to Folch [45]. Briefly,
120�106 trophozoites were placed in an extraction vial with 5 mL
of methanol and incubated 20 min at 55 °C. Then, 2 volumes of
chloroform were added and after sonication and vortexing, sam-
ples were incubated overnight (ON) at room temperature (RT).
Samples were vortexed again, centrifuged for 10 min at 866g and
filtered through a disc filter Whatman 1 M. Organic layer was
collected, dried under liquid nitrogen and stored at �20 °C. An
aliquot of total lipid extracts was used to determine phospholipids
content [46].

2.5. Enzyme linked immunoassays (ELISA)

Wells of microtiter plates were coated with 0, 40 or 100 μg of
trophozoites lipid extract dissolved in 100 μl of methanol:chloro-
form (98:2% v/v) and evaporated at RT. As a negative control, we
added to other wells 40 or 100 μg of trophozoite proteins. As a
positive control we employed 10 μg of (S,S)-2,2´-bisoleoyl-LBPA
standard. Samples were blocked with 10% fetal bovine serum (FBS)
in PBS and then, 10 μg/mL of 6C4 antibody (1:50) in PBS were
added to the wells, which then, were incubated for 90 min at RT.
Antibody was detected by anti-mouse horseradish peroxidase
(HRP)-conjugated secondary antibody (1:3000), incubated for 1 h
at RT and developed by O-phenylendiamine substrate (Zymed).
Optical density (OD492) was measured in a spectrophotometer
(iMark, Biorad).

2.6. Thin layer chromatography (TLC)

Trophozoites lipid extracts were solubilized and spotted on TLC
silica plates (Merck). Plates were developed by n-hexane:iso-
propanol:water (12:16:3 v/v/v) at RT for 6 h. Phospholipids were
revealed by iodine vapors and they were identified by comparison
with (S,S)-2,2´-bisoleoyl-LBPA standard spotted on the same silica
plate. Solvent was removed using nitrogen flow.

2.7. Dot blot assays

Phospholipid fractions separated by TLC were scrapped off
from the silica and dissolved in isopropanol/water (95:5%). Then,
50 μg of each one of the lipids extracted from the silica, 50 μg of
LBPA and 50 μg of total lipid extracts from trophozoites were
spotted on a polyvinylidene difluoride (PVDF) membranes. As a
negative control we used lecithin and the secondary antibody on
total lipids. Lipid spots were dried and filters were blocked with
10% FBS in PBS, ON at 4 °C. Membranes were then incubated for
3 h at RT with 6C4 antibody (1:100), washed four times with PBS-
Tween 20, (0.02%) and revealed with HRP-conjugated anti-mouse
antibody (1:9000). After washing several times with PBS-Tween
20, reactivity was visualized using a commercial enhanced che-
miluminescence imaging system MicroChem 4.2 (Bio Imaging
System).

2.8. High-performance liquid chromatography (HPLC) analysis

Samples of total lipids were dissolved in methanol. Reverse-
phase HPLC was performed according to Mortuza et al. [34] using
an Agilent 1 200 capillary LC pump chromatograph. Phospholipid
elution was carried out using a binary system as follows: Eluent A:
0.25% (v/v) ammonium hydroxide/0.05% (v/v) formic acid in me-
thanol, pH 6.4:water (88:12). Eluent B: 0.25% (v/v) ammonium
hydroxide/0.05% (v/v) formic acid in methanol, pH 6.4:hexane
(80:20). All mobile phases were freshly prepared, filtered through
0.22 μm filter (Millipore) and degassed under vacuum. Samples
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Fig. 1. Immunodetection of LBPA in E. histolytica trophozoites. (A) ELISA assays revealed by 6C4 antibody and HRP-labeled secondary antibodies. Eh Lip: between 40 and 100 μg
of trophozoites total lipids. Data are means7standard deviation. (**): po0.01. Eh Prot: 40 and 100 μg of trophozoites total proteins. LBPA (St): 10 μg of (S, S)-2,2´-bisoleoyl-LBPA.
(B) TLC revealed by iodine vapors. Letters at the right mark each one of the separated phospholipids. (C) Dot blots assays revealed by 6C4 antibody followed by HRP-labeled
secondary antibody: LBPA St: (S,S)-2,2´-biosoleoyl-LBPA standard (10 μg); Eh Lip: Total lipids extracts of E. histolytica (50 μg); a-h: phospholipids extracted from (B) (50 μg each);
Lecithin: (50 μg); Sec Ab: secondary antibody on total lipids.
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were injected on a Zorvax SB C18 HPLC column (5 μm,
150�0.5 mm2). A linear gradient was performed by increasing
eluent B from 25 to 75% during 42 min with a flow rate of 10 μL/
min. As a standard reference we used (S,S)-2,2´-bisoleoyl-LBPA.

2.9. Mass spectrometry (MS) analysis

MS data were acquired using a triple quadrupole spectrometer
with lineal ion trap 3200 Q-Trap (Applied Biosystem Instruments).
Mass spectrometric data analysis was performed in a negative-ion
mode using an ionizing turbo spray source. During electrospray mass-
spectrometry (ESI-MS) run, averages of 155 scans were continuously
saved. Elution range of LBPAwas determined based on elution of (S,S)-
2,2´-bisoleoyl-LBPA standard. E. histolytica LBPA molecular species
were identified using information dependent acquisition (IDA) meth-
od, which included a survey scan in enhanced mass spectrometry
(EMS) and MS/MS. The EMS scanwas carried out at a rate of a spectral
range m/z 700–900, and energies to perform ion fragmentation were
optimized with the standard. Relative quantities of molecular species
were obtained from their mass spectral intensities.

2.10. Transmission electron microscopy (TEM) assays

Trophozoites were fixed with 4% PFA and 0.5% glutaraldehyde
in PBS for 1 h at RT. Samples were embedded in LR White resin
(London Resin Co) and polymerized under UV at 4 °C ON. Thin
sections (0.5 μm) were obtained and mounted on formvar-covered
nickel grids. Later, they were incubated ON with 6C4 antibody
(1:10) and then, cells were incubated ON at RT with goat anti-
mouse IgG conjugated to 20 nm gold particles (Ted Pella Inc.)
(1:40). Thin sections were observed with a Jeol JEM-1011 trans-
mission electron microscope. For phagocytosis experiments, tro-
phozoites were first incubated with human erythrocytes (1:50
ratio) at 37 °C for 0–120 min and treated for TEM as described
above. Number of gold particles was counted in 64 μm2 of distinct
images of at least 12 different thin sections.

2.11. Immunofluorescence and endocytosis assays

Trophozoites were grown on coverslips during 72 h at 37 °C in
TYI-S-33 medium and fixed with 4% paraformaldehyde (PFA) (Sig-
ma) at RT for 1 h. Cells were permeabilized with 0.02% saponin
(Sigma) in PBS for 10 min at RT and blocked for 30 min with 0.2%
FSA diluted in PBS. Then, trophozoites were incubated with 6C4
antibody (1:30) ON at 4 °C, washed with PBS and then, incubated
during 1 h at RT with anti-mouse Alexa-594 labeled secondary
antibody (Invitrogen) (1:100). After washing with PBS, preparations
were preserved using the Vectashield reagent (Vector Lab) and
analyzed through a Nikon inverted microscope attached to a laser
confocal scanning system (Leica TCS_SP5_MO). For co-localization
experiments, cells were double-labeled with anti-Rab7A (1:500) [7]
or anti-EhADH (1:500) and 6C4 antibodies followed by anti-rabbit
FITC labeled secondary and anti-mouse Alexa-594 labeled second-
ary antibodies, respectively. For endocytosis assays, trophozoites
were incubated at 37 °C with 2 mg/mL of FITC-dextran (mol wt
70,000) (Sigma-Aldrich), or with erythrocytes (1:50 ratio) for dif-
ferent times (0–90 min). After incubation times, erythrocytes were
contrasted by diaminobezidine for better visualization [47]. Cells
were fixed, permeabilized and processed for immunofluorescence
assays as described above, using 6C4 and anti-EhADH antibodies
and Lysotracker. For Lysotracker labeling assay, cultures were in-
cubated in TYI-S-33 medium supplemented with 2 μg/mL of Lyso-
tracker Red (Invitrogen) for the last 2 h of incubation. Trophozoites
were washed three times with PBS and then, samples were pro-
cessed for immunofluorescence as described above.

2.12. Quantification of fluorescence

Confocal microscopy images were analyzed with Image J 1.48i
software [48]. To quantify the fluorescence intensity inside the
cell, we used images of maximum projections. The region around
each cell was drawn and the cellular area, the integrated intensity
and the mean gray values were measured. Measurements of other
regions without fluorescence were used for background subtrac-
tion. The net average fluorescence intensity per pixel, expressed as
corrected total cell fluorescence (CTCF), was calculated for each
trophozoite and time point with the formula [49,50]:

CTCF¼ Whole cell signal�(area of selected cell � fluorescence of
background). Where whole cell signal¼sum of pixels intensity for
each cell (integrated intensity value). Fluorescence of back-
ground¼average signal per pixel for a region without fluorescence
selected just beside the cell (mean gray value).

To quantify stained pinosomes and phagosomes, as well as
Lysotracker stained vesicles, 1-μm Z-stacks of whole cell were
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acquired. To calculate the relative percentages of merging vesicles
during pinocytosis, the number of FITC-dextran stained pinosomes
was considered as 100% at each time, then, percentages of merging
pinosomes were obtained. For quantification of LBPA in phagocytic
trophozoites, the number of ingested erythrocytes was taken as
100%, then, the percentage of 6C4 of stained phagosomes was
calculated. For triple labeling experiments, 6C4, anti-EhADH, Ly-
sotracker and merging stained vesicles with or without ery-
throcytes was calculated taking as 100% the 6C4 stained vesicles.
To determine co-localization in entire cell or an area around
merging vesicles, merging channels of 1-μm Z-stacks (n¼150
sections) were contrasted, then, colors were separated to be ana-
lyzed using the Just Another Co-localization Plugin (JACoP) in the
ImageJ 1.48i software [51] to calculate Pearson´s coefficient (PC).
Each point represented an average and values are given as
means7standard deviation.

2.13. Immunoprecipitation assays

Trophozoites in steady state conditions or after 90min of ery-
throphagocytosis using hemoglobin-depleted and Ficoll-1077 (Sigma-
Aldrich) [52,53] purified erythrocytes were lysed with 10 mM Tris–
HCl, and 50mM NaCl, NaH4Cl, NaHCO3 in the presence of protease
inhibitors (100 mM of PHMB, IA, NEM and TLCK), followed by freeze-
thawing cycles in liquid nitrogen and vortexing. In parallel, 200 ml of
recombinant protein G (rProtein-G) agarose (Invitrogen) were in-
cubated with 100 mg of rabbit anti-EhADH antibodies, or 6C4 mono-
clonal antibody or pre-immune serum (PS) for 2 h at 4 °C, with gentle
stirring. Then, rProtein-G beads were washed with 0.5% BSA in PBS
under gentle stirring and centrifuged at 11,600 g for 2 min. Tropho-
zoites lysates (1 mg) were pre-cleared with 200 ml of rProtein-G
(previously blocked with 2% BSA) and incubated 2 h at 4 °C under
gentle stirring. Samples were centrifuged at 11,600g to obtain the
supernatant that was added to rProtein-G previously incubated with
antibodies. Samples were incubated ON at 4 °C and then, beads were
recovered by centrifugation. After washing, samples were dotted on a
nitrocellulose membrane to detect the phospholipid and EhADH
protein by dot blot assays. As a positive control we used 10 μg of LBPA
standard, and as negative control, we performed immunoprecipitation
assays using 6C4, anti-EhADH antibodies and erythrocytes lysates. To
avoid heavy chains signals, blots were incubated with light chain
specific secondary antibodies (1:10,000) (Jackson ImmunoResearch).
Western blot assays of immunoprecipitates were performed to con-
firm the identity of proteins detected by dot blot experiments in-
cubating membranes with 12% SDS-PAGE separated proteins ON with
anti-EhADH antibody (1:500), followed by incubation with anti-rabbit
HRP-conjugated antibody (1:9000) in PBS, during 1 h at RT.

2.14. Statistics

Graphs and statistical analysis were performed using GraphPad
Prism 6 software Inc. Each point represented an average of 12–25
cells and values are given as means7standard deviation. Student
´s T statistics analyses were performed comparing the values of
each time tested to the first kinetics time measured. p40.05 va-
lues were not considered as statistically representative. po0.05
(*), po0.01 (**) were considered as statistically representative and
po0.001 (***) values were considered as highly significant.
3. Results

3.1. Lbpa is present in E. Histolytica trophozoites

To disclose the presence of LBPA in total lipids of E. histolytica
trophozoites, we carried out ELISA assays using the 6C4
monoclonal antibody [38]. The antibody recognized total lipids of
trophozoites in a dose dependent manner as well as the (S, S)-2,2
´-bisoleoyl-LBPA standard control (Fig. 1 A). However, it did not
react with total proteins of trophozoites, neither with the un-
coated wells (Fig. 1 A). These results suggested that LBPA is present
in total lipids of E. histolytica.

Phospholipids separated by TLC from total lipids of E. histolytica
and revealed by iodine vapors showed eight spots (Fig. 1B, A–H).
The bottom of the spot labeled with letter “a” co-migrated with
the LBPA standard at a 0.50 Rf band (Fig. 1B), suggesting that E.
histolytica LBPA could be located in this spot. To confirm this, we
carefully extracted from preparative plates the phospholipids in
each lane with distinct Rf, to carry out dot blot assays using the
6C4 antibody. Antibody recognized phospholipids extracted from
spot “a” (Rf 0.50), total lipid extracts of trophozoites and the LBPA
standard, but not phospholipids from other spots obtained from
TLC plates and nor with lecithin. The secondary antibody on total
lipids gave also negative results (Fig. 1C). These results strongly
suggested that the bottom of spot “a” contained E. histolytica LBPA.

3.2. There are at least six different molecular species of LBPA in E.
histolytica trophozoites

To confirm the identity of E. histolytica LBPA, we performed reverse
phase LC-ESI and MS/MS analysis. Total ion chromatogram (TIC) pro-
files were determined using information dependent acquisition (IDA)
experiments to define the retention of (S,S)-2,2´-bisoleoyl-LBPA stan-
dard, which eluted mainly at 24.57min (Fig. 2A). LC-ESI-MS spectra of
the elution peak evinced a molecular ion with m/z 773.58 (Fig. 2B),
which is in agreement with reports of other authors [34]. Spectra of
LC-ESI-MS phospholipids extracted from spot “a” (Rf ¼0.5) and from
the total lipid fraction that eluted at the same time that the standard,
were similar. They presented at least six ions distributed in two groups
corresponding to closely related molecular species: m/z 772.58, 774.48
and 776.58 (group I) and m/z 798.72, 800.76 and 802.68 (group II)
(Fig. 2C). Ion identity was confirmed upon ion fragmentation by MS/
MS. (S,S)-2,2´-biosoleoyl-LBPA standard produces ions corresponding
to oleic acid: m/z 281, phosphate moiety: m/z 79, glycerolphosphate:
m/z 153, and this ion is considered as a diagnostic ion of LBPA [34]
(Fig. 2D and E). Ion m/z 153 was detected in MS/MS spectra of the six
ions identified in E. histolytica by LC-ES-MS. Fig. 2F shows the ion
fragmentation of E. histolytica LBPA, containing 18:1/18:1 (m/z 774.48)
fatty acids as representative example. Relative abundance of these
components was calculated from their mass spectral intensities (Ta-
ble 1). The major E. histolytica LBPA molecular species was 38:3 (18:1/
20:2) corresponding to 43% of total LBPA. The majority of the fatty
acids found in these species were unsaturated, being 18:1 and 20:2 the
most abundant (Table 1). These experiments confirmed the E. histo-
lytica LBPA identity and composition.

3.3. LBPA is located in cytoplasm and vesicles

To investigate the cellular location of LBPA in trophozoites, we
performed TEM using the 6C4 monoclonal antibody and gold-labeled
secondary antibodies. In steady sate conditions (0 time, without
phagocytosis or pinocytosis stimuli), TEM images displayed LBPA dis-
tributed in the cytoplasm and in many vacuoles of different size
(Fig. 3A–D). Number of gold labeled particles in TEM images showed
that a mean of 71.8% of total E. histolytica LBPA particles were located
in vesicles, whereas 28.2% were in the cytoplasm (Fig. 3B).

3.4. During dextran uptake, LBPA co-localizes with cargo-carrying
pinosomes.

To investigate the association of LBPA with endosomes during pi-
nocytosis, we carried out experiments incubating trophozoites with



Fig. 2. LC-ESI-MS spectra of E. histolytica LBPA. (A) TIC of (S,S)-2,2´-bisoleoyl-LBPA standard obtained by LC analysis. Arrow marks the retention time. (B) LC-ESI-MS spectra of
(S,S)-2,2´-bisoleoyl-LBPA standard. (C) LC-ESI-MS spectra of E. histolytica phospholipids eluted from 24 to 25 min. I and II: groups of LBPA molecular species, numbers show
the m/z of LBPA species. (D) Structure of (S-S)-2,2´-bisoleoyl-LBPA. Numbers indicate m/z of ion products upon fragmentation. (E) Spectra of (S-S)-2,2´-bisoleoyl-LBPA
fragmentation. (F) MS/MS spectra of m/z 774.48 E. histolytica LBPA ion.

Table 1
Molecular species of LBPA in E. histolytica.

Molecular ion m/z Subclass Molecular species Relative abundance

1 772.58 36:3 18:1/18:2 10
2 774.48 36:2 18:1/18:1 25
3 776.58 36:1 18:1/18:0 4
4 798.72 38:4 18:0/20:4 8
5 800.76 38:3 18:1/20:2 43
6 802.68 38:2 18:1/20:1 (18:0/20:2) 11

S. Castellanos-Castro et al. / Biochemistry and Biophysics Reports 5 (2016) 224–236228
FITC-dextran from 0 to 120min and after cell fixation with the 6C4
followed by Alexa-594 secondary antibodies, and then, they were
examined through the confocal microscope (Figs. 4 and 5). Intrigu-
ingly, after 15 min of pinocytosis, fluorescence corresponding to 6C4-
Alexa-594 antibodies, calculated by CTCF, drastically diminished in
84% (6.3 fold) in comparison with steady state conditions (Fig. 5A).
Then, after 60 min, 6C4 fluorescence came back to levels close to those
showed by trophozoites in steady state conditions, reaching a plateau
at 60 min (Fig. 5A). According to other authors [54], drastic diminish of
LBPA immediately after beginning of endocytosis is due to the fact that
the pool of certain lipids, including LBPA, is used by the cell to syn-
thesize other metabolites but the reasons of these changes remain to
be studied in E. histolytica. During pinocytosis, some vesicles were
decorated only by FITC-dextran, or by 6C4 antibody or both (Figs. 4,
5B). Thus, the relative percentage of LBPA containing pinosomes that
merged with FITC-dextran was quantified, taken as 100% the number
of FITC-labeled vesicles at each time (Fig. 5B). At 15 min of pinocytosis,
we detected 33.84% of vesicles stained by FITC and Alexa 594, at
30 min, merging vesicles corresponded to 47.2%, at 60 min to 49.5%,
and at 120 min to 56.6%, reaching a plateau (Fig. 5B). In agreement
with Aley et al. [55], the plateau means that equilibrium between
dextran uptake and excretion has been reached [54]. These results
showed that the number of LBPA and FITC-dextran containing vesicles
varied through the time course of pinocytosis. Pearson’s coefficients
indicated that association between FITC-dextran and LBPA inside the
trophozoites varied from 0.61 to 0.70 (Fig. 5C).
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3.5. During phagocytosis, LBPA is located in erythrocytes-containing
phagosomes

Phagocytosis of bacteria and erythrocytes is a nutrition way for
E. histolytica trophozoites, and erythrophagocytosis is considered
as a virulence factor. Therefore, we performed erythrophagocytosis
assays at different times to study the LBPA distribution in tro-
phozoites (Figs. 6 and 7). After 15 min of phagocytosis, in TEM
images, using 6C4 antibody and gold-labeled secondary anti-
bodies, 2.1 gold particles/mm2 appeared in membranes of ery-
throcyte-containing phagosomes and 1.5 gold particles/mm2, inside
the erythrocytes (Fig. 6A–C). However, at longer times (90 min),
gold particles/mm2 that were located in phagosome membranes,
diminished from 2.1 to 1.5 particles/mm2, but they increased 11
fold inside phagosomes (Fig. 6C). Interestingly, at 90 min, LBPA
containing vesicles appeared accumulated around erythrocytes
(Fig. 6B). However, even when this fact could suggest that they are
carrying LBPA to phagosomes, it is necessary to perform other
functional assays to prove this. Quantification assays exhibited
that LBPA in vesicles without erythrocytes increased twice
throughout the erythrophagocytosis process, from 2.7 at 0 time to
5.5 gold particles/mm2 at 90 min (Fig. 6B,C).

Confocal microscopy images obtained between 0 and15 min of
phagocytosis, confirmed that LBPA was accumulated in vesicles
close to ingested erythrocytes inside phagosomes of different size
(some of them, containing more than one erythrocyte and nu-
merous vacuoles) and on erythrocytes. From 60 to 90 min of
phagocytosis, LBPA appeared mainly on and around erythrocytes-
containing phagosomes (Fig. 7), although many erythrocytes ap-
peared already digested. This was more evident in huge phago-
somes (10–20-mm diameters) that could correspond to MVBs.
These structures contained many putative ILVs. Magnification of
erythrocytes-containing phagosomes demonstrated that LBPA is in
vesicles inside the erythrocyte-containing phagosome (Fig. 7
Zoom). CTCF quantification showed that LBPA diminished 36%
from steady state conditions to 15 min of phagocytosis, but then,
at 60 and 90 min it increased to 72.9% more than in steady state
conditions (Fig. 7B). Besides, the relationship between LPBA
labeled erythrocytes and total ingested erythrocytes showed that
the number of labeled erythrocytes increased 1.72 fold, from 49.7%
at 15 min to 85.7%, at 90 min (Fig. 7C). Altogether, these results
make clear that an increment of LBPA inside phagosomes hap-
pened after 15 min of phagocytosis. Based on these results, it can
be suggested that LBPA forms part of trophozoite phagosomes and
lysophagosomes, as it has been reported for other systems
[30,56,57].

3.6. Association of LBPA with EhRab7A protein

Discovering of membrane-molecules interactions is important
for understanding the mechanisms underlying pinocytosis and
phagocytosis. Uncovering of novel molecules and detection of
their interaction sites can be useful for therapeutic intervention. In
mammals, Rab7 GTPase participates in the regulation of trafficking
of endosomes to late endosomes, lyososomes and phagosomes,
and it is considered as a marker of late endosomes [58]. E. histo-
lytica encodes several Rab7 proteins. EhRab7A has been found in
phagosomes after 30 min of phagocytosis [7]. Accordingly to Saito-
Nakano et al., it participates in maturation of late endosomes and
in receptors recycling from phagosomes to the trans-Golgi net-
work [7]. To determine the association of LBPA of E. histolyticawith
EhRab7A during erythrophagocytosis, we performed co-localizing
experiments using 6C4 and anti-EhRab7A antibodies (Fig. 8). In
steady state conditions, we found LBPA and EhRab7 in small va-
cuoles (Fig. 8). Then, throughout erythrophagocytosis, association
between the protein and the phospholipid increased, mainly
around ingested erythrocytes and in the huge erythrocytes-con-
taining phagosomes that could correspond to MVBs and were also
observed in Fig. 7. Accordingly to Saito-Nakano et al., [7], EhRa-
b7A-containing vesicles carry lysosomal enzymes to the
phagosome.

3.7. LBPA is in acidic vesicles and it interacts with EhADH protein

LBPA is in acidic vesicles with a 5.5 pH [28,30] and it interacts
with Alix protein during endocytosis and vesicular traffic [28,43].
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In E. histolytica, EhADH acts as a receptor for erythrocytes during
phagocytosis and it also participates in endosomes formation, in-
teracting with EhVps32 protein [59]. We investigated the nature of
LBPA-containing vesicles and the interaction of LBPA with EhADH
using Lysotracker Red and anti-EhADH antibodies. Confocal ima-
ges showed that in steady state trophozoites, LBPA co-localizes
with Lysotracker Red and EhADH (Fig. 9). EhADH protein was
found in the plasma membrane and in the cytoplasm, as described
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[10]. During phagocytosis, EhADH was also found in acidic vesicles,
co-localizing with LBPA and Lysotracker. LBPA and EhADH ap-
peared in phagosomes and around some ingested erythrocytes, as
well as in erythrocytes-containing phagosomes, including the
huge phagosomes that could correspond to MVBs (Fig. 9). Tro-
phozoites, in steady state conditions, exhibited 72.6% of vesicles
decorated by LBPA and Lysotracker and they increased to 87% after
60 and 90 min of phagocytosis. Their molecular association ac-
cording to Pearson´s coefficient [51] was 0.77. However, Lyso-
tracker was also found in 27.4 to 13% vesicles without LBPA
(Fig. 10A), indicating that the majority LBPA containing vesicles are
acidic, as it occurs in other systems [27]. Results also exhibited the
different composition of endosomes, whereas some of them were
stained only by anti-EhADH antibodies, other were decorated by
6C4 antibody or Lysotracker, while others appeared illuminated by
both antibodies, and others more, by both antibodies and Lyso-
tracker (Fig. 10B,C).

To further demonstrate the interaction between LBPA and
EhADH, we performed immunoprecipitation assays using lysates
from steady state trophozoites and from trophozoites that were
incubated with erythrocytes for 90 min. Anti-EhADH and 6C4
antibodies were used to produce independent im-
munoprecipitates that were revealed in dot blot assays. Anti-
EhADH and 6C4 antibodies recognized both immunoprecipitates
(Fig. 11A,B). In western blot assays using these im-
munoprecipitates, anti-EhADH antibody recognized EhADH
(75 kDa) and the EhCPADH complex (124 kDa), as described [10].
Immunoprecipitates produced using erythrocyte lysates gave ne-
gative results with anti-EhADH and 6C4 antibodies, as well as with
pre-immune serum and with lecithin (Fig. 11A, B, and D). 6C4
antibody did not recognized erythrocytes, in agreement with other
studies on phagocytosis using 6C4 antibody and erythrocytes [57].
In addition, anti-EhADH antibody did not recognize phospholipids
spotted on the same membrane, neither LBPA standard (Fig. 10C).
These results confirmed that LBPA interacted with EhADH at
steady state conditions and during phagocytosis and suggested
that LBPA and EhADH might be associated in phagosomes and in
MVBs.
4. Discussion

During endocytosis, E. histolytica trophozoites present a dy-
namic membrane remodeling. LBPA has been described in other
systems [34,38] as a fundamental compound in this event [60],
among other functions of this phospholipid. Here, we identified,
for the first time, six LBPA molecular species in E. histolytica tro-
phozoites. Besides, we disclosed its presence in pinosomes and
phagosomes during pinocytosis and phagocytosis, respectively. It
associates with EhRab7 and EhADH, an ALIX family protein in-
volved in phagocytosis. Interestingly, docking analysis suggested
that the binding site of EhADH with LBPA is conserved [61] (Data
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in brief, submitted) in comparison with that detected in other Alix
proteins [43].

In addition to mammalian cells, LBPA has been found in bac-
teria, by biochemical procedures [62]; in membrane lysosomes of
Dictyostelium discoideum, using TLC [63]; and also, in Leishmania
Mexicana-containing phagosomes of macrophages infected with
this parasite, using 6C4 antibody [56]. In eukaryotes, LBPA takes
part in the formation of endosome membrane domains to facilitate
the sorting of molecules to be recycled or degraded. Although it
composes 17% of the cell phospholipids, it is enriched in 70% in
ILVs of late endosomes [30], thus, LBPA is considered as a marker
of late phases of endocytosis [30].

Aley et al. [19] reported the presence of an unidentified lipid in
total lipids of E. histolytica trophozoites, which they marked as “X”
in two dimension TLC experiments. The “X” compound has a si-
milar migration than LBPA of BHK cells [30], thus, it could corre-
spond to E. histolytica LBPA detected here (Fig. 1). However, Aley
et al., identified the “X” compound during the study of membrane
phospholipids; and we detected LBPA using the 6C4 antibody. The
use of distinct methodology maintains an open question on
whether “X” compound correspond to E. histolytica LBPA.

The 6C4 monoclonal antibody generated by Kobayashi et al.
[38] resulted to be an excellent tool for LBPA identification in E.
histolytica trophozoites. Recognition of LBPA in trophozoites by
this antibody was highly specific and dose-response dependent. It
did not react with proteins or other lipids such as other TLC-
revealed spots, as it was shown in dot blot experiments (Fig. 1). It
did not react with erythrocytes as shown by immunofluorescence
and dot blot assays in Fig. 11C and D. HPLC coupled to mass
spectrometry assays using (S,S)-2,2-bisoleoyl-LBPA as standard,
allowed us to confirm that the molecule recognized by the 6C4
antibody in E. histolytica trophozoites was indeed LBPA. Ion frag-
mentation confirmed the nature of the lipid recognized by 6C4
antibodies (Fig. 2). Phosphatydilglycerol (PG) has been described
as LBPA structural isomer with similar molecular weight. However,
Mortuza et al. [34] reported that PG retention time is approxi-
mately seven minutes shorter than the one of LBPA. Thus, we used
the methodology described by Mortuza et al. [34] to accurately
separate E. histolytica LBPA and determine its molecular species. E.
histolytica has at least two LBPA groups with three distinct mole-
cular species each one; however, our experiments did not discard
the existence of other ions that were not detected by this approach
(Fig. 2). LBPA species presented a relative abundance of poly-
unsaturated fatty acid chains, being the major ion a 38:3 (18:1/
20:2) molecule. This characteristic may confer to trophozoite
membranes a higher possibility to form curved domains, neces-
sary for vesicle fusion and fission, as reported for other eukaryotes
[28]. In addition, liposomes composed by (S, S)-2,2´-bisoleoyl-LBPA
spontaneously formed multivesicular liposomes depending on pH
[28]. This biophysical property has been related to the curved
membranes formation and membrane flexibility (24, 25) and,
therefore, necessary for ILVs generation.
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Most of the cells studied have several LBPA molecular species.
Fatty acid composition of LBPA has a high proportion of un-
saturated and polyunsaturated acyl chains, being the most abun-
dant the oleic acid (18:1) [30,33,34,54]. LC-ESI-MS assays allowed
us to unveil, in E. histolytica trophozoites, the asymmetric 18:1/
20:2 ion as the most abundant LBPA molecular species. Ad-
ditionally, the 18:1 fatty acid chain has 92% of relative abundance
among LBPA molecular species detected here (Table 1). We have
not studied in this work what is the significance of the presence of
distinct LBPA molecular species in trophozoites. However, we can
hypothesize that a mixture of them could account for membrane
flexibility in trophozoites, which present distinct vital functions in
which membrane remodeling is necessary, such as phagocytosis,
pinocytosis, pseudopodia emission, motility, cellular division,
among others. This property is basic for other functions related
with endocytosis, such as MVBs and ILVs production and transport
of distinct molecules. Other LBPA molecular species could parti-
cipate in EhRab7A, EhADH and other proteins binding as well as in
cholesterol transport to recruit them at the endosome membranes.
In mammals, 2-2´-bisoleoyl-LBPA participates in cholesterol
transport [64]. E. histolytica trophozoites take cholesterol from the
medium, because they have no the machinery to synthesize it, but
inside the cell, cholesterol must be sorted to distinct organelles. As
in other eukaryotes, E. histolytica LBPA esterified with 18:1 fatty
acid chain could be involved in cholesterol transport. Besides these
putative functions and other mentioned above, LBPA molecular
species may have a role as donor and acceptor of fatty acid chains
to be exchanged with other types of phospholipids [54].

As in mammalian cells [37], E. histolytica LBPA was found in
acid vesicles and in ILVs of late, endosomes (Figs. 7–9). Further-
more, it appeared in vacuoles in steady state conditions and during
dextran uptake and erythrophagocytosis (Figs. 4 and 7). Thus, in
addition to its association to endosomes, LBPA could be involved in
other steps of the process, or it may be participating in other
functions such as the ones discussed above. Its detection in steady
state trophozoites may be due to the high basal endocytosis ac-
tivity of trophozoites.

Surprisingly, CTCF assays showed, after 15 min pinocytosis that
LBPA diminished 6–7 fold, and then, after 60 min it increased to
reach the steady state concentration (Fig. 5). Macrophages, also
present a lower percentage of LBPA (related to total lipids) when
they are activated by BSG protein (4.1%), than when they are in
resting conditions (18.6%) [54]. According to Cochran et al. [54],
LBPA is the phospholipid with the greatest changes upon macro-
phage activation. Immediately after activation, the pool of certain
lipids, including LBPA, is used by macrophages to synthesize other
metabolites, functioning as acceptors or donors of fatty acid chains
[54]. In E. histolytica trophozoites, it is possible that, even when
dextran uptake is not receptor mediated, trophozoites could sense
the presence of the compound because dextran is accumulated in
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large vesicles by macropinocytosis [65]. As a response to this sti-
mulus they could synthesis and degrade distinct molecules. This
hypothesis could explain why in the beginning of the dextran
uptake process LBPA diminished, and then, the phospholipid
presented similar amount of fluorescence to the one registered at
steady state levels.

The drop in LBPA concentration after 15 min of phagocytosis
was less dramatic than in pinocytosis. The participation of LBPA in
both pathways should be different. Phagocytosis is a receptor-
mediated event that conducts cell to synthesis and degrade certain
metabolites. On the other hand, pinocytosis does not involve
membrane receptors, thus, metabolites needed for this event may
differ from the ones required for phagocytosis. After 60 min of
phagocytosis, LBPA concentration increased 60% in comparison
with 0 time; and it was precisely after 60 min phagocytosis that
vesicles in trophozoites appeared larger and brighter (Figs. 7 and
8). Coincidently, at 90 min, the number of gold particles detecting
LBPA also increased 11 fold, according to TEM experiments (Fig. 6).
In mammalian cells, LBPA participates in distribution of cargo
molecules to lysosomes or Golgi apparatus [66]. Golgi apparatus in
E. histolytica is not completely characterized, however, Saito-Na-
kano et al., [7] found that EhRab7A protein is involved in vesicular
trafficking after 30 min of phagocytosis and it controls late endo-
somes to Golgi transport. Also, the number of 6C4 stained pha-
gosomes of smooth muscle cells increased after 30 and 45 min of
erythrophagocytosis indicating phagosome maturation [57].
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Furthermore, it has been stated that in trophozoites, the digestion
starts after 90 min of phagocytosis [67], thus, it is possible to hy-
pothesize that LBPA could contribute in transport and recycling of
certain molecules.

The finding of LBPA associated or interacting with EhRab7A and
EhADH in huge phagosomes, containing many ILVs, strengthens the
hypothesis that these molecules are involved in late endosomes for-
mation and function. In mammalian cells, LBPA and Alix protein are
associated during late endocytosis [28] and virus penetration to host
cells [43]. Alix Bro1 domain, located at the N-terminus of these pro-
teins mediates this association [43]. Similarly, in E. histolytica EhADH
functions as a receptor for erythrocytes. Additionally, both molecules
participate in cholesterol distribution and in sorting of cargo particles
that will be recycled or delivered to lysosomes. In E. histolytica, LBPA
and EhADH interact in resting trophozoites and throughout phago-
cytosis pathway, as it has been demonstrated by immunofluorescence
and immunoprecipitation assays (Figs. 9 and 11). Association of both
molecules in resting trophozoites could be related to the very active
endocytosis that trophozoites have during steady state, or it may be
explained by their involvement in a distinct function, such as choles-
terol transport.

5. Conclusions

LBPA was biologically and structurally characterized in E. his-
tolytica trophozoites. TLC and LC-ESI-MS experiments revealed
that LBPA is represented by at least six molecular species rich in
unsaturated acyl chains. It associates with pinosomes and phago-
somes; and it is found in ILV’s in phagosomes and MVBs. Ad-
ditionally, we presented experimental evidences of phospholipid-
protein association and interaction between LBPA and EhRab7A
and EhADH, respectively.
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