CASE REPORT

Advanced esthesioneuroblastoma with hyperostosis of the anterior skull base

Kuo-Feng Huang a,b,*, Tin-Chou Li a, Hsien-Ta Hsu a, Hsing-Hong Chen a

a Division of Neurosurgery, Department of Surgery, Taipei Tzu-Chi Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City, Taiwan
b School of Medicine, Tzu Chi University, Hualien, Taiwan

Received 23 April 2015; received in revised form 9 July 2015; accepted 3 August 2015
Available online 14 November 2015

KEYWORDS
anterior skull base; craniotomy; esthesioneuroblastoma; hyperostosis; olfactory neuroblastoma

Abstract
Esthesioneuroblastoma, also known as olfactory neuroblastoma, is a rare type of neuroectodermal tumor arising from the superior portion of the nasal cavity, sometimes locally invading the anterior skull base. We report the case of a 44-year-old man having a 3-year history of nasal obstruction and anosmia, acute worsening of vision in his right eye, and facial numbness on the right side. Brain computed tomography and magnetic resonance imaging revealed an extensively enhanced soft tissue tumor involving bilateral nasal and orbital cavities, ethmoid sinuses, the floor of the anterior cranial fossa, and intradural invasion. In particular, prominent hyperostosis, a rare associated radiological finding, was observed on both sides of the orbital roofs. Bifrontobasal craniotomy involving a radical removal of the soft tissue mass, including the intradural extension, was performed; the bilateral hyperostosis of the orbital roofs was drilled off for decompression of the narrowed orbital cavities. Pathological reports confirmed esthesioneuroblastoma. The postoperative course was smooth, and the vision improved. The tumor did not recur for 1 year after postoperative radiotherapy and adjuvant chemotherapy.

Copyright © 2015, Taiwan Surgical Association. Published by Elsevier Taiwan LLC. All rights reserved.

1. Introduction

Esthesioneuroblastoma (ENB), also known as olfactory neuroblastoma, is a rare type of neuroectodermal tumor, generally originating in the specialized olfactory epithelium of the upper nasal cavity. It often invades the orbital space and anterior skull base. Treatment strategy includes a wide range of surgical resection plus adjuvant...
postoperative radiotherapy and chemotherapy. The overall prognosis mainly depends on the histological grade and severity of the tumor invasion.²

Associated hyperostosis of the anterior skull base is extremely rare for patients with ENBs. Meningioma-associated hyperostosis is relatively common, generally localized, and proportional to the tumor size; the potential pathogenesis of tumor-associated hyperostosis was considered to include hypervascularity, noninvasive bone irritation, hormone-mediated osteoblast stimulation, tumor-induced bone formation, and direct tumor invasion.¹

Herein, we report a case of an advanced ENB with hyperostosis of the anterior skull base, in which the hyperostotic bone was maximally resected. In addition, we review relevant literature.

2. Case Report

A 44-year-old man having a 3-year history of nasal obstruction and anosmia experienced worsened vision in his right eye and right side facial numbness 1 year ago. The patient had no history of alcohol, tobacco, or drug use. A neurological examination revealed total anosmia, decreased right visual acuity (VA; right eye, light sense only; left eye, 1.0), impaired visual field (VF; generalized defect, right), proptosis of the right eye with moderately limited eyeball movement in all directions, and mild hypoesthesia in the right malar area. Cervical lymph nodes were not palpable, and blood tests revealed no abnormalities. Nasal endoscopy disclosed a large reddish tumor in the right middle meatus. Brain computed tomography (CT) and magnetic resonance imaging (MRI) revealed an extensively enhanced soft tissue tumor involving bilateral nasal and orbital cavities, ethmoid sinuses, the floor of the anterior cranial fossa, and intradural invasion. Beneath the intracranial skull base tumor growth, prominent hyperostosis was observed on both sides of the orbital roofs, particularly on the right side (Figure 1). The soft tissue tumor was removed from the nasal cavity by using an endonasal approach, and pathological reports confirmed ONB. A systemic survey revealed no distant metastasis, and bifrontobasal craniotomy was performed for radically removing the soft tissue mass, including intradural extension. Furthermore, the dural opening was repaired using a pericranial flap. The bilateral hyperostosis of the orbital roofs was drilled off to decompress the narrowed orbital cavities, and the frontal skull base was reconstructed using a temporalis muscle fascia graft. The bilateral hyperostosis of the orbital roofs was drilled off to decompress the narrowed orbital cavities, and the frontal skull base was reconstructed using a pericranial flap. Pathological reports confirmed ENB (Figure 2). The postoperative course was uneventful, and the vision improved (VA, right: counting finger, 20 cm; left: 1.0; VF: partial central defect, right). After the operation, radiotherapy at a dose of 65 Gy and adjuvant cisplatin-based chemotherapy were administered according to the treatment guidelines. No tumor recurrence was observed after 1 year (Figure 3).

3. Discussion

ENB arises in the sinonasal tract and accounts for only ~3–6% of all intranasal tumors.³ ENB particularly arises in the specialized olfactory epithelium lining the superior portion of the upper nasal cavity. Because of its origin, this locally expansive malignant tumor typically invades the superomedial orbit, through the cribiform plate, and the anterior cranial fossa.

Bone invasion occurs because of osteolysis and is observed as a lytic image on CT.³ In extremely rare cases, ENB can cause osteoblastic modification at bone destruction sites and result in exuberant bone formation. Only four cases of hyperostotic ENB have been reported,¹,⁴ with the first being the case by Regenboger et al.⁴

According to the Kadish staging system, tumors are divided into three groups: Group A lesions are confined to the nasal cavity, Group B lesions involve the nasal cavity and paranasal sinuses, and Group C lesions extend beyond the paranasal sinuses to the orbital and cranial cavities.³ The present case was classified as Kadish Stage C, which typically causes osteolysis of the anterior skull base and bone remodeling to some extent. Hyperostosis is a rare condition, and the abnormal bone was a noninvasive irritation of the bone as well as a true bony invasion by the
tumor. The pathogenesis is similar to that of hyperostosis associated with skull base meningiomas.1,5 These cases are rare; therefore, the overall prognosis of the hyperostotic variant of ENB remains undetermined. However, considering the extensive surrounding bony changes, Ramanathan and Germanwala6 hypothesized that these tumors are extremely aggressive. Accordingly, in this case, we administered chemotherapy in addition to radiotherapy.

A complete excision followed by radiotherapy at a dose of 55–65 Gy is generally the standard treatment guideline. For advanced ENBs, cisplatin-based chemotherapy is recommended as the concomitant treatment, either before or during radiotherapy. The recommended chemotherapy regimen includes the following drugs: cisplatin (60 mg/m2, Day 4), 5-fluouracil (5-FU; 600 mg/m2, given over 24 hours for 5 days, Days 1–5), methotrexate (30 mg/m2, Day 1), and leucovorin (20 mg/m2, Days 1–5). Both local recurrence and distant metastasis remain the major complications in the treatment of ONB because they may occur several years after surgery alone. Therefore, the primary treatment is extremely critical. For advanced ENBs, a multimodal strategy of treatment involving surgery with postoperative radiotherapy and chemotherapy is recommended.3 This approach is often successful for recurrent disease and results in prolonged survival. Therefore, a prolonged follow up is suitable for an appropriate identification and treatment. No standardized protocol currently exists because various follow-up regimens have been advocated. Rimmer et al3 recommended a lifelong follow up with both clinical examination and MRI scanning every 4 months for the first 2 years, every 6 months for the next 3 years, and then every 9 months thereafter.

In summary, we report an extensive ENB involving bilateral nasal and orbital cavities, ethmoid sinuses, the floor of the anterior cranial fossa, and intradural invasion. Hyperostosis was observed on both sides of the orbital roofs. Because of the actual structural constrictions and potential tumor infiltration of the hyperostosis, we recommend the maximal possible resection of the abnormal bone while avoiding a neurovascular surgical insult.

Funding/support

This research was supported in part by grants TCRD-TPE-103-44 and TCRD-TPE-103-RT-7 from the Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation.

References

