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Inorganic carbon (Ci) is the major sink for photosynthetic reductant in organisms capable of oxygenic photosyn-
thesis. In the absence of abundant Ci, the cyanobacterium Synechocystis sp. strain PCC6803 expresses a high affin-
ity Ci acquisition system, the CO2-concentrating mechanisms (CCM), controlled by the transcriptional regulator
CcmR and the metabolites NADP+ and α-ketoglutarate, which act as co-repressors of CcmR by modulating its
DNA binding. The CCM thus responds to internal cellular redox changes during the transition from Ci-replete
to Ci-limited conditions. However, the actual changes in the metabolic state of the NADPH/NADP+ system that
occur during the transition to Ci-limited conditions remain ill-defined. Analysis of changes in the redox state of
cells experiencing Ci limitation reveals systematic changes associated with physiological adjustments and a
trend towards the quinone and NADP pools becoming highly reduced. A rapid and persistent increase in F0
was observed in cells reaching the Ci-limited state, as was the induction of photoprotective fluorescence
quenching. Systematic changes in the fluorescence induction transients were also observed. As with Chl fluores-
cence, a transient reduction of the NADPH pool (‘M’ peak), is assigned to State 2→State 1 transition associated
with increased electron flow to NADP+. This was followed by a characteristic decline, which was abolished by
Ci limitation or inhibition of the Calvin–Benson–Bassham (CBB) cycle and is thus assigned to the activation of
the CBB cycle. The results are consistent with the proposed regulation of the CCM and provide new information
on the nature of the Chl and NADPH fluorescence induction curves.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Inorganic carbon (Ci) is an essential and often limiting macronutri-
ent for the growth of organisms performing oxygenic photosynthesis.
It serves as themajor sink of photosynthetic reductant via incorporation
into sugar carbon skeletons of the reductive Calvin–Bassham–Benson
(CBB) cycle. Correspondingly, Ci-limitation may result in the accumula-
tion of electrons in carrier pools leading to the production of damaging
reactive oxygen intermediates as well as the loss of overall photosyn-
thetic efficiency due to photorespiration. Photorespiration results from
the competition between CO2 and O2 at the active site of ribulose
bisphosphate carboxylase-oxygenase (RuBisCO) with the former giving
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the productive carboxylation reaction of ribulose bisphosphate (RuBP)
and the latter leading to thewasteful oxygenation of RuBP. Accordingly,
low CO2 or high O2 concentrations favor the oxygenation reaction over
the carboxylation reaction. In aquatic environments, the potential for Ci
limitation is particularly acute due to the low solubility and diffusivity of
dissolved Ci. To avoid this, cyanobacteria and algae have evolved a CO2-
concentrating mechanism (CCM). The CCM may have emerged in the
progenitors of contemporary cyanobacteria as they adapted to cope
with increased photorespiration and lower efficiency carbon fixation
accompanying a drop in CO2 levels and a rise in O2 levels during the
Phanerozoic eon about 350million years ago [1, 2] or perhaps an earlier
epoch [3]. These adaptations include transport mechanisms for the ac-
tive uptake of Ci [reviewed in [4,5]] that work together within a
micro-compartment, known as the carboxysome, to localize and in-
crease the local concentration of CO2 around RuBisCO, thereby improv-
ing the efficiency of CO2 fixation [reviewed in [6]]. Suchmechanisms are
highly effective and result in the accumulation of Ci over 1000-fold
within the cyanobacterial cell relative to its environment [7,8]. Recent
biotechnological efforts now consider utilizing the cyanobacterial CCM
components as a model and source of molecular components for im-
proving plant productivity [5,9,10].

The existence of two distinct physiological states defined by differ-
ent Ci affinities was identified in Chlamydomonas depending upon
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whether cells were grown in air or CO2-enriched air [11]. Studies with
cyanobacteria revealed that they also exhibit an inducible high affinity
CCM [8,12]. The cyanobacterium Synechocystis sp. PCC 6803 (hereafter
Synechocystis) exhibits a basal, lower affinity CCM when grown under
Ci sufficient conditions (e.g. gassing with air enriched with 3% v/v air,
high Ci, HC) and this depends upon low affinity Ci transporters that
are constitutively expressed [13,14]. The constitutively expressed low
affinity uptake mechanism is comprised of multiple transporters, in-
cludingNa+/HCO3

− symporters and a redox powered CO2-hydration en-
zyme, CupB (ChpX) that couples to the NADPH dehydrogenase complex
(NDH-1) that collectively elevate the cytoplasmic concentration of
HCO3

−. This form of the NDH-1 complex is denoted NDH-14 in reference
to the alternative pair of intrinsic membrane protein D4/F4 subunits
that are postulated to be involved in proton pumping based on homol-
ogy with known structures [15] and bind the CupB (ChpY) protein [16].
Exposure of Synechocystis, andmany other cyanobacterial species, to Ci-
limited growth conditions elicits the expression of a supplementary
high affinity system. Under limiting Ci conditions (bubbling with ambi-
ent air, low Ci, LC) there is an induced increase in affinity for Ci achieved
through transcriptional up-regulation of transport activities and
carboxysome components and, possibly, kineticmodification of existing
transporters accounting for the higher affinity physiological state men-
tioned above. Alternative high affinity suites of proteins, including high
affinity Na+/HCO3

− symporters and the high affinity CO2-hydration en-
zymes, are expressed when cyanobacteria are grown under Ci-limiting
conditions. The increase in transporter affinity for Ci during limiting
conditions is due to the transcriptional induction of the genes encoding
the ATP dependent BCT1 high affinity HCO3

− transporter encoded by the
cmp operon, Na+-dependent SbtAHCO3

− symporter, and the specialized
NADPH dehydrogenase complex NDH-13 high affinity CO2-hydrating
system encoded by the ndhF3/ndhD3/cupA/cupS operon. The NDH-13
complex is similar to the NDH-14 complex except that three specialized
membrane intrinsic subunits, D4/F4/CupB, are replaced by their high af-
finity paralogs, the D3/F3/CupA subunits. The transcriptional regulation
of the inducible transporters is controlled by the two self-regulating
LysR-type transcriptional regulators known as CcmR (NdhR) [17–19]
and CmpR [20,21]. The signal for induction of the transporter encoded
by the cmp operon through CmpR has been identified as the co-
activators ribulose-bisphosphate (RuBP) and 2-phosphoglycolate
(2PG) [20]. The signals for the repression of the putative CcmR regulon
controlling the expression of the sbtA gene, ndhF3 operon, and the
expression of a putative NDH-I dependent Na+ transporter are the co-
repressors, α-ketoglutarate (α-KG) and oxidized nicotinamide adenine
dinucleotide (NADP+) [19]. Thus, the internal metabolic state provides
the regulatory cues for expressing the high-affinity system rather than
inorganic carbon species per se.

The aim of the present study is to understand physiological changes
that accompany, and potentially trigger, changes in the regulation CCM
genes and to provide additional physiological context for previous
experiments [13,18,22–25]. Because of the central role of NADPH in
metabolism and because it acts as a critical signaling molecule in the
regulation of the CCM, it is important to understand the dynamics of
the redox state of the cellular pool of NADPH/NADP+ in response to
changes in the availability of Ci. Previous studies have shown that the
NADP pool is more reduced in cells grown in low-carbon conditions
than those grown in under high-carbon conditions [26]. However, the
physiological basis for this change is not fully understood. Furthermore,
it is important to understand the dynamic properties of the redox state
of NADP under fluctuating environmental conditions due to its role in
regulating cellular processes. Blue green fluorescence has been devel-
oped as an approach to monitor changes in the redox state of the pyri-
dine nucleotide pools in isolated intact chloroplasts and leaf fragments
[27,28]. Similarly, the dynamics of redox changes in pyridine pools in
cyanobacteria has yielded information on the role of NADPH in cyclic
electron flow (CEF) [29]. The commercial availability of a DUAL-PAM-
100 (Walz, Germany) allows for the simultaneous measurement of
chlorophyll a and NADPH fluorescence [30], which permitted the simul-
taneous in vivo investigation of the photosynthetic reducing equiva-
lents of plastoquinone (PQ) and NAD(P)H. A recent investigation of
Synechocystis NADPH transients has provided important insights into
the quantitative use of this instrument and how the levels of NADPH
fluctuate in response to different light regimes [31]. Importantly, that
study also revealed, for the first time, the extent and kinetic properties
to the electron transfers occurring from PSI to NADPH via ferredoxin
NADP reductase (FNR).

This study aims to use these techniques in order to investigate cellu-
lar response to nutrient limitation (i.e. high and low carbon availability).
Simultaneous chlorophyll and NADPH fluorescence provides insight
into the relationship between the redox state of the PSET chain and its
dependence on downstreammetabolic processes, namely the CBB cycle.

2. Methods

2.1. Cell cultures and growth conditions

Experiments sampled 800mL cultures of wild-type Synechocystis sp.
PCC 6803 that were grown under 3% CO2 bubbling conditions in 1 L
Roux bottles in a modified BG11 medium [32] as described previously
[18]. Modified media was identical to standard BG11 except omitting
Na2CO3, adding HEPES to a concentration of 40 mM, and adjusting the
pH to 7.0 using KOH, rather than NaOH.

2.2. Fluorescence measurements probing cells during the transition to
Ci-limited growth

A 250 mL sample of 3% CO2 grown cells was centrifuged at 10,000 g
for 5 min. Cells were gently re-suspended in fresh, CO2 bubbled, low-Ci
BG-11media to a chlorophyll concentration of 5 μg/mL in a 2mL sample.
The samplewas placed in a 10mmopen quartz cuvettewith a small stir
bar. Cells were exposed to red actinic light (~100 μE) and stirred for up
to approximately 16 h. Stirring occurred at a pace that maintained cells
in suspension, but did not cause excessive aeration of the sample and
therefore inorganic carbon concentrations within the sample could
not be replenished at a rate that can keep pace with consumption by
cells in the sample performing photosynthesis. Accordingly, samples
exhibited fluorescence characteristics of indicative of Ci-limitation
approximately 8 h into the experiment.

Every 15 min during the approximately 16 hour assay, the stirring
and actinic light would be turned off. After 30 s of this dark acclimation
period, a measuring trace would initiate recording the fluorescence
yield from the measuring beam in the dark. Dark period fluorescence
was measured for 1 min, with an intense 300 ms multiple turnover
(MT) flash occurring at 35 s. At 60 s, the actinic light was turned on.
The samplewas exposed to actinic light for 270 s, with aMT flash occur-
ring 250 s after the actinic light exposure. Post-illumination measure-
ment continued for 80 s, with a MT flash occurring 70 s after stopping
illumination. Nine seconds after the (MT), actinic light exposure and
stirring resumed. As shown in Supplemental Fig. S1, growth of cells
wasmaintained although gradual and in a manner consistent with pre-
vious observations in normal growth bottles used for gene expression
experiments [18]. The parameters of Chl fluorescence characterizing
the induction curves follow the calculation and nomenclature described
by Campbell et al. [33].

3. Results and discussion

3.1. PAM fluorescence measurements of redox changes in cells during
Ci-limitation

To investigate the changes in the cellular redox state in response to
Ci-limitation, pulse-amplitude modulated (PAM) fluorometry was uti-
lized (Fig. 1). Chlorophyll fluorescence is widely used for the analysis



Fig. 1. Changes in the Chl induction kinetics during the course of inorganic carbon limitation of Synechocystis cells. Panel A: Chlorophyll fluorescence traces of cells switched from bubbling
with 3% CO2 enriched air to stirring under illumination in a 10mmcuvette of a sample undergoing Ci depletion in a PAMfluorometer. Cellswere illuminatedwith actinic red illumination at
110 μE except during the intermittent dark periods at the beginning and end of the actinic light periods of data acquisition. Selected chlorophyll fluorescence induction curves at the time
points of 2 (red), 7 (blue), 8.5 (green), 9 (black), and 13 (pink) hours after changing theCi conditions. After a 60 seconddark adaptation (first repetitive intermittent darkperiod, black bar),
actinic light was turned on at 60 s (yellow bar) and turned off at 330 s for the post-actinic illumination portion of the data collection trace (second repetitive intermittent dark period,
second black bar). Multiple turnover flasheswere performed during the dark interval and actinic illumination periods at the 30 and 310 time points in the trace (Fm and Fm′, respectively).
Panel B: Overall perspective showing all chlorophyll fluorescence transients during the Ci-deprivation experiment. Panel C: Changes in F0 and FT during the course of the Ci deprivation,
Black line: F0, chlorophyll fluorescence value 1 s before actinic illumination; Red line: FT, steady state fluorescence during actinic illumination defined at the 300 sec time point.
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of both linear electron flow (LEF) and cyclic electron flow (CEF) and
thus the PAM technique provides information on basic photosynthetic
parameters. The use of PAM fluorometry to track changes in the redox
state of NAD(P)H as blue-green fluorescence is not as widely used, but
the technique has the potential to uncover possible redox transients
in vivo with high time resolution [27,28,30] as realized in recently re-
ported work [31]. Because NADPH and NADH possess virtually identical
fluorescence characteristics, it is impossible to distinguishwhich species
is responsible for the fluorescence transients, and though physiological
investigations have indicated that the transients observed under light
changes are largely due toNADPH [29], this limitation remains. Simulta-
neous monitoring of chlorophyll and NAD(P)H fluorescence of samples
was performed in a PAM-100 device (Walz) and a HC→LC downshift
routine was developed to roughly emulate the Ci-downshift conditions
used previously [18]. For PAM fluorometry, small samples (2 mL) of
culture were maintained directly in the optical cuvette and allowed to
deplete the media of Ci under illumination with red LEDs and stirring.
Another difficultly lies in potential cell growth during the assay. The
cells appear to behave in amanner consistentwith earlier transcription-
al profiling experiments [18], with growth becoming negligible after
carbon depletion (Fig. S1). Thus, it appears that the application of the
biophysical techniques described below should be a reasonable approx-
imation to the experimental conditions utilized earlier for the gentle Ci
downshift experiment global gene expression profiling and therefore
it should be possible to connect the biophysical changes with those of
the transcriptional changes.

Fig. 1A shows selected chlorophyll fluorescence induction traces
at different stages of Ci-limitation. Early in the experiment, while
the cells have sufficient Ci, the briefly dark-adapted cells exhibit a
characteristic fluorescence induction profile when actinic illumination
is resumed. Actinic light powers photosynthetic electron transport,
resulting in an increase in chlorophyll fluorescence, indicative of an
increase in the number of ‘closed’ PSII reaction centers, corresponding
to an increase in the concentration of reduced acceptor, QA

− and, corre-
spondingly, a higher yield of chlorophyll fluorescence [33]. This reflects
a quasi-steady state balance of rates corresponding to the actinic exci-
tation rate generating QA

− (QA reduction rate) and the rate of forward
electron transfer of electron into the PQ pool via the PSII QB site (QA

− ox-
idation rate). CBB cycle activation, state transitions, and other bio-
energetic and metabolic processes influence their rates and result in
additional transients that eventually dampen to a steady state fluores-
cence level that is maintained throughout the remainder of the actinic
illumination period.

Early in the Ci-deprivation experiment, upon illumination of briefly
dark adapted cells, a steady state fluorescence level is reached after
~20 s of actinic illumination (~80 sec point on the trace) and remains
low compared to maximal fluorescence (denoted FM′) in the Ci-
replete cells shown as the red trace in Fig. 2A. This corresponds to a
largely oxidized PQ pool under these illumination conditions, which
were designed to approximate the growth light intensities. Correspond-
ingly, this allows the efficient re-oxidization QA

−, thereby maintaining,
on balance, about 85% of PSII centers in the open condition (i.e. photo-
chemical quenching, qP ~ 0.85). This situation changes dramatically as
discussed below, when the cells proceed into the Ci-limited state,
where PSII is foundmostly in the closed state under actinic illumination.
Saturating multiple turnover flashes were given, one during the dark
adaptation (Fm) and one toward the end of the actinic illumination
period (Fm′), with the latter having a considerably larger amplitude.



Fig. 2. Post-actinic illumination fluorescence transients during the course of inorganic car-
bon limitation of Synechocystis cells. Selected chlorophyll fluorescence post-illumination
transients at the time points of 2 (red), 7 (blue), 8.5 (green), 9 (black), and 13 (pink)
hours after changing the Ci conditions. Post-illumination Chl fluorescence transients
show that Ci-limitation enhances the peak occurring ~5 s after the cessation of actinic
illumination (vertical dotted line). This peak in Chl fluorescence is attributed to cyclic
electron transfer [29,46,48,49]. Inset: Post-illumination Chl fluorescence peak is most
readily observed with shorter actinic illumination periods and in cells grown under low
Ci conditions (BG-11 media, slow air bubbling, pH 7), which induces the high affinity
CCM including NDH-13.
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This indicates that the cells are undergoing state transitions during the
light–dark cycling with cells reaching the State 2 condition in the dark
period and then reverting back to State 1 in the light. State 2 corre-
sponds to the molecular configuration where excitation energy from
the phycobilisome is increasingly directed to PSI, which is a more effi-
cient quencher of excitation energy than PSII. Resumption of actinic illu-
mination drives the State 2→State 1 transition resulting in more
excitation energy from the phycobilisome being directed to PSII provid-
ing the higher fluorescence yields seenwith the second saturating flash,
Fm ′ (Fig. 1A). Recent work has assigned the slow S–M fluorescence rise
occurring during the first 20 s after application of actinic illumination
rise to the State 2→State 1 transition [34]. This assignment is consistent
with our experiments where an additional MT flash is given 25 s after
the re-initiation of actinic illumination (at the 85 sec time point),
where it was observed that the higher h yield of fluorescence is already
elicited indicating that State 2→State 1 transition has already occurred
at the end of the S–M phase of the induction curve (Supplemental
Fig. S3).

As the availability of Ci decreases later in the experiment (Fig. 1,
hours 8.25 and after), the characteristic fluorescence induction profile
begins to exhibit a new secondary rise phase in the fluorescence yield
(Fig. 1A). This secondary phase first appears late in the actinic illumina-
tion period, but as the cells become progressively more Ci-limited, the
secondary rise phase is observed earlier and earlier in the actinic illumi-
nation portion of the measuring trace (Fig. 1A, green, black, and pink
traces). At the 9 hour trace (Fig. 1A, black trace), the increase in fluores-
cence yield begins within 25 s of switching on actinic illumination and
its level soon approaches maximal fluorescence (Fm′), indicating nearly
complete closure of all PSII reaction centers under actinic illumination.
Thus, upon reaching the fully Ci-limited condition, virtually all PSII cen-
ters are in the closed state (mostly QA

−) as the availability of PSII electron
acceptor vanishes with all the PQ pool having been converted to the
reduced form. This is reflected in the decrease in the re-oxidation
rates deduced from the post-actinic illumination fluorescence decays
as discussed in the next section. It is also consistent with observations
that maximal chlorophyll fluorescence occurs in cyanobacterial cells
when they reach the CO2 compensation point [35–37]. This over-
reduced condition is due to Ci-limitation, since the addition of bicarbon-
ate to the cells in the sample cuvette restores the lower fluorescence
and kinetic features observed early in the experiment (Supplemental
Fig. S2) [36,38–41]. We conclude that as Ci limitation becomes progres-
sively more severe, the second rise phase commences progressively
earlier as a consequence of an increasingly smaller pool of oxidized
CBB cycle intermediates, the major sink of photosynthetic reductant,
consistent with earlier observations [35–37].

Fig. 1B illustrates the overall experiment, allowing the visualization
of these and other trends in the formof a 3D plot that stacks the individ-
ual Chlfluorescencemeasuring traces collected over the entire course of
the Ci-limitation experiment. It can be seen that the transition from the
low fluorescent to high fluorescent state occurs within a period of about
30 min starting at the 8.25 hour time point. It is also clear that upon
reaching the Ci-limited state, protective mechanisms involving the
induction of some form of non-photochemical quenching (qN) are elic-
ited. This is evidenced by the decrease in maximal fluorescence starting
after 8.25 h (compare magnitude of fluorescence at 9 h, black trace
versus the lower level at 13 h in Fig. 2A). This is more clearly seen in a
plot of FT, the steady state level of fluorescence under actinic illumina-
tion (Fig. 1C, red trace). Here, FT is defined as the level of fluorescence
at the 300 second point in the overall trace as indicated by the vertical
dotted line in Fig. 1A. FT reaches a maximum approaching that of
maximal fluorescence (Fm′), indicating most PSII centers are closed
due to the absence of oxidized acceptor in the over-reduced PQ pool
as the lack of available Ci reaches a critical point. However, after
reaching thismaximum, there is then a steady decline of FT as protective
non-photochemical (qN) processes are mobilized (Fig. 1C, red trace).
This likely reflects increased activity of photoprotective processes
including the action of the flavodiiron proteins, which are associated
with the phycobilisome and are proposed to dissipate excess reductant
from NADPH and PSII [35,42–44]. On the other hand, the orange
carotenoprotein (OCP), involved in dissipative phycobilisome fluores-
cence quenching, is not likely involved since red light served as the ac-
tinic source and blue-green light activates OCP [45]. This is one possible
mechanism for the observed induction of photochemical quenching.
Nevertheless, other alternatives also not depending upon OCP cannot
be yet excluded as an explanation for the strong gradual decline in
maximal fluorescence after cells reach the Ci-limited state. For example,
the dissipation of reductant via the induction of the NDH complexes
associated with the CCMmay contribute to the quenching [46].

Another redox feature associated the transition to the Ci-limited
physiological state is the occurrence of a sharp increase in F0 seen begin-
ning at the 8.25 hours trace (Fig. 1C, black trace). This increase in F0 is
not reversed by the addition of bicarbonate (Fig. S2). Because the
post-illumination decay occurs more slowly in Ci-limited cells (Fig. 2),
there existed a possibility that the higher F0 occurred as a consequence
of the slowdecay of F0 due to the absence readily available oxidized car-
riers and processes that donate electrons to the PQ pool during the dark
adaption phase of the light dark cycle. To test this, the dark acclimation
interval between measuring traces was increased from 30 to 120 s, yet
the fluorescence still decayed asymptotically to the higher F0 position
(not shown), indicating the new higher level of F0 induced by the Ci

deprivation corresponds to a relatively long-lived physiological state.
Additionally, the higher F0 does not appear to be due to a state transition
since these are observed to occur in a cyclic fashion, as noted above, and
the higher F0 due to Ci depletion persists during the light-dark cycles of
the experimental regime. Thus, the origin of the sharp increase in F0
remains unresolved. It could be speculated that the higher F0 might be
a result of uncoupling of part of the phycobilisome antennae (e.g. partial
disassembly of rods) in a process distinct from state transitions.
Alternatively, it could relate to increase redox state of the PQ pool
from increased activity of cyclic electron flow or by increased flow
through the oxidative pentose phosphate pathway, as sugars are being
consumed to compensate for carbon limitation. These alternatives re-
main hypothetical, yet the phenomenon of increased F0 does appear
to be a novel finding regarding the process of adaptation to nutrient
deprivation.
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3.2. Post-illumination chlorophyll fluorescence kinetics

When the actinic illumination light is switched off, the decline in
fluorescence is not monotonic, but exhibits fluctuations during the
return to the F0 level (Fig. 2). As shown previously, these post-
illumination fluctuations in the PQ pool redox state are strongly influ-
enced by CEF and the flow of reductant to the membranes from oxida-
tive metabolism (e.g. pentose phosphate pathway) [29,46–49]. Upon
termination of the actinic light (Fig. 2, downward arrow, 330 s), fluores-
cence drops as reaction centers open due to re-oxidation of QA

− by elec-
tron transfer to PQ in the QB site. The exchange into and out of the QB

site occurs in the ~5 millisecond time range, which is too fast for the
time resolution of these measurements, where the data was collected
at a rate of 1 point/ms and with noise levels of about 20% of this
comparatively small decaying signal (~15% Fm). However, this poorly
resolved fast phase was gradually accompanied by the development of
slower phases (Figs. 2 and S5) during the course of depletion. The
decay of accumulated QA

− became multiphasic: the fast fluorescence
decay phase (t1/2 ~ 5 ms) remained about the same relative amplitude
as before, but the decent was from the much higher fluorescence level
(FT) of the Ci-starved state and dominated by slower decay processes.
Two new decay phases with half times of ~240 ms and ~29 s, comprise
about 30% and 60%, respectively of the total decline from FT from cells in
the Ci-depleted state (Table S1 and Fig. S5). These rate constants are
only considered as apparent rates due to the presumed complexity of
the underlying redox mechanisms, which may include a rate limitation
of oxidation of the PQ pool by O2-dependent oxidases [50]. Neverthe-
less, the net effect is that the slowdown of QA

− oxidation accounts for
the accumulation of QA

− and the high FT from cells in the Ci-depleted
state as the CBB cycle becomes a less efficient sink for electrons.

During the first 10 s of the post-illumination period there is a kinetic
‘shoulder’ in the decline of fluorescence, depending on Ci availability
(Fig. 2, inset). This dark increase in fluorescence has been attributed
to CEF, predominantly through NDH-1 complexes [29,46,48,49,51].
Under the current experimental conditions, this peak is not observable
early in the experiment (undetectable in the red and blue traces of
Fig. 2). However, as Ci-limiting conditions prevail later in the experi-
ment, it is possible to observe this increase (Fig. 2, green and black
traces, indicated with a vertical dotted line). This shoulder becomes
apparent at ~5 s after actinic light is switched off (Fig. 2, denoted with
the vertical dotted line). This kinetic feature becomesmore pronounced
as CEFfluxes increase under conditionswhere the expression ofNDH-13
complexes is maximized (i.e. growing cells under LC conditions for
several days). This is illustrated in the inset of Fig. 2, showing the corre-
sponding trace obtained from Synechocystis cells grown under LC condi-
tions and giving results very similar to recent experiments [46,49]. Note
the increase influorescence ~5 s after actinic light is switchedoff, denot-
ed vertical dotted line in the inset of Fig. 2. In contrast, the present ex-
perimental cultures were grown under Ci-replete conditions and
switched to Ci-limiting conditions. Because we have not measured the
expression of the NDH-13 complexes [see e.g. [24]], it is not possible
to determine whether the observed shoulder is due to NDH-13
complexes or whether other routes of CEF account for the peak [51].
However, it does seem likely that NDH-13 complexes are beginning
to be expressed and accumulated as Ci becomes limiting given the
similarity to previous experiments [18,24]. As the cells become
more thoroughly Ci-limited and as PQ pool becomes more reduced,
the post-illumination shoulder is obscured by the very slow decay
phase in the decline of fluorescence yield discussed above (Fig. 2,
pink trace). Besides the 5–10 s post-illumination peak and the slow
decay features that increase with Ci-deprivation, it is also interesting
to notice an additional kinetic feature: a low amplitude and broad
fluorescence increase, that occurs approximately 35 s after the actin-
ic light is switch off. This roughly corresponds to a similar feature
seen in the NADPH post-illumination traces (Fig. 3B) and probably
corresponds to an influx of metabolic reductant into the PQ pool
from oxidative carbon metabolism in the cytoplasm as discussed
below.

3.3. Spectroscopic probes of NADPH during Ci-limitation

Blue-green fluorescence has been used as a tool to analyze NADPH
levels in vivo [27–29,31]. Changes in blue-green fluorescence could
potentially be due to NADH fluorescence also occurring at these
wavelengths. However, Mi et al. (2000) noted in Synechocystis that
short-term changes in fluorescence during actinic illumination were
eliminated with treatment of DCMU and DBMIB consistent with the
main contribution to the transients as being that fromNADPH. Recently,
the increase in blue-green fluorescence due to single turnover flashes
was best explained by the transfer of electrons from PSI to NADPH via
FNR [31]. As shown in Fig. 3, the shape of the transients produced by ac-
tinic illumination during the Ci-limitation experiment shows several
similar features with the Chl fluorescence transients acquired in paral-
lel. As with the Chl fluorescence induction profile, blue-green fluo-
rescence quickly rises upon the resumption of actinic illumination
(Fig. 3A, 60 second time point) and is followed by multiphasic modula-
tions in amplitude that reflect multiple cellular processes that affect the
redox state of the NAD(P)H pool. During the first 30 s of actinic light ex-
posure, similarmultiphasic changes are observed over all periods of car-
bon availability. For all traces during the experiment, an initial rise
occurs quickly due to PSI reduction of NADP+, falls slightly during the
ensuing ~8 s, and then rises again to a maximal point, labeled ‘NM’ in
Fig. 3A. This secondary rise, NM, peaks ~25–30 s after the initial fast
rise initiated by resumption of actinic illumination. Similar kinetic fea-
tures are observed for Chl fluorescence induction kinetics, and there is
solid evidence that the corresponding secondary rise towhat is referred
to as the ‘M’ peak, corresponds to the State 2→State 1 transition in
cyanobacteria [34]. Moreover, the Chl fluorescence experiment de-
scribed above, where a measuring flash was inserted at the M peak,
also provide evidence for this assignment. The State 2→State 1 transi-
tion is the adjustable light-harvesting configuration where excitation
energy is increasingly directed to PSII at the expense of PSI excitation.
Correspondingly, the increased excitation of PSII with cells in State 1
will tend to maximize the rate of whole chain LEF further increasing
the level of NADPH in the process. The assignment of the secondary
NADPH increase (the NS to NM rise) to an increased rate of LEF due to
the State 2→State 1 transition,which is consistentwith the observation
that this secondary peak lags the Chl fluorescence M peak by several
seconds, as might be expected from the proposed causal sequence
with NADPH redox kinetics lagging behind PQ redox kinetics. Therefore,
the rise in NAD(P)H fluorescence to the NM peak is likely a consequence
of the excitation energy redistribution of the State 2→State 1 transition.

After ~25 s of actinic light exposure (Fig. 3A), striking differences
between NAD(P)H fluorescence traces from Ci-replete and Ci-limited
cells are observed. Before the onset of carbon limitation, a pronounced
drop in reduced NADPH is observed after reaching the maximum, NM

(Fig. 3A). This re-oxidation of the NAD(P)H pool after NMmay be attrib-
uted to activation of the CBB cycle by analogywith suggestions from Chl
fluorescence transients [52]. This decline in NAD(P)H fluorescence pro-
ceeds for approximately 60 s before reaching a new lower steady state
level under the Ci-replete conditions. Presumably, the new lower level
corresponds to a balance in rates of production of NADPH by LEF and
the rate of consumption by CO2 fixation in the fully activated CBB
cycle. Provided that the resultant sugars also have a sufficient utilization
sink, this steady-state level of NADPH would continue without further
modulations. Support for this assignment comes from the observation
that as cells become increasingly Ci-starved, this decline disappears
and instead, the steady state level of NAD(P)H fluorescence remains at
a high value close to the NM peak (Fig. 4A, 7 h and later traces). This is
likely due to a hindered CBB cycle resulting in less NADPH being
oxidized. This assignment is also supported by the observation that
the addition of the CBB cycle inhibitor GLY abolishes this decline after



Fig. 3. Changes in the NAD(P)H kinetics during the course of inorganic carbon limitation of Synechocystis cells. Panel A: Selected NAD(P)H fluorescence traces of cells switched from
bubbling with 3% CO2 enriched air to stirring under illumination in a 10 mm cuvette of a sample undergoing Ci depletion in a PAM fluorometer. Cells were illuminated with actinic red
illumination at ~100 μE except during the intermittent dark periods at the beginning and end of the actinic light periods of data acquisition. After a 60 s dark adaptation (first repetitive
intermittent dark period, black bar), actinic light was turned on at 60 s (yellow bar) and turned off at 330 s for the post-actinic illumination portion of the data collection trace (second
repetitive intermittent dark period, second black bar). The selected traces are for the time points at 2 (red), 7 (blue), 8.5 (green), 9 (black), and 13 (pink) hours after changing the Ci
conditions. NM represents themaximumoccurring after resumption of actinic illumination by analogywith ‘M’ of the Chl fluorescence induction nomenclature (see text). Panel B: Overall
perspective of NAD(P)H fluorescence transients of a cell sample exposed to Ci limitation. C Panel C: Changes in NT during the course of the Ci deprivation, NT is here defined as the terminal
steady state NAD(P)H fluorescence during actinic illumination, sampled at the 300 sec time point (vertical dotted line).
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the NM peak (Fig. 5). The limitation in available oxidizers of NADPH is
reflected in the parameter NT, defined as the steady state NAD(P)H fluo-
rescence during actinic illumination defined at the 300 sec time point
(Fig. 4A, vertical dotted line). This limitation is illustrated in the plot of
NT as a function of the time during the Ci-deprivation experiment
Fig. 4. Post-illumination changes in NAD(P)H fluorescence. Panel A: Selected NAD(P)H fluoresc
(black) hours after changing the Ci conditions. Post-illumination NAD(P)H fluorescence transie
30 s after the cessation of the actinic light is switched off at 330 s. Panel B: Averaged post-illumin
of actinic illumination: Average of 20 traces prior to Ci-depletion (red) and 20 traces after Ci-d
shown in Fig. 3C. From these data, it can be inferred that illuminated
cells have a more reduced NADPH pool in steady-state in Ci-limited
conditions, as opposed to those in Ci-replete. Due to the duration of
the experiment and uncertainty due to instrument drift, it is difficult
to distinguish between the increase in N0 due to cell growth and that
ence post-illumination transients at the time points of 2 (red), 7 (blue), 8.5 (green), and 9
nts exhibit a characteristic oxidation phase followed a re-reduction phase peaking at about
ation decays of NAD(P)H fluorescence during thefirst three seconds following termination
epletion (black). Downward arrows indicate termination of actinic illumination.



Fig. 5. The effect of Calvin–Benson–Basham cycle inhibitor glycolaldehyde on NADPH
fluorescence induction. NADPH fluorescence transients of a HC cell culture before (black
trace) and after (red trace) the addition of 10 mM glycolaldehyde. Cells re-suspended at
a concentration of 5 μg Chl mL. Periods of illumination are similar to those previously
described except the cells were dark adapted 30 min and only 5 cycles of illumination
were given and the five traces for each treatment were averaged.
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due to a change in redox state, yet from the data presented here, and
data from previous biochemical studies [26,53], it can be seen that
there is an overall increase in the reduction state of the NAD(P)H pool
during the course of depletion. This jump in the level of NT also appears
to slightly precede the sharp jump in F0 and FT also observed during the
course of Ci-limitation (Fig. 1C versus Fig. 3C). So in this case, the change
in NADPH redox state precedes the changes in PQ redox state, as might
be expected since the accumulation of reductant in the NADP pool oc-
curs first following the onset of Ci-limitation and the effect propagates
backwards and slows the flow of electrons in the electron transport
chain as PSI acceptor becomes more sparse.

3.4. Post-illumination NAD(P)H fluorescence transients

Post-illumination transients in NAD(P)H fluorescence also reveal in-
teresting differences as cells become increasingly Ci-starved (Fig. 4).
After turning off the actinic light (downward arrows), there is a sharp
decline in blue-green fluorescence as LEF ceases to drive electrons into
the NADPH pool, yet NADPH consumption pathways remain in their
active light-adapted state resulting in an undershoot as previously
observed [29–31]. These results show that in Ci replete conditions, the
NAD(P)H fluorescence decline is rapid (t1/2 ~ 250 ms) indicative of the
avidity and high absorptive capacity of these NADPH-utilizing path-
ways. However, upon carbon limitation, the fluorescence half-time
increases to ~780 ms. From a practical perspective, the rapidity of
these declines highlights the difficulty in performing rapid-quench
biochemical analysis procedures to evaluate the redox state of the
pyridine nucleotide pool.

Early in the experiment, the rapid post-illumination decline and
‘undershoot’ reaches its perigee ~6 s after the cessation of actinic illumi-
nation followed by a biphasic return to the dark steady state level, N0. In
Ci-replete cells (Fig. 4, red traces), this biphasic return corresponds to a
secondary rise peaking ~35 s after the light is switched off. However, as
cells proceed into the Ci-limited state, this secondary peak is diminished
and shifted to earlier times (Fig. 4A, black trace). Additionally, the peak
corresponds in time to a peak seen in post-illumination Chlfluorescence
mentioned above (see also Supplementary Fig. S4). These peaks are
tentatively assigned to the oxidation sugars accumulated in the
cytoplasm during the light period which causes the reduction of the
pyridine nucleotide pools with electrons transferred the PQ pool for
oxidation in the thylakoid located respiratory pathway. As discussed,
during chlorophyll fluorescence, a reduction event associated with CEF
mediated through NDH-1 complexes becomesmore pronounced. Inter-
estingly, very little change occurred within NADPH fluorescence the
first 7 s after actinic light termination. While the amplitude of the
decay increased, no new transient peaks or shoulders during the decline
were observed. The absence of the corresponding feature in the NAD(P)
H fluorescence decay occurring 7 s after actinic light termination is con-
sistent with the oxidation of NADPH by both the CBB cycle as well as by
the respiratory complexes NDH-1 complexes, with the latter contribut-
ing to the peak observed during the decay of Chl fluorescence (Fig. 2).

4. Summary and conclusions

The analysis of changes in the redox state of Synechocystis cells
experiencing Ci limitation reveals systematic kinetic changes and, as
would be expected, a trend towards the quinone and pyridine nucleo-
tide cofactor pools becoming highly reduced. With the ability to mea-
sure both chlorophyll and NADPH fluorescence simultaneously, a
more complete model of fluorescence kinetics can be created (See
Fig. 6). Changes in NADPH levels are likely to be the major contributor
the blue green fluorescence transients observed in response to the
changing light and nutrient availability, supporting earlier conclusions
based upon inhibitor studies [29] and recent kinetic analyses [31].
Despite many years of observation, the underlying physiological bases
for many of the undulations in the Chl fluorescence induction curves
are not completely understood. Obviously much is known: starting
with the observation that dark-adapted cells will have a basal chloro-
phyllfluorescence given by the parameter F0, corresponding tomaximal
open PSII reaction centers and basal fluorescence due to the decay of
excitons in proximal and distal light harvesting antennae, which escape
being trapped at the reaction centers. The analogous parameter in
NADPH fluorescence, N0, corresponds to a dark-adapted level of
NADPH, where cellular metabolism has reached steady state. Upon illu-
mination, chlorophyll fluorescence undergoes a series of distinct modu-
lations (OJDIP rise, not illustrated in Fig. 6) before reaching a local peak,
FP within the first 2–3 s of illumination. These modulations correspond
to intra-molecular electron transfer reactions within PSII but are affect-
ed by the rate of re-oxidation of QA

− by secondary acceptors [54]. NADPH
fluorescence also responds to actinic illumination by reaching a local
maximum, NP in a similar time frame. It is likely that the kinetic similar-
ities are due to the strong dependence of electron flow through PSI de-
pending upon the flow through PSII with modulation by the state of the
intersystem electron transport chain. Similarly, an inhibition of the
major sink of photosynthetic electrons, CO2-fixation via the CBB, results
in the accumulation of electronswithin the electron transport chain and
the consequent diminished ability of the PQ pool to re-oxidize QA

−. This
intimate connection between the PSII acceptor and the CBB cycle is ob-
served as a larger FP peak upon reaching the Ci-limited state (Fig. 1A)
and in the presence of glycolaldehyde (not shown). After reaching the
FP peak, chlorophyll fluorescence drops to a local stationary state, FS.
The cause of this decline has been fully resolved [54], but NADPH fluo-
rescence also reaches a local minimum/stationary phase at this time
(NS). From this point, a rise in both chlorophyll andNADPHfluorescence
is observed: for Chl fluorescence this is the FS to FM rise. This has been
attributed to State 2→State 1 transition in cyanobacteria [34]. The
subsequent decline from FM/NM is not reversion of this state transition,
but instead can be attributed to the activation of the CBB cycle, where in
Ci-replete conditions NADPH is consumed, and in Ci-limited environ-
ments, both Chl and NADPH fluorescence remain high. Photochemical
quenching through the activation CBB cycle permits a decline in chloro-
phyll fluorescence at FM as regenerated NADP+ remains available as an
electron sink. However, when the CBB cycle is impaired, a rise in both
chlorophyll fluorescence and NADPH is observed and evolves to higher
fluorescence levels (FT and NT) upon reaching steady state, which re-
quires about 2 min of actinic illumination in the present experiments
(Figs. 1 and 2). As cells reach the Ci-limited state, a rapid and persistent



Fig. 6. Fluorescence transients in cyanobacteria. Left panel: Chlorophyll fluorescence Right panel: NADPH fluorescence. Designated points (discussed in the text) may be useful in assaying
cellular metabolism.
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increase in F0 was observed (Fig. 1C). The basis for this increase remains
to be established, but it may reflect a hitherto unknown protective
mechanism for dissipating excess excitation energy, albeit with the
possibility of re-absorption. Likewise, an ostensibly photoprotective in-
crease in photochemical quenching is observed upon reaching the Ci-
limited state whichwe tentatively assign to the induction of flavodiiron
proteins that dissipate photochemical electron [35,42–44] and have
been shown to be induced under similar conditions as those studied
here [18]. Upon termination of actinic light, chlorophyll and NADPH
fluorescence quickly declines, although examination of the decays
shows new kinetic features and decreased rates of oxidation as Ci

becomes limiting. It is also observed that a small rise in chlorophyllfluo-
rescence (here termed FN) occurring 5–10 s after actinic light termina-
tion and this feature is attributable to cyclic electron flow through
NDH complexes ([46,49], See also Fig. 2 inset). This feature which is
absent under some conditions, but enhanced in cells grown under Ci
limitation likely due to the pool of reductant immediately available as
reduced ferredoxin and NADPH. Later, a reduction event in chlorophyll
and NADPH fluorescence is observed (here termed FR and NR), attribut-
ed to the oxidation of sugars accumulated in the light and the attendant
flow of reductant through the NADP and PQ pools to molecular oxygen
consistent with the late (~30 s after actinic termination) and protracted
kinetics of this feature.

Finally, the observed increase in the NADPH/NADP+ ratio is consis-
tent with recent findings regarding the mechanism of induction of the
high affinity CCM via alterations in the activity of the transcriptional re-
pressor, CcmR, caused by the interaction of NADP+ and α-KG [19]. The
results are consistent with the previous finding that NADP+ acts as an
internal sensor of Ci status and inhibits induction of the CCM via its in-
teractionwith the transcriptional regulator CcmR. In those experiments,
the induction of many genes occurred within 30 min of the onset of Ci-
limitation, coinciding with the growth inflection and the pronounced
changes in fluorescence kinetics observed here.
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