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We present recent results for the Landau-gauge gluon and ghost propagators in SU(3) lattice gluo-
dynamics obtained on a sequence of lattices with linear extension ranging from L = 64 to L = 96
at β = 5.70, thus reaching “deep infrared” momenta down to 75 MeV. Our gauge-fixing procedure
essentially uses a simulated annealing technique which allows us to reach gauge-functional values
closer to the global maxima than standard approaches do. Our results are consistent with the so-called
decoupling solutions found for Dyson–Schwinger and functional renormalization group equations.

© 2009 Elsevier B.V. Open access under CC BY license. 
1. Introduction

The infrared behaviour of gauge-variant Green’s functions of
Yang–Mills theories has become an increasingly interesting topic
during the last decade. The interest was originally stimulated by
confinement scenarios proposed a long time ago by Kugo and
Ojima [1,2], Gribov [3] and Zwanziger [4,5]. The recent progress
is due to the discovery of consistent asymptotic solutions of the
whole tower of Dyson–Schwinger (DS) equations and more re-
cently of functional renormalization group (FRG) equations in the
deep infrared (IR) limit [6–12]. These solutions called scaling or
conformal solutions behave according to power laws with well-
determined exponents [8,9,11]. The expectation is that they respect
global BRST invariance. Since these solutions lead to a vanish-
ing gluon propagator and correspondingly to an IR-singular ghost
dressing function they fit nicely with the aforementioned scenar-
ios. The running coupling related to the ghost–ghost–gluon vertex
exhibits an IR fixed point [6] as also proposed by Shirkov and
Solovtsov [13,14].
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There is a different set of so-called decoupling solutions as pro-
posed in [15–19]. These solutions — thoroughly discussed also in
[12] — are characterised by a non-zero IR gluon propagator as well
as by an IR-finite ghost dressing function, i.e., they do not agree
with the Kugo–Ojima criterion. The name decoupling reflects the
fact that the corresponding running coupling decreases towards
zero in the limit of vanishing momenta. But this behaviour does
not mean that the decoupling solutions contradict gluon and quark
confinement (see also the discussion in [20]). Both sets of solu-
tions demonstrate the expected positivity violation of the gluon
propagator as well as providing the expected Polyakov loop be-
haviour at the deconfinement transition in pure SU(2) and SU(3)

gauge theories [21]. Moreover, both types of solutions, when inter-
polated from the infrared asymptotics to the perturbative region by
solving numerically the (properly truncated) system of DS or FRG
equations, behave quite similarly in the momentum range relevant
for hadron phenomenology.

Even if it might appear to be an academic question, it is im-
portant to ask which set of solutions is the correct one. Ab-initio
lattice gauge theory computations are expected to solve this is-
sue. SU(2) and SU(3) lattice computations of Landau-gauge gluon
and ghost propagators have been carried out by several groups.
For a recent review see [22] and papers cited therein. On the one
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hand, as long as in the four-dimensional case the linear lattice
sizes did not reach far beyond O (5 fm) the ghost dressing function
was observed to rise towards the infrared limit. When fitted with
a power law the corresponding exponent was found to be much
smaller than predicted by the scaling solutions. On the other hand,
the gluon propagator has not yet been found to decrease towards
the IR limit but rather approaching a finite plateau value at p = 0
(for SU(3) see [23–25]). However, investigations of the DS equa-
tions on a 4D torus [26] have demonstrated that linear box sizes
of O (10 fm) or even more, might be necessary in order to see the
correct asymptotic behaviour.

In the meantime simulations of SU(2) pure lattice gauge theory
have reached huge lattice sizes [22,27] confirming nothing but an
IR-plateau behaviour for the gluon propagator. Moreover, in [28]
Cucchieri and Mendes derived bounds for the zero-momentum
propagator indicating a non-zero value in the infinite-volume ex-
trapolation.

However, the aforementioned results of DS and FRG studies as
well as most of the lattice results obtained with the standard min-
imal Landau gauge did not take into account the effect of Gribov
copies. For SU(2) some of us have shown [29–33] that the influ-
ence of Gribov copies is more severe than many authors might
have expected (see also the recent investigation in [34]). The ef-
fect is even stronger if non-periodic Z(2) gauge-transformations
(flips of all link variables orthogonal to fixed 3D sheets with a fac-
tor −1) are taken into account. Already on modest lattice volumes
the gluon propagator as well as the ghost dressing function were
seen to run into IR plateaus indicating that lattice results seem to
support the decoupling solution of DS and FRG equations [33].

In the SU(3) case the effect of Gribov copies on the Landau
gauge gluon and ghost propagators has been studied without Z(3)

flips so far [23,35,36] showing that only the ghost propagator
seems to be systematically affected within 5 to 10%.

In the meantime, we have extended the computation of Landau
gauge gluon and ghost propagators in SU(3) gluodynamics to lin-
ear lattice sizes of around O (16 fm). Preliminary results for lattice
sizes up to 804 have been presented already in [37] clearly show-
ing that an infrared plateau of the gluon propagator evolves and
demonstrating — to our knowledge for the first time — a flattening
of the ghost dressing function as well. Here we go a step further in
order to get more confidence by increasing the lattice size for the
gluon propagator up to as much as 964 as well as by increasing
considerably our statistics for both propagators. In our investiga-
tion we have put some emphasis on careful gauge fixing with the
simulated annealing method which wins in efficiency in compari-
son with standard over-relaxation, the more degrees of freedom
the system has (see below and discussions in [31]).

2. General setup

We compute the SU(3) gluon and ghost propagators with
Monte Carlo (MC) techniques on a lattice with periodic bound-
ary conditions. The standard Wilson single-plaquette action and
the lattice definition for the gauge potentials

Aμ(x + μ̂/2) := 1

2iag0

(
Uxμ − U †

xμ
)∣∣∣∣

traceless
(1)

are adopted. In order to fix the Landau gauge for each lattice gauge
field {U } generated by means of the MC procedure, the gauge func-
tional

FU [g] = 1

3

∑
x

4∑
μ=1

ReTr gxUxμg†
x+μ (2)

is iteratively maximised with respect to a gauge transformation
{gx} which is taken as a periodic field as well. In order to ap-
Fig. 1. Example of a SA schedule. Shown is the temperature step size �T by which
T is reduced in the SA algorithm used on a 964 lattice (see text for further details).

proach the global maximum (related to the fundamental modular
region) as closely as possible, we use the simulated annealing (SA)
algorithm [38], in combination with subsequent standard over-
relaxation (OR). The latter is applied in the final stage of the
gauge-fixing procedure in order to finalise the transformation to
any required precision of the transversality condition ∇μ Aμ = 0.
More than a decade ago, SA was shown to be very efficient when
dealing with the maximally Abelian gauge [39,40].

In case of the present approach the SA algorithm generates a
field of gauge transformations gx by MC iterations with a statisti-
cal weight proportional to exp(FU [g]/T ). The temperature T is an
auxiliary parameter which is gradually decreased in order to max-
imise the gauge functional FU [g]. In the beginning, the T chosen
must be large enough to allow the traversing of the configuration
space of gx fields in large steps. An initial value T init = 0.45 was
found to be sufficient for that [41]. After each sweep, including one
heatbath and four micro-canonical update steps at each lattice site,
T is decreased until gx is captured in a particular basin of attrac-
tion. We choose the lowest temperature value to be Tfinal = 0.01
and use a fine-tuned simulated annealing schedule before apply-
ing final over-relaxation steps to reach Landau gauge with good
precision (maxx ReTr[(∇μ Axμ)(∇μ A†

xμ)] < 10−13).
An infinitely slow and long simulated annealing process would

definitely lead to the global maximum. In practice, however, we
chose schedules according to which the temperature is reduced in
steps of finite but varying size. These schedules are motivated by
the following observation. When the thermal average 〈FU [g]〉 is
considered as a function of T , one easily notices its monotonous
but non-linear dependence. In fact, 〈FU [g]〉 increases when T de-
creases, but its gradient reaches a strong maximum at a “critical”
value T � 0.405 ± 0.01, which resembles very much a phase tran-
sition [41]. This means that after starting with small �T steps, as
required for proper thermalisation close to T init = 0.45, it is im-
portant to keep the step size especially small within the narrow
critical region T � 0.40–0.41. Indeed, the distribution of the final
gauge-functional values (those of the local maxima after simulated
annealing and over-relaxation) is shifted to noticeably higher val-
ues if the temperature step size �T is reduced according to the
rise of 〈FU [g]〉, i.e., if �T is taken relatively small within the crit-
ical interval. This is in particular an efficient approach, as almost
no improvement was observed, when further reducing �T outside
this interval [41].

As an example, Fig. 1 shows the step sizes we use for the dif-
ferent temperature intervals on a 964 lattice, where, especially
around T � 0.40–0.41, �T is taken to be very small. Such ex-
tremely long SA “chains”, with an order O (104) of iterations, allow
us with high probability to reach local maxima of the gauge func-
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tional FU [g] close to the global maximum (as far as possible for
the computer resources available), i.e., to the fundamental mod-
ular region, even with only one gauge-fixing attempt (“first-copy
approach”).

Note that we do not apply here Z(3) flips, the so-called FSA
method [30,32] which in principle is capable of providing even
larger FU [g] values than our SA algorithm does. But we have seen
the difference between SA and FSA results decreases when L in-
creases [32].

The computations presented are carried out at rather strong
coupling, β = 6/g2

0 = 5.70. The reason for this choice is to get
access to comparatively large physical volumes at the price of a
rather coarse lattice (a ≈ 0.17 fm). In order to study the volume
dependence we calculate the gluon propagator for linear lattice
sizes L ranging from 64 to 96. Thus, our largest lattice size corre-
sponds to (16 fm)4. The ghost propagator is studied for linear lat-
tice sizes L = 64 and L = 80. At larger lattice sizes and the lowest
momenta the inversion of the Faddeev–Popov matrix turns out to
converge only in rare cases. Obviously, this is due to the occurrence
of very small eigenvalues which generate some algorithmic prob-
lems. There, a modification of the used matrix inversion method
(see Section 4) or an even better gauge fixing, driving configura-
tions further away from the Gribov horizon [36], could be valuable
means of reducing such problems in future, but it is beyond the
scope of the current work.

3. Gluon propagator

The gluon propagator is defined by

Dab
μν(q) = 〈

Ãa
μ(k) Ãb

ν(−k)
〉

=
(

δμν − qμqν

q2

)
δab D

(
q2), (3)

where Ã(k) represents the Fourier transform of the gauge po-
tentials according to Eq. (1) with Landau-gauge fixed links. The
momentum q is given by qμ = (2/a) sin (πkμ/L) with kμ ∈
(−L/2, L/2]. For q 	= 0, one gets

D
(
q2) = 1

24

8∑
a=1

4∑
μ=1

Daa
μμ(q), (4)

whereas at q = 0 the zero-momentum propagator D(0) is defined as

D(0) = 1

32

8∑
a=1

4∑
μ=1

Daa
μμ(q = 0). (5)

Our data for the gluon propagator obtained for various lattice sizes
is presented1 in Fig. 2. One can clearly see a flattening of the gluon
propagator as a function of q2 for small momenta. Note also the
weak volume dependence of the results. To illustrate the latter,
in Fig. 3 we present also the dependence of the zero-momentum
propagator D(0) (acc. to Eq. (5)) on the inverse lattice size 1/L.
From this point of view it is natural to conclude that in the infinite
volume limit the gluon propagator will approach some constant
value as q2 → 0, i.e., the gluon dressing function Z(q2) = q2 D(q2)

seems to decrease linearly with q2. The observed IR behaviour
related to the zero-momentum modes of the lattice gauge field
Aμ(x) can be associated with a massive gluon.

Our SU(3) IR gluon plateau results are in close agreement with
analogous SU(2) results found recently on huge 4D symmetric lat-
tices [22,27].

1 In this Letter the gluon and ghost propagator data has not been renormalised
in contrast to our former studies, in particular in [37].
Fig. 2. The bare lattice gluon propagator D(q2) versus q2 for β = 5.70 and various
lattice sizes. We also show data on D(0) (left).

Fig. 3. Zero-momentum gluon propagator D(0) versus 1/L.

4. Ghost propagator

The Landau-gauge ghost propagator is defined by

Gab(q) = a2
∑
x,y

〈
e−2π ik·(x−y)/L[M−1]ab

xy

〉 = δabG
(
q2), (6)

where M denotes the lattice Faddeev–Popov operator, being the
Hessian of the gauge functional (2) with respect to gx , in the back-
ground of the gauge-fixed links Uxμ

Mab
xy =

∑
μ

[
Aab

x,μδx,y − Bab
x,μδx+μ̂,y − Cab

x,μδx−μ̂,y
]

(7)

with

Aab
x,μ = ReTr

[{
T a, T b}(Ux,μ + Ux−μ̂,μ)

]
,

Bab
x,μ = 2Re Tr

[
T b T aUx,μ

]
,

Cab
x,μ = 2Re Tr

[
T a T bUx−μ̂,μ

]
.

T a , a = 1, . . . ,8, are the (Hermitian) generators of the su(3) Lie
algebra satisfying Tr[T a T b] = δab/2.

To invert M we use the conjugate gradient (CG) algorithm
with plane-wave sources �ψc with colour and position components
ψa

c (x) = δac exp(2π ik · x/L). In fact, we apply a pre-conditioned
CG algorithm (PCG) to solve Mab

xyφ
b(y) = ψa

c (x) where as pre-

conditioning matrix we use the inverse Laplacian operator �−1

with diagonal colour substructure (for details see [23,42]).
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Fig. 4. Bare ghost dressing function J (q2) versus q2 for L = 64,80 at β = 5.70. Er-
rors are not shown at the two lowest q2 (squares).

For the large lattice sizes as considered here, we are confident
that finite-volume distortions for all lattice momenta besides the
two minimal ones do not change considerably with increasing L
(see Fig. 4 and [37] for details). In this figure the ghost dressing
function J (q2) = q2G(q2) is presented in a log–log scale. We do
not see any power-like singular behaviour in the limit q2 → 0. In-
stead, we have a good indication that J (q2) reaches a plateau just
as the decoupling solution of DS and FRG equations does (see also
[28,33]).

5. Running coupling

Finally, let us present the running coupling defined as the
renormalization group (RG) invariant product

αs
(
q2) = g2

0

4π
Z
(
q2) J 2(q2), (8)

of the Landau-gauge gluon and ghost dressing functions. This
definition is based on the ghost–gluon vertex in a momentum-
subtraction scheme with the vertex renormalisation constant (in
Landau gauge) set to one. This is possible [43], since the vertex
is known to be regular [44] (see also the lattice studies [45,46]).
Note that the relation of αs in this scheme to the running cou-
pling in the MS scheme is known to four loops and it can provide
a valuable alternative to the MS coupling in phenomenological ap-
plications [43].

Beyond perturbation theory, the behaviour of αs differs at low
scales for the scaling and decoupling solutions. Based on our prop-
agator data we can calculate αs for intermediate and lower scales,
and it clearly shows a decrease towards q2 → 0 (see Fig. 5). This is
again consistent with the decoupling DS and FRG solutions.

6. Conclusions

The progress achieved on the lattice during the last two years
in studying the IR limit of gluodynamics and checking the well-
known scenarios of confinement in terms of Landau-gauge Green’s
functions leads us to the following conclusions. Within the stan-
dard lattice approach as described above only the decoupling-type
solution of DS and FRG equations seems to survive. Since for this
solution the gluon propagator tends to a non-zero IR value, it
corresponds to a massive gluon. It has been argued that this be-
haviour contradicts global BRST invariance [12].

But the lattice approach as discussed here has a few weak
points. The choice of the gauge potentials Aμ(x) and correspond-
ingly of the gauge functional FU (g) is in no way unique. As long as
Fig. 5. Running coupling αs(q2) versus q2 for lattice sizes 644 and 804 at β = 5.70.

we are reaching the infrared limit by employing rather large lattice
couplings the continuum limit is not under control. Moreover, we
have used standard periodic boundary conditions which certainly
have an impact on the IR limit. The fact that under these condi-
tions the gluon propagator does not tend to zero is related to the
behaviour of the zero-momentum modes, which do not become
sufficiently suppressed as the lattice size increases. Changing the
definition of lattice Landau gauge, and correspondingly the lattice
definitions of Aμ(x) and M , modifying the boundary conditions
and further improving the gauge-fixing procedure, e.g., by taking
Z(3) flips as mentioned in Section 1 into account, may essentially
suppress the zero-momentum modes and correspondingly change
the behaviour of both the gluon and ghost propagators. Therefore,
a final conclusion still cannot be drawn.

Note that one of us (A.S.) has recently carried out a lattice com-
putation in the strong-coupling limit. For the gluon and the ghost
propagator at larger a2q2 it was possible to extract the right expo-
nents as expected for the scaling solution [47]. At asymptotically
small momenta, however, results were shown to depend strongly
on the lattice definitions of Aμ(x) and M . This corresponds to ob-
servations in studies of DS and FRG equations, namely that for
decoupling-like solutions any IR-asymptotic values of the gluon
propagator and the ghost dressing function can be considered as
boundary conditions [12].

It has been argued in [48] that a BRST-invariant gauge-fixing
prescription is possible on the lattice. It remains to be seen,
whether the preferred scaling behaviour of Landau-gauge gluon
and ghost propagators can be achieved consistently also in lattice
Yang–Mills theories.
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