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a b s t r a c t

Given an n-length text over a σ -size alphabet, we propose a framework for dynamic
rank/select structures on the text and some of its applications. For a small alphabet with
σ ≤ log n, we propose a two-level structure consisting of a counting scheme and a storing
scheme that supports O(log n) worst-case time rank/select operations and O(log n) amor-
tized time insert/delete operations. For a large alphabet with log n < σ ≤ n, we extend it
to obtainO((1+ log σ

log log n ) log n)worst-case time rank/select andO((1+
log σ
log log n ) log n) amor-

tized time insert/delete. Our structure provides a simple representation of an index for a
collection of texts. In addition, we present rank/select structures on run-length encoding
(RLE) of a text. For the n′-length RLE of an n-length text, our static version provides O(1)
time select and O(log log σ) time rank using n′ log σ + O(n) bits and our dynamic version
gives O((1+ log σ

log log n ) log n) time operations in n
′ log σ + o(n′ log σ)+ O(n) bits.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Given a text T of length n over a σ -size alphabet, a rank/select structure answers the following queries.

• rankT (c, i): counts the number of character c ’s up to position i in T .
• selectT (c, k): finds the position of the kth c in T .

For a dynamic structure, we consider the following insert and delete operations on T in addition to rankT and selectT .

• insertT (c, i): inserts character c between T [i] and T [i+ 1].
• deleteT (i): deletes T [i].

A rank/select structure is an essential ingredient of compressed full-text indices such as compressed suffix array (CSA) [1,2]
and the FM-index [3]. The rank/select structure occupies only the same space as the text T , n log σ bits, plus a small extra
space, o(n log σ) bits, and it can be compressed into an even smaller space, nHk + o(n log σ) bits [4,5], where Hk is the
empirical kth order entropy of T [6].
The rank/select structures on binary strings were first introduced by Jacobson [7] and further improved by Clark [8] and

Munro [9]. See Table 1. Especially, Raman et al. achieved a compressed version of nH0+ o(n) bits with O(1) time rank/select
[10]. Golynski et al. [11] and Patrascu [12] improved the o(n)-bits term in space. Sadakane and Grossi [4], and Ferragina and
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Table 1
Static rank/select structures.
Alphabet Text Time Space Reference
Binary Plain O(log n) n+ o(n) Jacobson [7]
(σ = 2) O(1) n+ o(n) Clark [8], Munro [9]

O(1) nH0 + o(n) Raman, Raman and Rao [10]
Golynski, Grossi, Gupta, Raman and Rao [11]
Patrascu[12]

O(1) nHk + o(n) Sadakane and Grossi [4]
Ferragina and Venturini [5]

polylog(n) Plain O(1) nH0 + o(n) Ferragina, Manzini, Mäkinen and Navarro [13]
O(nβ ), β < 1 O( log σ

log log n ) nH0 + o(n log σ)
General Plain O(log σ) nH0 + o(n log σ) Grossi, Gupta and Vitter [14]

O(1) select n log σ + O(n) Hon, Sadakane and Sung [15]
O(log log σ) rank
O(1) select nH0 + O(n) Golynski, Munro and Rao [16]
O(log log σ) rank
o((log log n)3) nHk + o(n log σ) Barbay, He, Munro and Rao [17]

RLE O(log log σ) rank n′H ′0 + O(n) Mäkinen and Navarro [18]
O(1) select n′H ′0 + O(n) This paper
O(log log σ) rank

Table 2
Dynamic rank/select structures (for a large alphabet).
Text Time Space Reference
Plain O(log σ log n

log log n ) n log σ + o(n log σ) Raman, Raman and Rao [19]
O(log σ logb n) rank/select
O(log σ b) flip
O(log σ logb n) rank/select n log σ + o(n log σ) Hon, Sadakane and Sung [20]
O(log σ b) insert/delete
O(log σ log n) nH0 + o(n log σ) Mäkinen and Navarro [21]
O((1/ε) log log n) rank/select n log σ + o(n log σ) Gupta, Hon, Shah and Vitter [22]
O((1/ε)nε) insert/delete
O((1+ log σ

log log n ) log n) nH0 + o(n log σ) González and Navarro [23]
O((1+ log σ

log log n ) log n) n log σ + o(n log σ) This paper
nH0 + O(n)+ o(n log σ) Lee and Park [24]

RLE O((1+ log σ
log log n ) log n) n′ log σ + o(n′ log σ)+ O(n) This paper

Venturini [5] proposed schemes to compress a general sequence into Hk entropy bounds and to access its subsequences in
O(1) time, so these schemes compress any rank/select structure into nHk + o(n) bits.
There are two ways of extending rank/select structures on binary strings. One is to provide rank/select on texts over a

σ -size alphabet with 2 < σ ≤ n and the other is to support updates of texts. For rank/select on texts over a σ -size alphabet,
Grossi et al.’s wavelet tree [14] and its improvement by Ferragina et al. [13] are general frameworks which transform any
k-size alphabet rank/select structures to a σ -size alphabet rank/select structures with logk σ slowdown factor in query time.
Not using wavelet trees, the structures by Golynski et al. [16] and by Hon et al. [15] gave O(1) time select and O(log log σ)
time rank. Recently, Barbay et al. obtained o((log log σ)3) time rank/select in nHk + o(n log σ) bits [17].
For supporting updates of bit strings, the problem was addressed as a special case of the dynamic partial sum problem

by Raman et al. [19] and Hon et al. [20]. Their rank/select structures take n + o(n) bits and provide O( log n
log log n ) worst-case

time rank/select and O(log n) amortized time updates. The first entropy-bound structure of nH0 + o(n) bits was proposed
by Mäkinen and Navarro [21], which guarantees O(log n)worst-case time for all operations.
For dynamic structures on σ -size alphabet texts, the extensions of dynamic versions on bit strings provide solutions

with O(log σ) slowdown factor by binary wavelet trees as in Table 2. For example, the extension of Mäkinen and Navarro’s
structure supports O(log σ log n) time operations in nH0 + o(n log σ) bits. Recently, Gupta et al. presented a dynamic
structure of n log σ+o(n log σ) bits,which providesO((1/ε) log log n) time rank/select andO((1/ε)nε) time updateswithout
wavelet trees [22].
In this paper we propose a framework for dynamic rank/select structures on texts over a σ -size alphabet and some of its

applications. Our contributions are as follows.

• For a small alphabet with σ ≤ log n: To obtain O(log n) time operations in n log σ + o(n log σ) bits, we propose a two-
level dynamic structure consisting of a counting scheme and a storing scheme. The counting scheme and the storing
scheme were tightly coupled in Mäkinen and Navarro’s dynamic structure [21]. By separating these two schemes, we
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get a simple description of dynamic rank/select structures, and an independent improvement of each scheme is possible.
We combine counting schemes in static structures [15,16] with a simplified Mäkinen and Navarro’s structure only for
the storing scheme, and obtain O(log n)worst-case time rank/select and O(log n) amortized time insert/delete.
• For a large alphabet with log n < σ ≤ n: We extend our log n-size alphabet version by the k-ary wavelet tree and ob-
tain O((1+ log σ

log log n ) log n)worst-case time rank/select and O((1+
log σ
log log n ) log n) amortized time insert/delete in n log σ +

o(n log σ) bits. This is the first application of the k-ary wavelet tree to dynamic structures, though it was a well-known
technique in static structures [13].
• Application to an index for a collection of texts: We show that any dynamic rank/select structure on Burrows–Wheeler
Transform (BWT) replaces Chan et al.’s index for a collection of texts [25]. Hence, our dynamic rank/select structures
provide a simple and efficient representation of Chan et al.’s structure.
• Dynamic Run-Length based FM-index (RLFM): We apply our structures to the n′-length RLE of an n-length text so that
the size of structures is reduced to n′ log σ+o(n′ log σ)+O(n) bits. Thus, we obtain a full version (supporting rank, select ,
insert , and delete) of Mäkinen and Navarro’s RLFM [18] that was a static rank structure with O(n) bits. This technique also
reduces the size of static structures to n′ log σ + O(n) bits or n′H ′0 + O(n) bits depending on base rank/select structures,
where H ′0 is the entropy of the sequence of run characters in RLE. For the n

′-length RLE of an n-length text, our static ver-
sion provides O(1) time select and O(log log σ) time rank and our dynamic version gives O((1+ log σ

log log n ) log n)worst-case

time rank/select and O((1+ log σ
log log n ) log n) amortized time insert/delete. See Tables 1 and 2.

The rest of this paper is organized as follows. Section 2 introduces some definitions and preliminaries. Section 3 gives our
dynamic rank/select structure for a log n-size alphabet and its extension for a σ -size alphabet. Section 4 shows how to
simplify the index of texts collection by the rank/select structures. Section 5 applies the rank/select structures to RLE of
texts, and we conclude in Section 6.

Note. Recently, González and Navarro have obtained an improved result which achieves worst-case O((1 + log σ
log log n ) log n)

time in updates and compressed space of nH0 + o(n log σ) bits [23]. However, our framework such as separation of the
counting scheme from the storing scheme and application of the k-ary wavelet tree is used in [23]. González and Navarro
proposed a novel counting scheme to guarantee worst-case time in updates.
They also point out that our counting scheme has O(n)-bits vectors, so O(n) bits dominate the whole space when σ is a

small constant or T is highly compressible such thatH0 = o(1). However, ourO(n)-bits vectors are conceptual and the actual
sizes achieve the information theoretical lower bounds. We clearly show that the lower bound of our counting scheme is
o(n) for a log n-size alphabet, and therefore an o(n)-bits term is automatically achieved by using Mäkinen and Navarro’s
compressed binary rank/select structures [21,26]. This is an advantage of separating the counting scheme from the storing
scheme.
Recently, we also obtained a compressed storing scheme of nH0+O(n)+o(n log σ) bits [24], in which the O(n)-bits term

is made by gap-encoding. González and Navarro use block-identifier encoding of nH0 + o(n log σ) bits to remove O(n) bits
in space.

2. Definitions and preliminaries

Wedenote by T = T [1]T [2] . . . T [n] the text of length n over a σ -size alphabetΣ = {0, 1, . . ., σ−1}. We assume that the
characters in a σ -size alphabet are 0, 1, . . . , σ − 1 and their lexicographic order is the order of their values. We assume the
alphabet size σ is o(n), because otherwise the size of text becomes n log σ = Ω(n log n) bits;Ω(n log n) bits space makes
the problem easy.
We assume the RAMmodel with a word ofw = Θ(log n) bits size, which supports addition, multiplication, and bitwise

operations in O(1) time. Our RAM model allows us to access the memory with pointers of O(log n) bits size. We regard a
character c ∈ Σ as a log σ bits number, so one word containswσ = Θ(

log n
log σ ) characters.

Our rank/select structure for a σ -size alphabet is built over a rank/select structure on dynamic bit vectors. For this
binary rank/select structure, we employ Mäkinen and Navarro’s structure (MN-structure) [21,26] as a black box, which
gives O(log n)worst-case time operations in nH0 + o(n) bits.

Theorem 1 ([21,26]). Given an n-length bit vector B, there is a rank/select structure that supports rank, select, insert and delete
in O(log n) worst-case time and nH0 + o(n) bits.

Note that the nH0 term is from the information theoretical lower bounds of an n-length bit vector withm 1s, i.e., log
(
n
m

)
≤

m log nm ≤ nH0 [10]. The MN-structure achieves this lower bound with additional o(n) bits.

3. Dynamic rank/select structures for texts

In this section we present our techniques for dynamic rank/select structures. For a small alphabet with σ ≤ log n, we
present a two-level dynamic structure with a counting scheme and a storing scheme to support all operations in O(log n)
time. In the MN-structure, the structure for counting bits and that for storing bits were tightly coupled. We separate these
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Fig. 1. Layout of our structure.

two structures to handle the operationsmore effectively. For a large alphabet with σ > log n, we extend our small-alphabet
structure by using a k-ary wavelet tree. Based on our techniques, we achieve the following result.

Theorem 2. Given a text T over an alphabet of size σ , there is a dynamic structure that supports O((1 + log σ
log log n ) log n) worst-

case time rank, select and access, while supporting O((1+ log σ
log log n ) log n) amortized time insert and delete in n log σ +o(n log σ)

bits.

3.1. Dynamic rank/select structures for a small alphabet

Our small-alphabet structure employs the memory layout of the MN-structure: word, sub-block, and block. For a binary
alphabet, aword containsw = Θ(log n) bits but ourword containswσ = Θ(

log n
log σ ) characters. A sub-block consists of

√
log n

words. A block is a list of 12
√
log n sub-blocks to 2

√
log n sub-blocks, so that the block contains 12 log n to 2 log nwords.

Given an n-length text T , we partition T into m substrings with the lengths from 1
2wσ log n to 2wσ log n and store each

substring in a block. We denote by Tb the bth substring and by BLb the bth block storing Tb, for 1 ≤ b ≤ m (Fig. 1). For
the set of starting positions of the substrings, P = {p1, p2, . . . , pm}, we represent the partition as an n-length bit vector I ,
where I[pb] = 1 for 1 ≤ b ≤ m and all other bits are 0s. Then, I gives a mapping between a position and a block number.
Given block number b, selectI(1, b) is the starting position of Tb in T . For position i, there are block number b of the substring
containing T [i] and the offset r of T [i] in Tb, which are computed by b = rankI(1, i) and r = i− selectI(1, b)+ 1.
Using partition vector I , we divide a given operation into an over-block operation and an in-block one. For instance, given

rankT (c, i), the over-block rank counts the number of occurrences of c before Tb and the in-block rank returns the number
of c in Tb[1..r]. Then, the sum of these over-block rank and in-block rank answers rankT (c, i). We define the over-block
operations as

• rank-overT (c, b): gives the number of c ’s in blocks preceding the bth block.
• select-overT (c, k): gives the number of the block containing the kth c.
• insert-overT (c, b): updates counting information by the insertion of c in Tb.
• delete-overT (c, b): updates counting information by the deletion of c from Tb.

The in-block operations for the bth block are defined as

• rankTb(c, r): gives the number of c ’s in Tb[1..r].
• selectTb(c, k): gives the position of the kth c in Tb.
• insertTb(c, r): inserts c between Tb[r] and Tb[r + 1].
• deleteTb(r): deletes Tb[r].

Note that the over-block updates just change the structure for counting occurrences of a character, and the in-block updates
actually change the text itself.

3.1.1. Data structures and retrieving operations

Over-block structures. For an over-block counting scheme, we employ a bit string B used in static rank/select structures such
as [15,16]. We here present it for a complete description andwewill later show how to update it for our dynamic structures.
Given a text T , let (T [i], b) be the character-and-block pair of T [i], where the block number b of T [i] is given by rankI(1, i).

We define CB(T ) as the sorted sequence of (T [i], b) by the order of its character T [i] and block number b. See Fig. 2. Let a
c-group be the sequence of pairs (c, b) with the same character c in CB(T ). Then, the block numbers in a c-group are non-
decreasing from 1 tom. In other words, the c-group preserves the order of occurrences of c in T .
We encode CB(T ) into bit vector B as follows. For each pair (c, b), 0 ≤ c ≤ σ − 1 and 1 ≤ b ≤ m, CB(T ) has the

consecutive occurrences of the same (c, b) pairs, which means the occurrences of c in Tb. The bit vector B represents each
pair (c, b) as a 1 and the number of its occurrences as the following 0s. If there is no occurrence of (c, b), it is represented
as a single 1. Note that the encoding of a c-group is also grouped in B, which starts from the (cm+ 1)st 1 of B. The encoding
of a c-group will also be called a c-group of B. See Fig. 2.
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Fig. 2. Example of CB(T ) and B.

Fig. 3. Layout of in-block structures.

Nowwe show the lower bounds of our counting scheme, bit vectors I and B. Since we partition T intoΩ(σ )-size blocks,
we will obtain o(n) bits rather than O(n) bits in static structures [15,16]. The block size varies from 1

2 log n to 2 log nwords,
so the number of substringsm ≤ 2n

wσ log n
= O( n log σ

log2 n
). Thus, I is an n-length bit vector withm 1s. The lower bound of I is o(n)

as follows.

log
(n
m

)
≤ m log

n
m

= O
(
n log σ
log2 n

)
· log

(
log2 n
log σ

)
= O

(
n log log n
log2 n

· log log n
)
for σ ≤ log n.

In the bit vector B, the number of 0s is n0 = n and the number of 1s is the number of (c, b) pairs, i.e., n1 = σm. Hence, the
lower bound of B is also o(n) as follows.

log
(n0+n1
n1

)
≤ n1 log

n0 + n1
n1

= O
(
σn log σ
log2 n

)
· log

(
1+

log2 n
σ log σ

)
= O

(
n log log n
log n

· log log n
)
for σ ≤ log n.

The sizes of the MN-structures on B and I achieve these lower bounds of o(n) bits [21,26].

In-block structures. Our in-block structures keep the substrings of T and we process in-block rank/select queries on Tb by
scanning Tb, word-by-word. We use a simplified MN-structure only as a storing scheme to keep blocks of texts over a log n-
size alphabet. We define the components of the storing scheme for a log n-size alphabet as follows.

• BLb: The bth block that is a linked list of 12
√
log n to 2

√
log n sub-blocks. A sub-block is a chunk of

√
log nwords containing

wσ
√
log n characters. See Fig. 3. BLb reserves one extra sub-block as a buffer for updates.We count additional space except

the text as follows. Since there is an O(log n)-bits pointer per sub-block in the linked list representation, we use total
2n

wσ
√
log n · O(log n) = O(

n log σ
√
log n ) bits for all lists. The total space of buffer sub-blocks is also

2n
wσ log n

· w
√
log n = O( n log σ√

log n )

bits.
• TBL: A red-black tree with BL1, BL2, . . . , BLm as leaf nodes. An internal node vmaintains n(v), the number of blocks in the
subtree rooted at v. Given block number b, we can access the bth block, BLb, by traversing the path from the root node.
The size of TBL is O( 2n

wσ log n
) · O(log n) = O( n log σlog n ) bits, because TBL has O(

2n
wσ log n

) nodes which contain n(v) and pointers
of O(log n) bits.
• JR: The zero-rank table on a half word of all possible 12wσ characters. Each entry of JR returns the number of 0 ∈ Σ in
each of 12wσ prefixes of a half word. The size of JR is σ

wσ /2 · wσ /2 · logwσ = O(
√
n log n log log n) = o(n) bits. For the

rank on a word, we look up JR twice.

Rank/select queries. Using our over-block and in-block structures, we process rank/select queries in O(log n) worst-case
time. The details are described in Fig. 4. We reduce rank-over and select-over to binary rank/select on B. The in-block
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Fig. 4. The steps of rank/select queries.

operations of rankTb and selectTb are processed by a simple scanning of O(log n) words in BLb. We start from the following
O(1) time rank on a word-size string.

Lemma 1. The rank of c ∈ Σ on a word ofwσ = Θ( log nlog σ ) characters can be computed in O(1) time and o(n) bits.

Proof. We first convert rank of c on a word x to rank of the zero character (0 ∈ Σ). That is, we convert the occurrences of
c to zeros and other occurrences to non-zeros. We assume a pre-computed constant M = 1wσ , which is wσ repetitions of
character 1 ∈ Σ . WemultiplyM by c and obtain cM = cwσ . We apply an XOR operation between cwσ and x. The value of cwσ
XOR x contains 0 ∈ Σ from c and non-zeros from others. After this conversion, JR answers rank of c by rank of 0 ∈ Σ . �

The binary rank/select on B for over-block counting are the same as in the static structures. For rank-overT (c, b), we count
the number of 0s in the c-group of B that represent the occurrences of the pairs (c, j) such that j < b. We first find the 1 that
represents the pair (c, b) in the c-group. This 1 is the (cm+b)th 1 of B. Then, we count the number of 0s up to the (cm+b)th
1 and subtract F [c] that is the number of characters less than c in T .

F [c] = rankB(0, selectB(1, cm+ 1))
rank-overT (c, b)= rankB(0, selectB(1, cm+ b))− F [c].

Let us consider the example of rank-overT (b, 3) in Fig. 2. In this example, Σ = {a, b, c} = {0, 1, 2} and m = 3. For
rank-over(b, 3), we count the number of 0s that represent b before the third 1 in the b-group. This third 1 is given by
selectB(1, 1 ·m+ 3) = 15. Then, rank-overT (b, 3) = 4 is obtained from rankB(0, 15) = 9 by subtracting the number of a in
T , F [b] = 5.
The select-over(c, k) is the block number of the kth c pair. Recall that in the c-group of B the kth c is represented as the

kth 0 and its block number as the number of 1s up to that 0. Because the number of 0s before the c-group is F [c], we obtain
the block number by counting 1s between the F [c]th 0 and the (F [c] + k)th 0. Note that the number of 1s before the xth 0
is selectB(0, x)− x and the number of 1s before the F [c]th 0 is cm. Hence,

select-overT (c, k) = selectB(0, F [c] + k)− (F [c] + k)− cm.

For the example of select-overT (b, 4) in Fig. 2, we count the number of 1s before the fourth 0 of the b-group, which is
selectB(0, F [b] + 4)− (F [b] + 4) = 5. Then, we get select-overT (b, 4) = 5− 1 ·m = 2 by subtracting the number of 1s that
represent the a pairs.

Lemma 2. Given an n-length text over a σ -size alphabet with σ ≤ log n and its partition of substrings with the lengths from
1
2wσ log n to 2wσ log n, the rank-over and select-over are processed in O(log n) worst-case time and o(n) bits.

Finally, we obtain rankT (c, i) as the sum of rank-over(c, b) and rankTb(c, r), where b is the block number of position i and
r is its offset. Similarly, selectT (c, k) is the sumof the position of Tb′ and the offset selectTb′ (c, k

′), where b′ = select-over(c, k)
and k′ = k− rank-over(c, b′)+ 1. We also process an accessing of the ith character, accessT (i), in O(log n) time by scanning
Tb that contains the ith character.

Lemma 3. Given an n-length text over a σ -size alphabet with σ ≤ log n, the rank, select, and access are processed in O(log n)
worst-case time and n log σ + O( n log σ√

log n ) bits.
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Fig. 5. The steps of in-block/over-block updates.

3.1.2. Updating operations
For insert and delete operations, we present updates of the in-block and over-block structures in amortized O(log n)

time. Our description is bottom-up: word updates, in-block updates, and over-block updates. An insertion or deletion on
a word triggers a carry character to the neighbor words in BLb. The process of in-block updates is propagation of the carry
characters in BLb. This change of BLb induces the updates of the over-block encoding, B. We first show the following O(1)
time insert/delete operations on a word-size text.

Lemma 4. It takes O(1) time to process insert or delete on a word ofwσ characters.

Proof. Wecombine shifting andmasking to insert or delete c inword x ofwσ characters. Given insert or delete of c at position
r , we split x into two parts: x1 of the left r characters and x2 of the other characters. We use a constantM = zwσ that is wσ
repetitions of a mask z consisting of log σ 1 bits.M1 = zr0(wσ−r) is a left-shift ofM bywσ − r characters andM2 = 0rz(wσ−r)
is a right-shift of M by r characters. Then, we split x into x1 = M1 AND x and x2 = M2 AND x. We update x1 by adding c or
deleting the rth character. The other part x2 is shifted by the case of insertion or deletion, which triggers a carry character
to neighbor words. Then, the updated x1 merges with the shifted x2 by the OR operation. �

In-block updates. We show how to update the components, BLb and TBL, in O(log n) worst-case time. For insertTb(c, r)
or deleteTb(r), carry characters propagate from the word containing Tb[r] to a word in the buffer sub-block of BLb. This
propagation updates 12 log n to 2 log n words of BLb in O(log n) worst-case time by Lemma 4. If the buffer sub-block is full,
then we create a new sub-block and add it to BLb as a new buffer. If the last two sub-blocks become empty, then we remove
one of empty sub-blocks from BLb. Note that we assume O(1) time memory allocator, which is essential for dynamic data
structures (Fig. 5).
After the carry propagation, we check whether BLb is in the range of 12 log n to 2 log n words, and split BLb or merge it

with its neighbor when it is out of the range. If the merged list exceeds 2 log n words, the list re-splits into two equal-size
lists. All the list manipulations take O(

√
log n) time, because BLb has O(

√
log n) sub-blocks. For the split of BLb, we mark the

split position sp of Tb.
We update TBL to reflect the split or merge of Tb. If Tb remains in the range of 12 log n to 2 log nwords, it is not necessary to

update TBL, because the number of blocks are unchanged. Otherwise, TBL is updated by inserting or deleting O(1) leaf nodes
and by changing n(v) for each node v on the path from updated leaves to the root. This update of a path takes O(log n) time.

Over-block updates. Now we consider insert-over(c, b) or delete-over(c, b), which is to update I and B in amortized
O(log n) time. For the case that Tb is in the range, the over-block updates are simple. We change the length of Tb by
insertI(0, selectI(1, b)) or deleteI(selectI(1, b)+1). To change the number of c ’s in Tb, we insert or delete 0 after the (cm+b)th
1 in B, e.g., insertB(0, selectB(1, cm+ b)) or deleteB(selectB(1, cm+ b)+ 1).
The main problem is to handle the split or merge of Tb when Tb is out of the range. We split or merge the length bits of Tb

in I by O(log n) time operations of the MN-structure. The split of Tb is processed by inserting 1 at the split position sp, and
the merge of Tb with Tb+1 is done by deleting the first 1 of length bits of Tb+1.
The update of B requires total O(σ ) queries on B, O(1) queries for each c-group. Given split of Tb at position sp, we divide

0s representing the occurrences of each c in Tb into two parts, the occurrences in Tb[1..sp] and the others, by inserting a new
1. The position of this insertion is computed by skipping 0s representing c in Tb[1..sp] from the (cm + b)th 1 representing
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Fig. 6. Example of over-block insertions.

Fig. 7. Example of k-ary wavelet tree.

the bth block in the c-group. The update query for each c is insertB(1, selectB(1, cm + b) + rankTb(c, sp)). The merging of
c-groups is similar. Hence, the total cost is worst-case O(σ log n) time.
In the example of Fig. 6, suppose that four characters were inserted into T2, which were three a’s and one b. We changed

the length bits of T2 by inserting four 0s after the second 1 of I . The a-group and b-group of Bwere updated by inserting 0s
into their second blocks. If T2 splits at its fourth position, we process I and B to reflect this split. We update I by deleting the
old 0 and inserting a new 1 at the split position, and we divide the second blocks of the a-group and b-group of B. Since the
new T2 has two a’s and two b’s, the second block of the a-group is divided by inserting a new 1 after two 0s, and that of the
b-group is divided similarly. The c-group is not changed.
For σ ≤ log n, however, we amortize the O(σ ) queries over the in-block updates of BLb. If σ ≤ log n, then the size of

Tb becomes Θ(
log2 n
log σ ) = Ω(σ ) characters, i.e., 12Ω(σ ) to 2Ω(σ ) characters. So there were Ω(σ ) character updates in BLb

before the split or merge of BLb occurs. This makes O(log n) amortized time per insertion or deletion of a character.

Lemma 5. Given an n-length text over a σ -size alphabet with σ ≤ log n and its partition of substrings with the lengths from
1
2wσ log n to 2wσ log n, the insert-over and delete-over are processed in O(log n) amortized time and o(n) bits.

Note that we fix log n in the above descriptions. That is,wσ is fixed asΘ(
log n
log σ ). If n becomes σn or n/σ , then we need to

change the rank table JR, word-sizewσ , and all our structures. In the MN-structure, partial structures are built for the values
log n−1, log n, and log n+1 to avoid amortizedO(1) update [21]. In this paper we simply re-build all structures inO(n) time
whenever the value of log n/ log σ changes. This is amortized over all update operations and makes O(1) costs per update
operation.
Finally, we process insertT (c, i) by insert-over(c, b) and insertTb(c, r), where block number b = rankI(1, i) and offset

r = i − selectI(1, b) + 1. In the same way, the process of deleteT (i) is done by delete-over(c, b) and deleteTb(r), where
c = accessT (i). We obtain the following dynamic structure for a small alphabet.

Lemma 6. Given an n-length text over a σ -size alphabet with σ ≤ log n, there is a dynamic structure that provides O(log n)
worst-case time access, rank, and select while supporting O(log n) amortized-time insert and delete in n log σ + O( n log σ√

log n ) bits.

3.2. Dynamic rank/select structures for a large alphabet

Now we show a dynamic rank/select structure for a large alphabet by extending the above rank/select structure for a
log n-size alphabet. Our extension uses a k-ary wavelet tree [14,13]. Given a text T over a σ -size alphabetΣ , we regard T [i]
of log σ bits as d log σlog log ne digits from a log n-size alphabet Σ

′, i.e., c = c1c2 . . . cl where ci ∈ Σ ′ and l = d
log σ
log log ne. Let T

j be

the concatenation of the jth digit of T [i] for all i. T js denotes a subsequence of T j such that the jth digit of T [i] belongs to T
j
s if

and only if T [i] has the prefix s of (j− 1) digits. For example, let T = abb bbc abc cab abb acc cab baa be a text over an
alphabetΣ = {aaa, aab, . . . , ccc}. UsingΣ ′ = {a, b, c}, T 3 = bccbbcba and T 3ab = bcb (Fig. 7).
The k-ary wavelet tree represents T j grouped by the prefix digits. The root of the tree contains T 1 and each of its children

contains T 2c for 0 ≤ c < log n. If a node of the jth level contains T
j
s , then its children contain T

j
sc for 0 ≤ c < log n. At the level

j ≤ d log σlog log ne, each node T
j
s represents a group of T [i] by the order of prefix s. Instead of making the actual tree, we maintain

it implicitly.
For the jth level, we concatenate all T js by the lexicographic order of s and build our rank/select structure for the log n-

size alphabet on this concatenation. We also encode the length of each T js by unary codes and concatenate the code bits
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by the same order of s. This bit vector, F j, takes O(n + σ) bits and rank/select on F j gives each position of T js in the jth
level concatenation. The sum of the sizes of F j is O(nd log σlog log ne), which is o(n log σ) for σ > log n. Because T j has a log n-

size alphabet and its character size is log log n bits, the total size of the rank/select structures is d log σlog log ne · (n log log n +

O( n log log n√
log n )) = n log σ + o(n log σ).
Then, rankT (c, i) = kl and selectT (c, k) = p1 are given by the following steps [14,13]:

k1 = rankT1(c1, i) pl = selectT lc1c2 ...cl−1
(cl, k)

k2 = rankT2c1
(c2, k1) pl−1 = selectT l−1c1c2 ...cl−2

(cl−1, pl)
. . . . . .

kl = rankT lc1c2 ...cl−1
(cl, kl−1) p1 = selectT1(c1, p2).

To process accessT , we should find the path of the character T [i] from the root. This path starts from c1 = accessT1(i) and
we can find the next node by rankT1(c1, i):

c1 = accessT1(i) k1 = rankT1(c1, i)
c2 = accessT2c1

(k1) k2 = rankT2c1
(c2, k2)

. . . . . .
cl = accessT lc1c2 ...cl−1

(kl−1).

We process insertT and deleteT in the same ways as accessT and update the character of each level. Finally, we obtain a
dynamic rank/select for a large alphabet with log n < σ ≤ n.

Lemma 7. Given an n-length text over a σ -size alphabet with log n < σ ≤ n, there is a dynamic structure that gives
O(d log σlog log ne log n) worst-case time access, rank, and select while supporting O(d

log σ
log log ne log n) amortized-time insert and delete

in n log σ + o(n log σ) bits.

4. Indices for text collection

In this section we describe the relation between the rank/select structure and the compressed full-text index to apply
our structure to the index for a collection of texts by Chan et al. [25]. Hon et al. [15] presented the duality between Burrows–
Wheeler Transform (BWT) and the Ψ -function, which is a linear time transform between BWT and Ψ . Here we give a
simple way of representing Ψ as a select query on BWT. This representation provides a simple version of the index for a
text collection, which will be described in Section 4.2.

4.1. Suffix array, BWT and Ψ -function

The suffix array, denoted by SA, is an array of the starting positions of suffixes sorted by their lexicographic order. That
is, SA[i] is the starting position of the lexicographically ith suffix of T and SA−1[i] is the lexicographic order of the suffix with
starting position i, T [i..n]. The compressed full-text indices such as CSA and FM-index replace SA of O(n log n) bits size by
other compressed forms which have the equivalent information of suffix arrays.
There are two substitutions for SA: one is the Burrows–Wheeler Transform (BWT) of a text T and the other is the Ψ -

function. The BWT of T , T bwt , is a permutation of T made from the preceding characters of sorted suffixes. Given T and SA,
T bwt is defined as

T bwt [i] =
{
T [SA[i] − 1] if SA[i] 6= 1
T [n] = $ otherwise.

Note that T is assumed to be terminated by a unique endmarker, T [n] = $, which has the smallest lexicographic order inΣ .
Because T bwt can be compressed into O(nHk) bits [6], it is employed by compressed full-text indices explicitly or implicitly.
The rank queries on T bwt are the key steps of backward search of the FM-index [3].
The Ψ -function gives the lexicographic order of the next suffix. Given T and SA, the Ψ -function is defined as

Ψ [i] =
{
SA−1[SA[i] + 1] if SA[i] 6= n
SA−1[1] otherwise.

The Ψ -function enables the compression of SA in CSA. In fact, from the duality between T bwt and Ψ [15] we can directly
obtain Ψ by the following select . Recall that F [c] is the number of occurrences of characters less than c in the text T . Let C[i]
denote the first character of the ith suffix, T [SA[i]..n]. Then, Ψ [i] is given by

Ψ [i] = selectTbwt (C[i], i− F [C[i]]). (1)

For the example of Ψ [4] = SA−1[6] = 11 in Fig. 8, Ψ [4] can be given by selectTbwt (C[4], 4− F [C[4]]) = selectTbwt (i, 3).
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Fig. 8. Example of T bwt and Ψ for T = mississippi$.

4.2. Application to text-collection indexing

Given a collection of texts C = {T1, T2, . . . , Tk}, Chan et al. proposed a dynamic BWT of the concatenation of texts,
TC = $T1$T2 . . . $Tk, to provide a pattern search with collection updates [25]. The BWT of TC means an implicit suffix array
of TC . Their index has two components, COUNT and PSI . In fact, COUNT is a dynamic rank structure for the backward search
algorithm, and PSI is a dynamic structure for the Ψ -function of the suffixes of TC . To insert Ti into T bwtC , we compute the
lexicographic order of each suffix of Ti by the backward search using COUNT . Then, the lexicographic order of each suffix
Ti[x..ni] gives the position of Ti[x − 1] in T bwtC . The final Ti[ni] is inserted to T bwtC and its position denotes the lexicographic
order of Ti[1..ni]. To delete Ti from TC , we assume that the lexicographic order of Ti[1..ni] is known andwe followΨ to delete
Ti[ni], Ti[1], . . . , Ti[ni − 1].
These two components, COUNT and PSI , can be replaced by rank and select on T bwtC , respectively. Chan et al. build COUNT

and PSI as independent structures, so the updates of T bwtC mean the independent updates of COUNT and PSI . For simplicity,
they present a removing of one component and a converting between rank and Ψ by O(log n) time binary search. However,
this conversion can be discarded by our Ψ representation of Eq. (1). Hence, our rank/select structure on T bwtC provides a
simple version of the index for a text collection. By substituting our rank/select for COUNT and PSI , we immediately obtain
an index of n log σ + o(n log σ) bits and O((1 + log σ

log log n ) log n) time per character. For texts over a small alphabet with
σ ≤ log n, the operations takes O(log n) time per character.

Theorem 3. Given a collection of texts C = {T1, T2, . . . , Tk}, a dynamic rank/select structure with O(X) time rank, select, access,
insert, and delete operations on the BWT of TC = $T1$T2 . . . $Tk supports a searching for pattern P in O(|P| · X) time and an
insertion/deletion of Ti in O(|Ti| · X) time.

Recently, Mäkinen and Navarro [26] extended Chan et al.’s index for a collection of texts by locating pattern occurrences
with small space and by removing the assumption of lexicographic order of Ti. We here presented a simple representation
of COUNT and PSI , which can also be applied to Mäkinen and Navarro’s extension [26].
Because any dynamic rank/select structure replaces COUNT and PSI by Theorem 3, González and Navarro’s compressed

rank/select structure [23] provides a compressed index of nHk+ o(n log σ) bits and O((1+
log σ
log log n ) log n) time per character

for a collection of texts.

5. Space reduction by run-length encoding

In this sectionwe reduce the space of our structure by run-length encoding (RLE). Thismethod is an extension ofMäkinen
and Navarro’s Run-Length based FM-index (RLFM) [18], in which they addresses only rank query. For applications such as
the Ψ -function and the dynamic structures, we consider other queries: select , insert and delete.
Given RLE of T = (c1, l1)(c2, l2) . . . (cn′ , ln′), where each pair (c1, l1) denotes an li-length run of a same character

ci, we represent RLE(T ) by the sequence of run characters, T ′ = c1c2 . . . cn′ , and the bit vector of run lengths, L =
10l1−110l2−1 . . . 10ln′−1. See Fig. 9. In addition to L, we use some additional bit vectors: a grouped length vector L′ and a
frequency table F ′. The length vector L′ represents the lengths of runs in the order of their characters and positions, so that
the lengths are grouped by the characters. L′ is similar to the over-block encoding B. However, the lower bounds of L and L′
are O(n) because the number of runs is O(n).
The frequency table F ′ provides F ′[c] that is the number of occurrences of characters less than c in text T ′. F ′ is represented

by O(n′ + σ) bits vector. Using L′ and F ′, we compute F [c] by selectL′(1, F ′[c] + 1) − 1. Then, there is a mapping between
the kth c of T and the (F [c] + k)th bit of L′.
For the number of runs in T bwt , Mäkinen and Navarro showed that the number of runs is less than nHk + σ k, so the size

of T ′ for RLE(T bwt) is nHk log σ + O(σ k log σ) bits.
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Fig. 9. Additional vectors for rank/select structure on RLE(T ).

Lemma 8 ([18]). The number of runs in T bwt is at most n ·min(Hk(T ), 1)+σ k for any k ≥ 0. In particular, this is nHk(T )+o(n)
for any k ≤ α logσ n and any constant 0 < α < 1.

The rank/select structure on RLE(T ) uses the structures on (plain) text T ′ and on bit vectors including L. Therefore, the
total size of a structure on RLE(T ) is bounded by the size of a structure on T ′ plus O(n) bits. We start from RLFM’s rank on
RLE and extend RLFM to support select and dynamic updates.

Lemma 9 ([18]). Given RLE(T ), if there are O(tS) time selectT ′ and O(tR) time rankT ′ using s(T ′) bits, then rankT (c, i) is processed
in O(tS + tR)+ O(1) time and s(T ′)+ O(n) bits.

Lemma 10. Given RLE(T ), if there is O(tS) time selectT ′ using s(T ′) bits, then selectT (c, k) is processed in O(tS)+ O(1) time and
s(T ′)+ O(n) bits.

Proof. For query selectT (c, k), our first step is to find the starting position of the run that contains the kth c . We use the
mapping between the kth c of T and the (F [c] + k)th bit of L′. Let k′ be the number of c runs containing the kth c. The value
k′ is obtained from the number of 1s that represent c runs in L′:

k′ = rankL′(1, F [c] + k)− F ′[c].

Then, we get the starting position of the k′th c run from T ′ and L, and add its difference to the position of the kth c. The
difference between the position of the kth c and the starting position is computed on L′ by using the fact that the k′th c run
is mapped from (F ′[c] + k′)th 1 in L′:

pos = selectL(1, selectT ′(c, k′))
selectT (c, k) = pos+ (F [c] + k− selectL′(1, F ′[c] + k′)).

In addition to selectT ′ , we use only O(1) operations on binary dictionaries. �

From Lemmas 9 and 10, we obtain a static rank/select structure on RLE(T ) by employing the static rank/select structure
on T ′ such as [16,15,17] and the bit rank/select structure on L′ such as [8,10].

Theorem 4. Given RLE(T ) of a text T with n′ runs, there is a rank/select structure that supports O(log log σ) time rank and O(1)
time select, using n′H0(T ′)+ O(n) bits. This structure can be constructed in deterministic O(n) time.

For dynamic versions, we use our structure in Theorem 2 for rank/select on T ′ and the MN-structure for rank/select on
bit vectors. The retrieving operations, rankT and selectT , follow the same steps as in Lemmas 9 and 10, and the updating
operations, insertT (c, i) and deleteT (i), are described as follows.

Lemma 11. Given RLE(T ), if there are O(tA) time accessT ′ , O(tR) time rankT ′ , and O(tI) time insertT ′ using s(T ′) bits, then insertT
is processed in O(tA + tR + tI)+ O(log n) time and s(T ′)+ O(n) bits.

Proof. The i′th run that contains T [i] is obtained by i′ = rankL(1, i). We describe only the case that T [i+1] is also a character
of the i′th run. The case that T [i+ 1] is the first character of the next run is similar but simpler.
For the insertion of c into the i′th run there are two cases whether c is equal to T ′[i′] or not. If c = T ′[i′], we just lengthen

the length of the i′th run by updating L and L′. Otherwise, we split the i′th run and insert a new run by insertT ′ (Fig. 10).
(1) c = T ′[i′]:We simply update L by insertL(i, 0). To update L′, we find the length of the i′th run in L′, which is represented

as the (F ′[c] + rankT ′(c, i′))th 1 and following 0s. Then, we update the length by insertL′(selectL′(1, F ′[c] + rankT ′(c, i′)), 0).
(2) c 6= T ′[i′]: We split the i′th run and create the lengths for a new run in L and L′. We update L by inserting 11 and

deleting 0 at position i. To update L′, we find the split position of the i′th run and the new position of c. The split position
of the i′th run is computed by F ′[T [i′]] + rankT ′(T ′[i′], i′) plus the offset, i− selectL(1, i′). The new position of c is found by
F ′[c] + rankT ′(c, i′) as in case 1. Let change(x, c) denote consecutive calls of insert(x, c) and delete(x). The split and create
operations are as follows:

– changeL(i, 1)
– insertL(i, 1)
– changeL′(selectL′(1, F ′[T ′[i′]] + rankT ′(T ′[i′], i′))+ i− selectL(1, i′), 1)
– insertL′(selectL′(1, F ′[c] + rankT ′(c, i′)+ 1), 1).

After updating L and L′, we call insertT ′(T [i′], i′) and insertT ′(c, i′). Updating F ′ is done by insertF ′(0, selectF ′(1, c)) and
insertF ′(0, selectF ′(1, T [i′])).
In the above cases, we use a constant number of operations on bit vectors and on T ′. �

We process deleteT in a way similar to insertT .
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Fig. 10. Example of insertion into T , insertT (c, 6).

Lemma 12. Given RLE(T ), if there are O(tA) time accessT ′ , O(tR) time rankT ′ , and O(tD) time deleteT ′ using s(T ′) bits, then deleteT
is processed in O(tA + tR + tD)+ O(log n) time and s(T ′)+ O(n) bits.

Theorem 5. Given RLE(T ) of a text T with n′ runs, there is a dynamic rank/select structure that supports O((1 + log σ
log log n ) log n)

worst-case time rank and select, while supportingO((1+ log σ
log log n ) log n) amortized time insert and delete in n

′ log σ+o(n′ log σ)+
O(n) bits.

6. Conclusion

In this paper we proposed dynamic rank/select structures of n log σ + o(n log σ) bits that support O((1+ log σ
log log n ) log n)

worst-case time rank/select and O((1 + log σ
log log n ) log n) amortized time insert/delete. We started with a small-alphabet

structure providing O(log n) worst-case time rank/select and O(log n) amortized time insert/delete for a log n-size alphabet
and extended it for a large alphabet with log n < σ ≤ n. Our rank/select structure can be applied to an index of texts
collection andwe obtained a simple version of that index. Applying to RLE of texts, we presented static and dynamic versions
of RLFM.
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