
ELSEVIER Artificial Intelligence 89 (1997) 365-387

Artificial
Intelligence

A theoretical evaluation of selected backtracking
algorithms *

Grzegorz Kondrak ‘, Peter van Beek *
Department of Computing Science, University of Alberta, Edmonton, Alta., Canada T6G 2HI

Received February 1996; revised June 1996

Abstract

In recent years, many new backtracking algorithms for solving constraint satisfaction problems
have been proposed. The algorithms are usually evaluated by empirical testing. This method,
however, has its limitations. Our paper adopts a different, purely theoretical approach, which is

based on characterizations of the sets of search tree nodes visited by the backtracking algorithms.
A notion of inconsistency between instantiations and variables is introduced, and is shown to be
a useful tool for characterizing such well-known concepts as backtrack, backjump, and domain

annihilation. The characterizations enable us to: (a) prove the correctness of the algorithms, and
(b) partially order the algorithms according to two standard performance measures: the number
of nodes visited, and the number of consistency checks performed. Among other results, we
prove the correctness of Backjumping and Conflict-Directed Backjumping, and show that Forward
Checking never visits more nodes than Backjumping. Our approach leads us also to propose a
modification to two hybrid backtracking algorithms, Backmarking with Backjumping (BMJ) and

Backmarking with Conflict-Directed Backjumping (BM-CBJ), so that they always perform fewer
consistency checks than the original algorithms.

Keywords: Backtracking; Constraint satisfaction

1. Introduction

Constraint-based reasoning is a simple, yet powerful paradigm in which many interest-
ing problems can be formulated. It has received much attention recently, and numerous

* A preliminary version of this paper appeared in Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, Montreal, Que. (1995) pp. 541-547, where it was selected for an

Outstanding Paper Award.

* Corresponding author. E-mail: vanbeek@cs.ualberta.ca.

’ E-mail: kondrak@cs.toronto.edu.

0004-3702/97/$17.00 Copyright @ 1997 Elsevier Science B.V. All rights reserved

PIISOOO4-3702(96)00027-6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82350703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

366 G. Kondmk, P. van Beek/Artijicial Intelligence 89 (1997) 365-387

methods for dealing with constraint networks have been developed. The applications in-
clude graph coloring, scene labelling, natural language parsing, and temporal reasoning.

The basic notion of constraint-based reasoning is a constraint network, which is
defined by a set of variables, a domain of values for each variable, and a set of

constraints between the variables. To solve a constraint network is to find an assignment

of values to each variable so that all constraints are satisfied [10,201.

Backtracking search is one of the methods of solving constraint networks. The generic
backtracking algorithm was first described more than a century ago, and since then has

been rediscovered many times [21. In recent years, many new backtracking algorithms

have been proposed. The basic ones include Backmarking [51, Backjumping [61, For-
ward Checking [8,111, and Conflict-Directed Backjumping [161. Several hybrid algo-
rithms, which combine two or more basic algorithms, have also been developed [161.

There is no simple answer to the question of which backtracking algorithm is the
best one. First, the performance of backtracking algorithms depends heavily on the

problem being solved. Often, it is possible to construct examples of constraint networks

on which an apparently very efficient algorithm is outperformed by the most basic
chronological backtracking. Second, it is not obvious what measure should be employed
for comparison. Run time is not a very reliable measure because it depends on hardware

and implementation, and so cannot be easily reproduced. Besides, the cost of performing
consistency checks (checks that verify that the current instantiations of two variables
satisfy the constraints) cannot be determined in abstraction from a concrete problem.

A better measure of the efficiency of a backtracking algorithm seems to be the number
of consistency checks performed by the algorithm, although it does not account for the
overhead costs of maintaining complex data structures. Another standard measure is the

number of nodes in the backtrack tree generated by an algorithm.

The need for ordering algorithms according to their efficiency has been recognized
before. Nude1 [151 ordered backtracking algorithms according to their average-case per-

formance. Prosser [161 performed a series of experiments to evaluate nine backtracking
algorithms against each other. However, such an approach is open to the criticism that

the test problems are not representative of the problems that arise in practice. Even a

theoretical average-case analysis is possible only if one makes simplifying assumptions
about the distribution of problems. Prosser commented on his results:

It is naive to say that one of the algorithms is the “champion”. The algorithms
have been tested on one problem, the ZEBRA. It might be the case that the relative
performance of these algorithms will change when applied to a different problem.

When Prosser’s results are examined, it is easy to notice that in some cases one

algorithm performed better than another in all tested instances. Could this mean that
one algorithm is always better than another’? Such a hypothesis can never be verified
solely by experimentation; the relationship has to be proven theoretically. In this paper

we show that some of these cases indicate a general rule, whereas other do not. Moreover,
we present a partial ordering of several backtracking algorithms which is valid for all

instances of all constraint satisfaction problems.
Our approach is purely theoretical. We analyze several backtracking algorithms with

the purpose of discovering general rules that determine their behaviour. A notion of

G. Kondrak, P van Beck/Artificial Intelligence 89 (1997) 365-387 367

inconsistency between instantiations and variables is introduced, and is shown to be a
useful tool for characterizing such well-known concepts as backtrack, backjump, and
domain annihilation. Using the new notion, we formulate the necessary and sufficient
conditions for a search tree node to be visited by each backtracking algorithm. These

characterizations enable us to construct partial orders (or hierarchies) of the algorithms

according to two standard performance measures: the number of visited nodes, and the

number of performed consistency checks.

The orderings are surprisingly regular and contain some non-intuitive results. For
instance, it turns out that the set of nodes visited by Forward Checking is always a

subset of the set of nodes visited by Backjumping. This fact has never been reported

before although the two algorithms have been often empirically compared. Also, the

orderings confirm and clarify the experimental results published by other researchers.
The characterizing conditions imply simple and elegant correctness proofs of the char-
acterized algorithms. Two of these algorithms, Backjumping (BJ) and Conflict-Directed

Backjumping (CBJ) have not been formally proven correct before. *

The orderings proved also to be a stimulus for developing more efficient backtracking

algorithms. The idea of combining Backjumping and Backmarking into a new hybrid
algorithm was first put forward by Nadel [131. Such an algorithm, called BMJ, was

presented by Prosser [161. BMJ, however, does not retain all the power of both base

algorithms in terms of consistency checks. Prosser observed that on some instances of
the zebra problem BMJ performs more consistency checks than BM. In the conclusion
of his paper he posed the following question:

It was predicted that the BM hybrids, BMJ and BM-CBJ, could perform worse
than BM because the advantages of backmarking may be lost when jumping back.

Experimental evidence supported this. Therefore, a challenge remains. How can the
backmarking behaviour be protected‘?

In this work we answer the question by modifying the two BM hybrids, Backmarking

with Backjumping (BMJ), and Backmarking with Conflict-Directed Backjumping (BM-
CBJ), so that they always perform fewer consistency checks than both corresponding
basic algorithms.

Apart from presenting specific results for particular backtracking algorithms, our goal
is also to propose a general methodology: techniques and definitions that can be used
for characterizing any backtracking algorithm. This kind of theoretical analysis may

be performed for any new backtracking algorithm in order to see if it belongs in the
existing hierarchy.

2. Background

We begin with some concepts of the constraint satisfaction paradigm, then give a brief

description of four basic backtracking algorithms, and finally present an example that
shows the algorithms at work.

* Both BJ and CBJ were first presented without correctness proofs and no direct proofs of these algorithms
have appeared in the literature. However, proofs have been given for certain algorithms related to CBJ [3.7.18 1.

368 G. Kondruk, F1 vun Beek/Artijiciul Intelligence 89 (1997) 365-387

Definition 1. A binary constraint network [121 consists of a set of n variables {XI, . . . ,
x,}; their respective value domains, D1,. . . , D,,; and a set of binary constraints. A binary

constraint or relation, Rij, between variables xi and x,;, is any subset of the product of

their domains 3 (that is, Rij C D, x Dj). We denote an assignment of values to a subset

of variables by a tuple of ordered pairs, where each ordered pair (x, a) assigns the value

a to the variable X. A tuple is consistent if it satisfies all constraints on the variables
contained in the tuple. A (fuU> solution of the network is a consistent tuple containing
all variables. A partial solution of the network is a consistent tuple containing some

variables. For simplicity, we usually abbreviate ((xi, al), . . , (x1, O-i)) to (al,. . , ai).

The next definition introduces a notion of consistency between a tuple of instantiations

and a set of variables. This notion is fundamental to all results presented in this work.

Definition 2. A tuple ((xi,, ai,), . . . , (Xi,, , ai,,)) is consistent with a set of variables

{x,,I,...>xj,,} f h i t ere exist instantiations aj,, . . . , a,;$ of the variables x,~, , . . . ,,x;, respec-

tively, such that the tuple ((Xi,, ai,), . . . , (xi,, , ai?,) 7 (X,j,, a,j, 1, . . , (X,j(, , a,, > > is consis-
tent.” A tuple is consistent with a variable if it is consistent with a one-element set
containing this variable.

Example 3. The n-queens problem is how to place n queens on an n x II chess board
so that no two queens attack each other. There are several possible representations
of this problem as a constraint network (see [141). The one we use identifies board
columns with variables, and rows with domain values. Thus, variable xi represents the
ith column, and its domain Di contains n values representing each row. The constraint

between variables xi and xj can be expressed as Rij = { (ai, a,,): (ai + aj) A (Ii - jl #

/u;-Lz~I)}. Fig. 1 h s ows two instances of the 4-queens problem. The instance on the left
depicts tuple ((x1 ,4), (x*,2)), which is a partial solution. The tuple is itself consistent

and it is consistent with the set of variables {x~,x~,x~} and all its subsets, including
the empty set. It is inconsistent with all sets of variables that include x3. It is consistent
with variables XI, x2, and x4, but not with variable x3. The instance on the right depicts

tuple ((x1,2),(X2,4),(x3, 1),(x4,3)), or simply (2,4, 1,3), which is a full solution.
The tuple is consistent with all sets of variables. Since the network has a solution, the

empty tuple is also consistent with all sets of variables.

The idea of a backtracking algorithm is to extend partial solutions. At every stage of
backtracking search, there is some current partial solution which the algorithm attempts

to extend to a full solution. Each variable occurring in the current partial solution is
said to be instantiated to some value from its domain. For ease of exposition, we
assume the static order of instantiation in which variables are added to the current

partial solution according to the predefined order: x1, . . . , x,. (This assumption is later
relaxed in Section 6.) It is convenient to divide all variables into three sets: past

3 Throughout the paper we assume that all domain values satisfy the corresponding unary constraints.

4 The variables in the tuple and in the set of variables need not be distinct. We assume, however, that a

variable is always assigned only a unique value.

G. Kondrak, I? van Beek/Art$cial Intelligence 89 (1997) 36S-387 369

1 2 3 4 1 2 3 4

Fig. I. A partial and a full solution to the 4-queens problem. The shaded squares denote the positions which
are excluded from consideration by the already placed queens.

variables (already instantiated), current variable (now being instantiated), and future

variables (not yet instantiated). A dead-end occurs when all values of the current
variable are rejected by a backtracking algorithm when it tries to extend a partial

solution. In such a case, some instantiated variables become uninstantiated; that is, they

are removed from the current partial solution. This process is called backtracking. If only

the most recently instantiated variable becomes uninstantiated then it is chronological

backtracking. Otherwise, it is backjumping. A backtracking algorithm terminates when
all possible assignments have been tested or a certain number of solutions have been

found.
A backtrack search may be seen as a search tree traversal. In this approach we identify

tuples (assignments of values to variables) with nodes: the empty tuple is the root of the

tree, the first level nodes are I-tuples (representing an assignment of a value to variable
xl), the second level nodes are 2-tuples, and so on. The levels closer to the root are
called shallower levels, and the levels farther from the root are called deeper levels.

Similarly, the variables corresponding to these levels are called shallower and deeper.

The nodes that represent consistent tuples are called consistent nodes. The nodes that

represent inconsistent tuples are called inconsistent nodes. We say that a backtracking

algorithm visits a node if at some stage of the algorithm’s execution the instantiation of
the current variable and the instantiations of the past variables form the tuple identified

with this node. The nodes visited by a backtracking algorithm form a subset of the set of
all nodes belonging to the search tree. We call this subset, together with the connecting

edges, the backtrack tree generated by a backtracking algorithm. Backtracking itself can
be seen as retreating to shallower levels of the search tree. Whenever some variables
become uninstantiated and xh is set as the new current variable, we say that the algorithm
backtracks to level h. We consider two backtracking algorithms to be equivalent if on

every constraint network they generate the same backtrack tree and perform the same
consistency checks.

Chronological Backtracking (BT) [2] is the generic backtracking algorithm. The
consistency checks between the instantiation of the current variable and the instantiations

of the past variables are performed according to the original order of instantiations. If a
consistency check fails, the next domain value of the current variable is tried. If there
are no more domain values left, BT backtracks to the most recently instantiated past
variable. If all checks succeed, the branch is extended by instantiating the next variable
to each of the values in its domain. A solution is recorded every time that all consistency
checks succeed after the last variable has been instantiated.

370 G. Kondrak, I? van Beek/Ari$icial Intelligence 89 (I 997) 365-387

Backjumping (BJ) [61 is similar to BT, except that it behaves more efficiently
when no consistent instantiation can be found for the current variable xi (at a dead-

end). Instead of chronologically backtracking to the preceding variable, BJ backjumps

to the deepest past variable Xh that was checked against the current variable. Chang-

ing the instantiation of xh may allow a consistent instantiation to be found for xi,
whereas changing the instantiation of any of the variables between xi and xl1 is
guaranteed to be fruitless since we will not have changed the reason for the dead-

end.
Conflict-Directed Backjumping (CBJ) [161 has a more sophisticated backjumping

behaviour than BJ. Every variable has its own conjict set that contains the past variables
which failed consistency checks with its current instantiation. Every time a consistency

check fails between an instantiation ai of the current variable xi and an instantiation ah
of some past variable xh, the variable xl1 is added to the conflict set of xi. When there

are no more values to be tried for the current variable xi, CBJ backtracks to the deepest

variable xl1 in the conflict set of xi. At the same time, the variables in the conflict set of
x,, with the exception of xl,, are added to the conflict set of XA, so that no information

about conflicts is lost.
In contrast with the above backward checking algorithms, Forward Checking (FC)

[8,111 performs consistency checks forward, that is, between the current variable and
the future variables. After the current variable has been instantiated, the domains of
the future variables are filtered in such a way that all values inconsistent with the

current instantiation are removed. If none of the future domains is annihilated, the next
variable becomes instantiated to each of the values in its filtered domain. Otherwise

the effects of forward checking are undone, and the next value is tried. If there are no
more values to be tried for the current variable, FC backtracks chronologically to the

most recently instantiated variable. A solution is recorded every time the last variable

becomes instantiated.

Example 4. Fig. 2 shows a fragment of the backtrack tree generated by Chronological

Backtracking (BT) for the 6-queens problem. White dots denote consistent nodes. Black
dots denote inconsistent nodes. For simplicity, when referring to nodes we omit commas

and parentheses. The board in the upper right corner depicts the placing of queens
corresponding to node 253 in the backtrack tree. Capital Q’s on the board represent
queens which have already been placed on the board. The shaded squares represent
positions that must be excluded due to the already placed queens. The numbers inside

the squares indicate the first queen responsible for the exclusion; 1, 2, 3 correspond to
the first, second, and third queen respectively.

The dark-shaded part of the tree contains two nodes that are skipped by Backjumping
(BJ). The algorithm detects a dead-end at variable x6 when it tries to expand node
25364. It then backjumps to the deepest variable in conflict with x6, in this case x4.

The backjump is represented by a dashed arrow. We could say that BJ discovers that
the tuple (2,5,3,6), which is composed of the instantiations in conflict with x6, is
inconsistent with variable x6. To see this, notice that if we place a queen in column

4 row 6, every square in column 6 is attacked by the queens placed in the first four
columns. Indeed, there is no point in trying out the remaining values for x5 because

G. Kondrak, R van Beek/Art$cial Intelligence 89 (1997) 365-387 371

‘,. 25

1

2

3

4

5

6

123456

----- ----------.

------_-.

6---

Fig. 2. A fragment of the BT backtrack tree for the 6-queens problem.

that variable plays no role in the detected inconsistency. Nodes 25365 and 25366 may

be safely skipped.
The light-shaded part of the tree contains nodes that are skipped by Conflict-Directed

Backjumping (CBJ). The algorithm reaches a dead-end when expanding node 25314.
At this moment the conflict set of X6 is { 1,2,3,5} because the instantiations of these
four variables prevent a consistent instantiation of variable X6. To see this, notice that

after the fourth and the fifth queen are placed, column 6 of the chess board will contain
numbers 1, 2, 3, and 5. CBJ backtracks to the deepest variable in the conflict set, which
is x5. No nodes are skipped at this point. The conflict set of x6 is added to the conflict
set of xs, which now becomes { 1,2,3}. After trying the two remaining values for xs,

CBJ backjumps to x3 skipping the rest of the subtree. The backjump is represented by
a dashed arrow. In terms of consistency, we could say that the algorithm discovered that
tuple (2,5,3) is inconsistent with the set of variables (x5, x6). A look at the board in

Fig. 2 convinces us that indeed such a placement of queens cannot be extended to a
full solution. It is impossible to fill columns 5 and 6 simply because the two available

squares are in the same row. Note that (2,5,3) is consistent with both xg and X6 taken
separately.

Forward Checking (FC), in contrast with the backward checking algorithms, visits
only consistent nodes, although not necessarily all of them. In our example, nodes 253,
2531, 25314 and 2536 are visited, but not 25364. The board in Fig. 2 can be interpreted
in the context of this algorithm as follows. The shaded numbered squares correspond

372 G. Kondrak, I? van Beek/Art@ial Intelligence 89 (1997) 365-387

to the values filtered from domains of variables by forward checking. The squares that
are left empty as the search progresses correspond to the nodes visited by FC. Due to

the filtering scheme, FC detects an inconsistency between the current partial solution

and some future variable without ever reaching that variable, but it is unable to discover
an inconsistency with a set of variables. In our example, the algorithm finds that both

25314 and 2536 are inconsistent with x6. However, it does not discover that node 253
is inconsistent with {xg,xg}. That is why node 2536 is visited by FC even though it is
skipped by the backward checking CBJ.

3. Characterizations of four basic algorithms and their implications

We are now ready to present some new results. First, we give two lemmas that define

backjumps in terms of inconsistency between variables and instantiations. Then, we
present theorems about the backtrack trees of the four basic backtracking algorithms:

BT, BJ, CBJ, and FC. The theorems enable us to (a) partially order the algorithms
according to the number of visited nodes, and (b) prove the correctness of the al-
gorithms. It is assumed that all constraints are binary, the order of instantiations is

fixed and static, and the order of performing consistency checks within the node fol-
lows the order of instantiations. When faced with a constraint satisfaction problem

one can ask several questions about it [151: Is there a solution? How many solutions
are there? What is one solution? What are all the solutions? We focus first on those
variants of the backtracking algorithms that find all solutions. We make the assump-

tion of a static variable ordering and the assumption that all solutions are sought in

order to simplify the statements of the results and their proofs. These two assump-

tions are later relaxed in Section 6. The proofs that are not included here can be

found in [91.
In Example 4 we made an observation concerning the relation between a BJ backjump

and the consistency of the current instantiation. Let us generalize this observation in the

form of the following lemma.

Lemma 5. If BJ performs a backtrack to variable xl, from a dead-end at variable x,

then (al,. . , al,) is inconsistent with x;.

Proof. After no consistent instantiation can be found for x;, BJ chooses as the point

of backtrack the variable xh which is the deepest variable in conflict with xi. Let C
denote the tuple composed of the instantiations of all variables that are in conflict with

xi. Clearly, C is inconsistent with xi. Since ah is the instantiation of the deepest variable
inC,C isasubtupleof (al,..., al,). Therefore, (al,. , ah) is also inconsistent with

X,. 0

In order to present a similar lemma for the CBJ algorithm, we need to consider
two additional issues. The first issue concerns the one solution/ail solutions dichotomy.
Backtracking algorithms are usually designed to stop after finding the first solution and
have to be modified in order to find all solutions. For many algorithms, including BT,

G. Kondrak, P van Beek/Arti&ial Intelligence 89 (1997) 365-387 ?I3

BJ, and FC, the changing of the termination condition is sufficient. In the case of CBJ
and its hybrids, however, a more substantial modification is necessary. Recall that the

conflict sets of CBJ are meant to indicate which instantiations are responsible for a

previously discovered inconsistency. However, after a solution is found, conflict sets

cannot be interpreted in this way. It is the search for other solutions, rather than an

inconsistency, that forces the algorithm to backtrack. We need to differentiate between
these two types of CBJ backtracks, namely (A-type) the backtracks caused by detecting

an inconsistency, and (B-type) the backtracks caused by searching for other solutions.
In the latter case the backtrack must be always chronological (i.e., to the immediately

preceding variable) and no nodes can be skipped, otherwise we would risk pruning out
solutions. One possible solution is to add to every conflict set a flag that indicates whether

the conflict set is valid. If the vcf (valid con$ict set) flag is set, the deepest variable
in the conflict set should be taken as the backtrack point; otherwise, a chronological
B-type backtrack must be applied. When a solution is found, all vcf flags should be

cleared.
The second issue concerns the ability of CBJ to perform multiple backjumps. To deal

with this problem, we need the notion of backtrack rank for the A-type backtracks.
Informally, the rank of a backtrack is the distance, measured in backtracks, from the

backtrack destination to the “farthest” dead-end. The definition is recursive:

Definition 6.
(1) A backtrack from variable Xi to variable xl1 is of rank 1 if it is performed directly

from a dead-end at Xi.

(2) A backtrack from variable Xi to variable xh is of rank d 3 2, if all backtracks
performed to variable x, are of rank less than d, and at least one of them is of
rankd- 1.

The following lemma describes the relation between a CBJ backjump and the consis-
tency of the current instantiation.

Lemma 7. If CBJ petiorms an A-type backtrack from variable xi to variable XI,, then

there exists a set of variables S such that S is a subset of {xi,. . . ,x,} containing xi

and the tuple composed of the instantiations of the variables in the conflict set of xi is

inconsistent with S.

Proof. Recall that CBJ chooses as the point of backtrack the deepest variable in the
conflict set of the current variable. The conflict set of xi is the union of the set of all

past variables in conflict with xi and all conflict sets inherited from variables deeper
than xi. Let C denote the tuple composed of the instantiations of the variables in the
conflict set of x,.

The proof proceeds by induction on the rank of the backtrack. For the basis, consider
a backtrack of rank 1, that is, one performed from a dead-end. Since no conflict sets are
inherited from deeper variables, the conflict set of xi contains only variables in conflict
with xi. Clearly, C is inconsistent with the set S = {x,}. (Note that in this case the
behaviour of CBJ is identical to that of BJ.)

374 G. Kondrak, I? vun Beek/Artijrciul Intelligence 89 (I 997) 365-387

Now, assume the inductive hypothesis is true for all backtracks of rank less than d
and consider a backtrack of rank d. We want to find a set S such that C is inconsistent

with it. Let Ctxl,‘) denote the tuple produced by extending C with some instantiation

(Xi, t), t E Di. C(““) itself may be consistent or not.
(A) If C(xf,‘) is a consistent tuple, there must have been a backtrack of rank less than

d from some variable x’ to variable xi. From the inductive hypothesis we know
that the tuple C’ composed of the instantiations of the variables in the conflict
set of x’ is inconsistent with some set S’. Since the conflict set of X, contains

all elements of the conflict set of X’ except xi, C’ is a subtuple of CXl*‘), and

so the latter is also inconsistent with S’.
(B) If C(Xl,‘) is an inconsistent tuple, it is also inconsistent with any set of variables,

so take S’ = 0.
Let S’ be the sum of all the S’ sets, S’ = lJIED, S’. For every instantiation (x,, u), u E Dj,

C(*,r”) is inconsistent with S’. Therefore C is inconsistent with the set S = {x;) U S’. Cl

We now present two theorems that specify the sufficient and the necessary conditions
respectively, for a node to be visited by the four basic backtracking algorithms. The first

theorem can be interpreted as a description of the sets of nodes which are guaranteed
to be visited by the algorithms. The assumption is that all solutions are sought.

Theorem 8.
(a) If the parent of a node is consistent, then BT visits the node.
(b) If the parent of a node is consistent with every variable, then BJ visits the node.

(c) If the parent of a node is consistent with every set of variables, then CBJ visits

the node,
(d) if a node is consistent and its parent is consistent with every variable, then FC

visits the node.

Proof. (b) Suppose that node (al, . . . , ai-1) is consistent with every variable, and its

child p = (al,..., ai) is not visited by BJ. Take the deepest j such that node p’ =
(ai,. . _ .ai) is visited by BJ. Node p’ is a proper ancestor of node p and is consistent

with every variable. When BJ is at node p’, all consistency checks between a,i and

previous instantiations succeed. The only reason for not instantiating the next variable

Xi+1 to ali-1 can be a backjump from some variable xh to some variable xg, where
g < j and h 3 j + 2. But if this is the case, Lemma 5 implies that node (al,. . . , a#) is
inconsistent with xh, which contradicts the initial assumption that node (al?. . . , ai_])

is consistent with every variable.
(c) Similar to the proof of (b), except that we use Lemma 7. Note that we are

concerned here only with the A-type backtracks because the B-type backtracks are
always chronological and do not involve node skipping.

Proofs of the remaining cases are straightforward. 0

The next theorem can be seen as describing the sets of nodes that may be visited by
the algorithms, or, if we consider their complements, the sets of nodes that are never
visited by the algorithms.

G. Kondrak, P van Beek/ArtijiciaE Intelligence 89 (1997) 365-387 375

Fig. 3. Conditions graph.

Theorem 9.
(a) Zf BT visits a node, then its parent is consistent.

(b) IfBJ visits a node, then its parent is consistent.

(c) If CBJ visits a node, then its parent is consistent.

(d) If FC visits a node, then it is consistent and its parent is consistent with every

variable.

Proof. (a)-(c) The proofs follow from the fact that the backward checking algorithms

expand only consistent nodes.

(d) We prove the second conjunct first. Suppose that FC visits node p = (al,. . . , ai)
although its parent (al, . . , ,ai_l) is inconsistent with some variable. Take the deepest
j, j < i, such that node (al,. . . , aj_1) is consistent with every variable. Node p’ =

(al,... , aj) is a proper ancestor of node p, so p’ is also visited by FC. When FC is
at node p’, consistency checking annihilates the domain of some variable, thus causing

the branch to be abandoned. Therefore, no descendants of p’ are visited by FC, a
contradiction.

Now, suppose that FC visits node p = (al,. . . ,ai) which is inconsistent. From the

first part of the proof, we know that its parent (at,. . . , ai_ 1) must be consistent. Take

the shallowest k, k < i, such that instantiation ak is inconsistent with instantiation ai.

When FC is at node (at,. . . , ak), the value ai is removed from the domain of the
variable Xi and cannot be reinstated before the instantiation of xk is changed. Therefore,
p cannot be visited by FC, a contradiction. 0

Fig. 3 summarizes the results presented so far. The arrows represent implications

formulated in Theorems 8 and 9. Note the difference between the chronologically back-
tracking algorithms BT and FC, and the backjumping algorithms BJ and CBJ. The
former are completely characterized as the necessary and sufficient conditions coincide;
for every node we can decide whether it is visited by the algorithm without generating

376 G. Kondrak, P van Beek/ArtQicial Intelligence 89 (19971 365-387

BJ CBJ

g--

h --

i __

j --

k--

9

h --

i __

j --

k----__--b____----

4

Fig. 4. A hypothetical situation where CBJ visits a node not visited by BJ

the whole backtrack tree. The latter are only partially characterized; there is a set of

nodes for which we are unable to tell a priori if they belong to the algorithm’s search
tree or not. It is an open question if better characterizing conditions for the backjumping
algorithms can be found.

The following corollary has been formulated by simply following the arrows in Fig. 3.

Corollary 10.
(a) BT visits all nodes that BJ visits.

(b) BT visits all nodes that CBJ visits.

(c) BT visits all nodes that FC visits.

(d) BJ visits all nodes that FC visits.

The relationship between BJ and FC is the most interesting. It has never been reported
before, although the two algorithms have been often empirically compared.

A relationship between BJ and CBJ, although not implied by the theorems, can also

be proven using Lemmas 5 and 7. These relationships and more are summarized in
Fig. 7.

Theorem 11. BJ visits all nodes that CBJ visits.

Proof. Suppose that in the search tree of CBJ there is a node p = (pt , . . . , ph) which
is not visited by BJ (Fig. 4, left). The only reason for skipping p can be a backjump

performed by BJ from some node 4 = (41,. . , , qk) to level g < h. Recall that BJ

performs backjumps only immediately after detecting a dead-end, and that in such a
case it behaves exactly like CBJ. Therefore, node q cannot be visited by CBJ, otherwise
CBJ would also skip node p. The only reason for skipping q can be a backjump
performed by CBJ from some node Y = (r-1, . , Yj) to level i < k (Fig. 4, right).

Let u = (pt ,..., pg) = (ql,..., qg) = (rl,..., r,), and u = (qt,...) qi) = (rt,...,
ri). From Lemma 5 we have that u is inconsistent with variable xk. From Lemma 7 we
have that u is inconsistent with set S, where S c {Xj,. . ,x,,}.

G. Kondrak, P van Beek/Artifcial Intelligence 89 (1997) 365-387 377

Let us denote the deepest variable in S by mux(S). What is the relationship between

Xk and max(S>?
l If xk > ma(S), BJ would never reach xk after visiting node u because it would

hit a dead-end at mux(S) first.

l If xk < max(S), CBJ would never reach max(S) after visiting node u because it

would hit a dead-end at Xk first.
l If xk = max(S), CBJ would not visit node p because from xk it would jump back

directly to level g.
Thus, we arrive at a contradiction. 0

Corollary 10 together with Theorem 11 enable us to construct a partial order of

backtracking algorithms with respect to the number of visited nodes. BT generates the

largest backtrack tree, which contains all nodes visited by the other algorithms. BJ visits
more nodes than CBJ or FC. The order would be linear if there was a relationship

between FC and CBJ, but this is not the case. Fig. 2 provides a counterexample: some

nodes visited by CBJ are not visited by FC, and vice versa.
The correctness of the four basic algorithms is also an almost immediate consequence

of the theorems. A backtracking algorithm is correct if it is sound (finds only solutions),
complete (finds all solutions), and terminates. That all the algorithms terminate is clear,
so only soundness and completeness have to be shown.

Corollary 12.
(a) BT is correct.

(b) BJ is correct.

(c) CBJ is correct.

(d) FC is correct.

Proof. (b) Soundness. A solution is claimed by BJ if all consistency checks succeed at

an n-level node. This means that (at, . . . , a,) is visited and Vi < n: ui is consistent with

u,~. Theorem 9 implies that node (at,. . . , a,_,) is consistent. Therefore, (al,. . , a,)
is consistent.

Completeness. Suppose that some n-level node (at,. . . , a,,) in the search tree is

consistent. Then, its parent (al,. . . , a,_~) is consistent as well, and it is also consistent
with x,. Therefore, (at,. . , a,_~) is consistent with every variable. From Theorem 8

we know that (at,. . . ,a,,) is visited by BJ. Since all consistency checks between a,,
and previous instantiations must succeed, a solution is claimed by BJ.

Proofs of the remaining cases are similar. 0

4. Backmarking and its hybrids

In this section we discuss Backmarking (BM) [S] and its two hybrids. We prove the
correctness of BM and propose a modification to the hybrid algorithms. These algorithms
are then included in our hierarchies (see Section 6).

378 G. Kondrak. P. van Beek/Art@cial Intelligence 89 (1997) 365-387

In the Chronological Backtracking (BT) algorithm consistency checks are performed

unconditionally. A consistency check is performed to determine if the current instantia-

tions of two variables satisfy the constraint between the variables even if neither of the
instantiations has changed since the check was most recently executed. Backmarking

(BM) [51 addresses this inefficiency by imposing a marking scheme on the Chrono-
logical Backtracking algorithm. The marking scheme employed by BM and its hybrids
does not have any influence on the backtrack tree generated by a backtracking algorithm

but usually results in a dramatic reduction in the number of consistency checks. It is
based on the following two observations [131:

(A) If, at the most recent node where a given instantiation was checked, the instan-
tiation failed against some past instantiation that has not yet changed, then it

will fail against it again. Therefore, all consistency checks involving it may be

avoided.
(B) If, at the most recent node where a given instantiation was checked, the instan-

tiation succeeded against all past instantiations that have not yet changed, then

it will succeed against them again. Therefore we need to check the instantiation

only against the more recent past instantiations which have changed.
The above two statements can be formally proven correct using our framework.

Lemma 13. The marking scheme formulated by the observations (A) and (B) is

correct.

Proof. Letp=(at,..., ai) be a node visited by a backward checking algorithm. Node

p may be consistent or not. If p is a consistent node then

Vj < i: (a,i, ai) E R,ji.

If p is an inconsistent node then

3!~ < i: (((a,,ai) $! R,i) A (Vj < S: (aj,ai) E Rji)),

where 3! means there uniquely exists. Let p’ = (a{, . . . , ai) be the first node visited

after p such that ai = ai. We have

3!r <i: ((a: # a,) A (Vj< r:ai =aj)).

There are now two possibilities, which correspond exactly to the observations (A)

and (B):
(A) [xonsistent(p) A (s < r)] + [(a:, a:) $ R,i] * [-xonsistent(p’) I.
(B) [consistent(p) V (xonsistent(p) A (s 3 r))] 3 [vj < r: (a;,ai) E Rji]. 0

BM is essentially BT enhanced by the above marking scheme. Its standard imple-
mentation uses a one-dimensional array mbl (minimum backup level) of size n and a
two-dimensional array mcl (maximum checking level) of size n x m, where n is the
number of variables, and m is the size of the largest domain. The entry mbl[i] contains
the number of the shallowest variable whose instantiation has changed since the variable
x, was last instantiated with a new value. The entry mcl[i] [j] contains the number

G. Kondrak, P: van Beek/Art@cial Intelligence 89 (1997) 365-387 319

Fig. 5. The constraint network of Example 15.

of the deepest variable that was checked against the jth value in the domain of the
variable xi. All entries in both arrays are initially set to 1. Roughly speaking, mbl holds
the values of r, and mcl holds the values of S. For the implementation details see for

example [161.
From a theoretical point of view, BM may be treated as an abstract algorithm which

has a number of possible implementations. Within this approach, proving the correctness
of the marking scheme is in fact equivalent to proving the correctness of BM.

Theorem 14. BM is correct.

Proof. Since BM is BT enhanced by the marking scheme formulated by the observations
(A) and (B) , the correctness of BT and the correctness of the marking scheme imply
the correctness of BM. 0

BM generates exactly the same search tree as BT, but often performs less checks
within a node. This is in contrast with BJ, which reduces the number of consistency

checks by skipping search tree nodes. It turns out that the two types of savings can
be incorporated into one backtracking algorithm. Nadel [131 was the first to suggest
combining BM and BJ into a new hybrid algorithm. Prosser [161 presented such an
algorithm, called Backmarking and Backjumping (BMJ) . BMJ, however, does not retain
all the power of each base algorithm in terms of consistency checks. Prosser observed
that on some instances of the zebra problem BMJ performs more consistency checks
than BM. BMJ is also worse than BM on the benchmark &queens problem.

Example 15. Consider the constraint network of four variables represented by the graph

in Fig. 5. The domains of the variables are given inside the nodes, and the constraints
between variables are specified by the allowed pairs along the arrows. The search is
performed in the order xt , x2, x3, x4. It is easy to verify that there is only one solution
to the network. Fig. 6 shows the backtrack tree generated by BT, which performs 17

380 G. Kondrctk, I? van Beek/Art@ciul Intelligence 89 (1997) 365-387

root

I -

2 -

3-

4-

-

Fig. 6. The backtrack tree generated by BT on the constraint network of Example 15

consistency checks on this constraint network. In comparison with BT, BM saves one
consistency check on each of the nodes numbered 8-l I, which brings down the total

number of consistency checks to 13. The saving on node 8 corresponds to observation
(A) in the marking scheme, while the other three savings correspond to observation

(B). BMJ saves two consistency checks by backjumping over node 6 but on the whole

performs 14 checks.

A careful analysis of the above example leads us to the conclusion that BMJ is

sometimes worse than BM because it does not implement the above marking scheme

accurately. The one-dimensional mbl array, which was originally designed for a chrono-

logically backtracking algorithm, is no longer adequate for a backjumping algorithm.
BM always instantiates a variable in turn to all possible values in its domain. Therefore,
the r-values are the same throughout the domain of a variable, and a single mbl entry
is sufficient to hold them all. In BMJ, however, because of backjumps, not all values
in the domain are always tested. When this happens, the r-values may differ within
the domain. The loss of information caused by the inadequacy of the mbl array is the

sole reason why BMJ is sometimes outperformed by BM. In such cases, the number
of redundant checks performed by BMJ exceeds the number of checks avoided by the

node skipping.
We propose a modified BackMarkJump (BMJ2), which solves the problem by making

mbl a two-dimensional rather than a one-dimensional array. The new mbl array is of
size n x m, so that each mcl entry has a corresponding mbl entry (this is a reasonable
space requirement because BMJ already uses one n x m array). Each mcl entry now has
a corresponding mbl entry. A separate entry for each domain value makes it possible to
preserve all collected consistency information. The mbl[i] [j] entry stores the number
of the shallowest variable whose instantiation has changed since the variable xi was
last instantiated with the jth value. As in the case of BM, the correctness of BMJ2

is a consequence of the correctness of the marking scheme and the correctness of the
underlying algorithm (BJ)

G. Kondrak, l? van Beek/Art@ial Intelligence 89 (1997) 365-387 381

BMJ2 is not only never worse than BMJ, but also never worse than BM. The set
of nodes visited by BMJ2 is the same as the set of nodes visited by BJ and BMJ,
and is a subset of the nodes visited by BM. At any given node BMJ2 performs no

more consistency checks than BJ or BMJ. It uses the same marking scheme as BM and

therefore is never worse than BM. However, thanks to its backjumping abilities, BMJ2
makes additional savings by skipping nodes, which explains why it often performs less
consistency checks than BM. On the constraint network of Example 15 (see Figs. 5 and
6), BMJ2 performs only 12 consistency checks.

An analogous modification of Backmarking and Conflict-Directed Backjumping (BM-

CBJ), which is another hybrid proposed by Prosser, produces BM-CBJ2: mbl should be

made a two-dimensional array, and maintained in the same way as in BMJ2.

5. The hybrid algorithm FC-CBJ

In this section we discuss the hybrid algorithm Forward Checking and Conflict-

Directed Backjumping (FC-CBJ) [161. We prove the correctness of the algorithm and
characterize the set of search tree nodes visited by the algorithm. The algorithm is then

included in our hierarchies (see Section 6).

FC-CBJ, proposed by Prosser [161, is an attempt to combine the advantages of FC
and CBJ. In contrast with FC, which always backtracks chronologically, FC-CBJ records

the information about the variables that caused current inconsistency, and later uses this
information to determine the backtracking point. Every time a consistency check fails
between the instantiation ai of the current variable Xi and an instantiation of some future

variable xi, the variable 3ci is added to the conflict set of x,j. Every time a domain

annihilation of a variable xk occurs, the variables in the conflict set of Xk are added to
the conflict set of the current variable xi. When there are no more values to be tried for

the current variable xi, FC-CBJ backtracks to the deepest variable xh in the conflict set
of xi. At the same time, the variables in the conflict set of x,, with the exception of x/,,
are added to the conflict set of xh, so that no information about conflicts is lost.

FC-CBJ was identified by Prosser as the champion among the nine backtracking

algorithms that he tested on the zebra problem. More recently Smith [191 observed
that a variant of FC-CBJ performs well on exceptionally hard problems. It is therefore
important to characterize and prove the correctness of this algorithm.

Let us start by determining the necessary and sufficient conditions for a search tree
node to be visited by FC-CBJ. The necessary condition for FC-CBJ is the same as for
FC.

Theorem 16. If FC-CBJ visits a node, then it is consistent and its parent is consistent

with every variable.

Proof. Similar to the proof of Theorem 9, case (d) . 0

The above theorem together with Theorem 8 imply that if a node is visited by
FC-CBJ, it is also visited by FC. In the worst case, FC-CBJ visits the same set of

382 G. Kondrak, I? van Beek/Art$cial Intelligence 89 (1997) 365-387

nodes as FC. However, since there exist constraint networks on which FC-CBJ visits
less nodes than FC, we can place FC-CBJ in the node hierarchy directly below FC

(see Fig. 7). The relationship holds also for the checks hierarchy because at any given

node FC-CBJ performs exactly the same number of consistency checks as FC (see

Fig. 8).

In order to obtain the sufficient condition for FC-CBJ, it is necessary to formulate
an equivalent of Lemma 7. Surprisingly, the following lemma is virtually identical to

Lemma 7. The statement of the lemma uses the concept of A-type backtracks defined

in Section 3.

Lemma 17. If FC-CBJperforms an A-type backtrack from variable xi to variable xl,,

then there exists a set of variables S such that S is a subset of {xi,. . . ,x,,} containing

xi and the tuple composed of the instantiations of the variables in the conjhct set of x;

is inconsistent with S.

Proof. The proof is similar to the proof of Lemma 7. First, observe that when a domain

annihilation of variable xk occurs, we have the case of inconsistency of the current
tuple (at, . . , ai) with the variable xk. In a forward checking algorithm a dead-end

occurs when every instantiation of the current variable either has already been filtered
or causes annihilation of the domain of some future variable. The above definition of a

dead-end allows us to adopt here without any change the definition of backtrack rank
from Section 3 for the CBJ algorithm.

The proof proceeds by induction on the rank of the backtrack. For the basis, consider
a backtrack of rank 1, that is, one performed from a dead-end. Let C denote the tuple
composed of the instantiations of the variables in the conflict set of xi. We want to find

a set S such that C is inconsistent with it. Let C (X1,f) denote the tuple produced by

extending C with some instantiation (xi, t), t E D;. C(xz,f) itself may be consistent or

not.
(A) Assume that C(‘,,‘) is a consistent tuple. Since all variables that filter values from

the domain of xi are included in the conflict set of xi, and C(xt,t) is consistent,

t could not have been filtered from the domain of Xi. Furthermore, because

it is a dead-end, domain annihilation of some variable xf must have occurred.

Therefore, C(‘;,‘) is inconsistent with the one-element set S’ = {x’}.
(B) If C(xl,r) is an inconsistent tuple, it is also inconsistent with any set of variables,

so take S’ = 0.
Let S’ be the sum of all the S’ sets, S’ = UtED, S’. For every instantiation (xi. u), u E Di,

C(Xd.u) is inconsistent with S’. Therefore C is inconsistent with the set S = {xi} U S’.

The remaining part of the proof is identical to the second part of the proof of
Lemma 7. Cl

Using the above lemma, we can show that the sufficient condition for FC-CBJ is
similar to the sufficient condition for CBJ.

Theorem 18. If a node is consistent and its parent is consistent with every set of
variables, then FC-CBJ visits the node.

G. Kondrak, I? van Beek/Artifcial Intelligence 89 (1997) 365-387 383

BT=BM

FC- I
I CBJ = BM-CBJ = BMXBJ2

FC-CBJ

Fig. 7. The hierarchy with respect to the number of visited nodes. Two algorithms are connected by an edge

if the set of nodes visited by one of the algorithms is always a subset of the set of nodes visited by the other.

Proof. Suppose that node (al, . . , ai-) is consistent with every set of variables, and its

childp=(ai,... , ai) is consistent and not visited by FC-CBJ. Take the deepest j such

that node p’ = (al,. . . , Uj) is visited by FC-CBJ. Node p’ is a proper ancestor of node
p and is consistent with every set of variables. When FC-CBJ is at node p’, none of

the domains of the future variables is annihilated. The only reason for not instantiating

the next variable Xj+r to aj+r can be an A-type backtrack from some variable ~1~ to
some variable xg, where g f j and h > j + 2. From Lemma 17 we know that the tuple

composed of instantiations of the variables in the conflict set of Xh is inconsistent with
some set of variables. Since the conflict set of Xh is a subset of {xl,. . . , xg} and g < i,
this contradicts the initial assumption that (al,. . . , ai- 1) is consistent with every set of

variables. Cl

Now it is straightforward to prove the correctness of FC-CBJ.

Corollary 19. FC-CBJ is correct.

Proof. As in the proof of Corollary 12, the soundness is implied by the necessary

condition, and the completeness by the sufficient condition. 0

6. Hierarchies

We now present two hierarchies, which include the four basic backtracking algorithms

discussed in Section 3, the Backmarking hybrids discussed in Section 4, and the FC-CBJ

algorithm discussed in Section 5.
The hierarchy with respect to the number of visited nodes is presented in Fig. 7. The

relationships derived in Section 3 form the core of the hierarchy. Note that imposing

a marking scheme on an algorithm does not change the set of nodes that are visited.
Thus, for example, BM generates exactly the same backtrack tree as BT.

Fig. 8 shows the hierarchy of algorithms with respect to the number of consistency
checks. Since BT, BJ, and CBJ perform the same number of consistency checks at any
given node, they are in the same order as in the nodes hierarchy. Imposing a marking

384 G. Kondruk. I? vun Beek/Arti&iul lntelli~ence 89 (1997) 365-387

BT

/

\

/““\ FC
I

B\ 1” iBJ ’ FC-CBJ

BMJ2 BM-CBJ

\/
BM-CBJ2

Fig. 8. The hierarchy with respect to the number of consistency checks. Two algorithms are connected by an

edge if one of the algorithms always performs no more consistency checks than the other.

scheme on a backtracking algorithm results in a reduction of the number of consistency
checks performed.

Besides the relationships that are shown explicitly, it is important to note the ones
that are implicit in the picture. In order to disprove a relationship between A and B,

one needs to find at least one constraint satisfaction problem on which A is better
than B, and one on which f3 is better than A. For example, BM performs fewer

consistency checks than FC on the regular g-queens problem, but more on the confused
g-queens problem [131. Examples of constraint networks were found that disprove all

relationships that are not included in the hierarchies. Thus, however counterintuitive it

may seem, FC-CBJ may visit more nodes than CBJ, and perform more consistency

checks than BT.
The hierarchies are consistent with and explain some of the empirical results reported

in the literature. For example, Prosser [161 compared how often one algorithm performed
better than another with respect to consistency checks in a series of experiments to

evaluate nine backtracking algorithms [16, p. 293, Table 21, In this paper we have

characterized eight of these nine backtracking algorithms (omitting FC-BJ) . In half (14
out of 28) of the relevant pairwise comparisons, Prosser’s experimental results showed

that one algorithm always performed fewer consistency checks than the other. For 10 of
these 14 cases, our theoretical results state that this must be the case. For the remaining
4 of these 14 cases, we have examples that show that this empirical result is not true in

general. In particular, it is not necessarily the case that FC or FC-CBJ performs fewer

consistency checks than BT or BJ.
The results presented in Sections 3-5 and summarized in the hierarchies shown in

Figs. 7 and 8 are stated and proven under the assumptions that the algorithms search for
all solutions and that they instantiate the variables in a static ordering. We now relax

both of these assumptions in turn and show that our results are still valid.
The assumption that the search is not interrupted until all possibilities are exhausted

is not generally true if only a fixed number of solutions is sought. In order to deal with
this issue, let us define two additional terms. Node p precedes node 4 in the search
tree if p = 4 or p is visited before 4 by the chronological backtracking algorithm (see

G. Kondrak, P van Beek/Arti$cial Intelligence 89 (1997) 365-387 385

the numbering on the nodes in Fig. 6 for an example of such an ordering). Further, let
the termination node be the last node visited by a backtracking algorithm. In the case

of a backtracking algorithm that stops after finding the first solution, the termination

node is either the first solution in the ordering, if a solution exists, or the last node in

the ordering, if no solution exists. Now, we can reformulate the theorems to include an

additional condition. For example, Theorem 8(a) would read:
(a) If the parent of a node is consistent and the node precedes the termination node,

then BT visits the node.

And Theorem 9(a) would read:
(a) If BT visits a node, then its parent is consistent and the node precedes the

termination node.
Given such a reformulation, the theorems and their corollaries can easily be proven
without the assumption that all solutions are sought. It follows that our results also hold

for the single solution versions of the algorithms.
We conclude this section with a discussion of the implications of our assumption of

a static order of instantiation in which variables are added to the current partial solution

according to the predefined order. With a static variable ordering, heuristics to order
the variables may be used, but they must be applied before the constraint network is

passed to a backtracking algorithm. A static order is in contrast to a dynamic order of

instantiation in which the decision of which variable to instantiate next is based on the
state of the search [2,8]. Dynamic variable ordering (DVO) is known to be an effective

technique. For example, Sabin and Freuder [171 specify a backtracking algorithm that
maintains full arc consistency and performs DVO each time choosing the variable with
the minimum remaining values (MRV) in its domain. They show experimentally that

the algorithm performs very well on hard problems. Further, Bacchus and van Run
[1] show that the forward checking algorithm equipped with the same DVO heuristic
also performs very well on hard problems and on the benchmark zebra and n-queens

problems.
Our results are valid for the DVO versions of backtracking algorithms provided that

the heuristic used for choosing the next variable is deterministic and independent of

the backtracking algorithm. By independent we mean that the information exchanged
between the heuristic and the backtracking algorithm is restricted as follows: only the

constraint network and the partial solution are passed to the heuristic and only the next
variable to instantiate is returned. In such a case, the choice of the next variable depends
only on the state of the search and the backtracking algorithms will all make the same

decision as to which variable to instantiate next given that they have reached the same
node (partial solution). Thus, the ordering of the variables along any path from the root
to a node will be identical and the nodes visited by the algorithms will continue to be a
subset of the nodes visited by the BT algorithm that uses the same heuristic. The number
of consistency checks performed by the algorithms will be uniformly increased by the

number of checks performed by the heuristic, so that the consistency checks hierarchy
will also remain unaffected. The results will not hold if, given the same constraint
network and the same partial solution, the heuristic can return different answers on
different invocations, such as would be the case, for example, if the algorithm broke ties
randomly.

386 G. Kondruk. P van Beek/Artijiciul Intelligence 89 (1997) 365-387

The assumption that the heuristic and the backtracking algorithm are independent is
necessary for the results to hold for any DVO heuristic. However, given a particular
heuristic we sometimes can relax the independence assumption in a principled way and

still have our results hold. As an example of such an approach, let us consider the

set of algorithms proposed by Bacchus and van Run [I]. They combine several back-
tracking algorithms, including the ones discussed in this paper, with a heuristic that at
each node chooses the variable with the minimum remaining values (MRV) . All back-
ward checking algorithms, namely BT + MRV, BM + MRV, BJ + MRV, CBJ + MRV, and

their hybrids, satisfy the condition of independence stated above; therefore, all partial

order relationships between them remain valid. For FC + MRV and FC-CBJ + MRV, the

condition is not satisfied because in both cases the algorithm and the heuristic share

information through common data structures, However, since the direction of the flow
of information is from the algorithm to the heuristic, the search tree remains unaffected,

and consequently the node hierarchy is unchanged. Moreover, as the heuristic in both
algorithms performs no additional consistency checks whatsoever, the relationship be-
tween FC + MRV and FC-CBJ + MRV is the same as between FC and FC-CBJ. Finally,

the results stated in the hierarchies can be strengthened by including the result by Bac-
thus and van Run [l] that MRV makes standard backjumping redundant. Thus, in the
node hierarchy BT + MRV = BM + MRV = BJ + MRV = BMJ + MRV = BMJ2 + MRV
and in the consistency check hierarchy BT + MRV = BJ + MRV and BM + MRV =

BMJ + MRV = BMJ2 + MRV.

7. Conclusions and future work

We presented a theoretical analysis of several backtracking algorithms. Such well-

known concepts as backtrack, backjump, and domain annihilation were described in

terms of inconsistency between instantiations and variables. This enabled us to formulate
general theorems that fully or partially describe sets of nodes visited by the algorithms.
The theorems were then used to prove the correctness of the algorithms and to construct

hierarchies of algorithms with respect to the number of visited nodes and with respect
to the number of consistency checks. The gaps in the resulting hierarchy prompted us to

modify existing hybrid algorithms so that they are superior to the corresponding basic al-
gorithms in every case. One of the modified algorithms is always better (in terms of con-
sistency checks) than all six backward checking algorithms described by Prosser in [161.

There are several possible directions for future work. First, the sufficient and the

necessary conditions are not identical for most of the algorithms investigated here. Since
backtracking algorithms are deterministic, it may be possible to find single formulas that
describe precisely their backtrack trees, as we did for BT and FC. Second, our approach
could be applied to many other backtracking algorithms that have not been treated here,
such as Dechter’s graph-based backjumping algorithm [4] and Nadel’s backtracking
algorithm with full arc consistency lookahead [131. Finally, even though there is no

absolute relationship between many pairs of algorithms, it may be possible to specify
conditions under which such a relationship exists. For instance, one could try to specify
formally the set of networks on which FC is always better than BT.

387 G. Kondmk, P: van Beck/Artificial Intelligence 89 (1997) 365-387

Acknowledgements

We would like to thank Dennis Manchak for his help in implementing the algorithms
discussed in this paper and Fahiem Bacchus for helpful discussions on dynamic variable

ordering and for comments on earlier versions of the paper. This work was supported

in part by the Natural Sciences and Engineering Research Council of Canada.

References

F. Bacchus and P van Run, Dynamic variable ordering in CSPs, in: Proceedings First Internationul
Conference on Principles and Practice of Constminr Programming, Cassis, Lecture Notes in Computer

Science 976 (Springer, Berlin, 1995) 258-275.

1 J.R. Bitner and E.M. Reingold, Backtrack programming techniques, Commun. ACM 18 (1975) 65 l-656.

M. Bruynooghe, Solving combinatorial search problems by intelligent backtracking, /nfi,rm. Process.
Letr. 12 (1981) 36-39.

141 R. Dechter, Enhancement schemes for constraint processing: backjumping, learning, and cutset

decomposition, Art@ Well. 41 (1990) 273-312.

[51 J. Gaschnig, A general backtracking algorithm that eliminates most redundant tests, in: Proceedings
IJCAI-77, Cambridge, MA (1977) 457.

[6] J. Gaschnig, Experimental case studies of backtrack vs. waltz-type vs. new algorithms for satisficing

17

18

19

[IO

L11

112 I

assignment problems, in: Proceedings 2nd Bienniul Conference of the Canadiun Society for
Computational Studies of Intelligence, Toronto, Ont. (1978) 268-277.

M.L. Ginsberg, Dynamic backtracking, J. ArtijI Intell. Res. 1 (1993) 25-46.

R.M. Haralick and G.L. Elliott, Increasing tree search efficiency for constraint satisfaction problems,

A@ Infell. 14 (1980) 263-313.

G. Kondrak, A theoretical evaluation of selected backtracking algorithms, Tech. Rept. TR94-IO,

University of Alberta, Edmonton, Alta. (1994).

A.K. Mackworth, Constraint satisfaction, in: SC. Shapiro, ed., Encyclopedia of Artificial Inrelligencr
(Wiley, New York, 2nd ed., 1992) 285-293.

J.J. McGregor, Relational consistency algorithms and their application in finding subgraph and graph

isomorphisms, Inform. Sci. 19 (1979) 229-250.

U. Montanari, Networks of constraints: fundamental properties and applications to picture processing,

Inform. Sci. 7 (1974) 95-132.

1131 B.A. Nadel, Constraint satisfaction algorithms, Comput. Infell. 5 (1989) 188-224.
[141 B.A. Nadel, Representation selection for constraint satisfaction: a case study using n-queens, IEEE

Expert 5 (3) (1990) 16-23.
[I5 1 B. Nudel, Consistent-labeling problems and their algorithms: expected-complexities and theory-based

heuristics, Artif: Intell. 21 (1983) 135-178.
[16 1 P Presser, Hybrid algorithms for the constraint satisfaction problem, Compuf. Infell. 9 (1993) 268-299.
[17 I D. Sabin and E.C. Freuder, Contradicting conventional wisdom in constraint satisfaction, in: Proceedings

11th European Conference on Arttjicial Intelligence, Amsterdam (1994) 125-129.
[18 I T. Schiex and G. Verfaillie, Nogood recording for static and dynamic constraint satisfaction problems,

Int. J. Arrif: Intell. Tools 3 (1994) I-15.
I 19 1 B.M. Smith and S.A. Grant, Sparse constraint graphs and exceptionally hard problems, in: Proceedings

IJCAI-95, Montreal, Que. (1995) 646-65 1.

I 20 I E. Tsang, Foundations of Constrainf Sarisfaction (Academic Press, New York, 1993).

