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SUMMARY

The estrogen receptor a (ERa) controls cell prolifera-
tion and tumorigenesis by recruiting various cofac-
tors to estrogen response elements (EREs) to control
gene transcription. A deeper understanding of these
transcriptional mechanisms may uncover therapeu-
tic targets for ERa-dependent cancers. We show
that BRD4 regulates ERa-induced gene expression
by affecting elongation-associated phosphoryla-
tion of RNA polymerase II (RNAPII) and histone
H2Bmonoubiquitination. Consistently, BRD4 activity
is required for proliferation of ER+ breast and endo-
metrial cancer cells and uterine growth in mice.
Genome-wide studies revealed an enrichment of
BRD4 on transcriptional start sites of active genes
and a requirement of BRD4 for H2B monoubiquitina-
tion in the transcribed region of estrogen-responsive
genes. Importantly, we demonstrate that BRD4
occupancy on distal EREs enriched for H3K27ac is
required for recruitment and elongation of RNAPII
on EREs and the production of ERa-dependent
enhancer RNAs. These results uncover BRD4 as a
central regulator of ERa function and potential thera-
peutic target.
INTRODUCTION

Estrogen receptor-positive (ER+) breast cancers represent a

significant challenge to modern health care. ERa-dependent

transcription in these cancers potentiates cell proliferation and
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malignancy. Estrogen (E2) binding leads to conformational

changes within ERa that promote dimerization, binding to

estrogen response elements (EREs), and subsequent cofactor

recruitment (Deroo and Korach, 2006). Binding of ERa to EREs

is promoted by the pioneer factor, Forkhead protein FOXA1

(HNF3a) (Carroll et al., 2005; Hurtado et al., 2011). ERa also func-

tions along with Cohesin (Schmidt et al., 2010) to facilitate long-

range chromosomal interactions between EREs (Fullwood et al.,

2009).

The regulation of transcriptional elongation plays an essential

role in E2-dependent gene transcription. This is largely regulated

by the activity of the Positive Transcription Elongation Factor-b

(P-TEFb) complex (Peterlin and Price, 2006). P-TEFb promotes

elongation in part by relieving negative regulation by phosphor-

ylating negative elongation factor (NELF) and dichloro-1-b-D-

ribofuranosylbenzimidazole (DRB)-sensitivity inducing factor

(DSIF) complexes. Pausing of RNA polymerase II (RNAPII) by

NELF just downstream of the transcriptional start site (TSS)

is a critical determinant of ERa-dependent transcription (Aiyar

et al., 2004). P-TEFb also phosphorylates Ser2 (p-Ser2)

within the heptapeptide repeat of the RNAPII carboxy-terminal

domain (CTD). This in turn promotes elongation-associated his-

tone modifications including histone H2B monoubiquitination

(H2Bub1) (Karpiuk et al., 2012; Pirngruber et al., 2009), which

is required for E2-dependent transcription (Bedi et al., 2014;

Prenzel et al., 2011). Consistently, E2-dependent transcription

was shown to be regulated at a post-RNAPII recruitment step

involving increased RNAPII p-Ser2 by P-TEFb (Kininis et al.,

2009).

The Bromodomain-containing Protein 4 (BRD4) binds to acet-

ylated histones at both enhancers and promoters and recruits

P-TEFb to support lineage-specific gene transcription (Zippo

et al., 2009; Zhang et al., 2012b). Importantly, inhibition of

BRD4 by pan-bromodomain and extraterminal domain (BET)
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Figure 1. BRD4 Perturbation Impairs E2-Induced Gene Expression, RNA Polymerase Ser2 Phosphorylation, and H2Bub1

(A) Heatmapmade with log2-fold changes frommRNA-seq of MCF7 cells. E2 denotes siCont and E2-treated samples relative to cells transfected with siCont and

Veh treated. siBRD4+E2 denotes siBRD4 and E2-treated samples relative to siCont with E2 induction. JQ1+E2 denotes siCont, JQ1, and E2-treated samples

relative to siCont with E2 induction. Only E2-upregulated genes R1.5-fold are shown. Adjusted p value is %0.05.

(B) GSEA of mRNA expression data from RNA-seq. The table shows the enrichment score for the topmost estrogen-related pathways in each condition. Nominal

p value is %0.05, FDR %25%.

(C andD)Western blot analyseswith specific antibodies onwholeMCF7 protein extracts after transfection with negative control (�) or siBRD4with 6 or 24 hr of E2

induction (C) or DMSO (�) or JQ1 and/or E2 induction for 24 hr (D). Relative quantified values of H2Bub1 normalized with H2B and ERawith HSC70 are indicated

under the respective blots.

See also Figures S1A–S1J.
inhibitors such as JQ1 (Filippakopoulos et al., 2010), PFI-1 (Pic-

aud et al., 2013), and IBET revealed the involvement of BRD4 in

various cancers in animal models (Herrmann et al., 2012; Lock-

wood et al., 2012; Ott et al., 2012; Zhang et al., 2012a; Zuber

et al., 2011). Moreover, a BRD4-dependent gene expression

signature was reported to be a positive predictor of breast can-

cer survival (Crawford et al., 2008) and has been implicated as

an inherent susceptibility gene for metastasis in breast cancers

(Alsarraj et al., 2011).

Recent findings describe a role for enhancer RNA (eRNA) pro-

duction from ERa-bound enhancers during E2-regulated tran-

scription (Hah et al., 2013; Li et al., 2013). eRNAs are noncoding

RNAs that promote transcription by an unknown mechanism

(Kim et al., 2010). Interestingly, cyclin-dependent kinase 9

(CDK9) is required for E2-regulated eRNA synthesis (Hah et al.,

2013).

In this study, we investigated a role for BRD4 as a transcrip-

tional cofactor of ERa-induced transcription by regulating tran-
scriptional elongation and revealed its recruitment both to

gene promoters as well as FOXA1-ERa-bound enhancers in

ER+ breast cancer cells. Moreover, we demonstrate that distal

EREs that produce eRNAs are enriched for BRD4 occupancy

and uncover a role for BRD4 in eRNA synthesis.

RESULTS

BRD4 Regulates E2-Induced Transcriptional Activity in
ER+ Cancers
To analyze the importance of BRD4 in ERa-dependent gene

regulation, we performed mRNA sequencing (mRNA-seq) ana-

lyses in ER+ breast cancer cells following E2 stimulation in cells

depleted for BRD4 or treated with the BRD4 inhibitor, JQ1 (Fig-

ure S1A). Heatmap analysis shows a nearly global decrease

of E2-stimulated gene expression following BRD4 depletion

and inhibition (Figures 1A and S1C), whereas the effects of

BRD4 perturbation in this time frame were less apparent for
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Figure 2. Inhibition andKnockdownof BRD4Affect Proliferation and

Uterine Growth

(A) Cell proliferation assays in MCF7 cells upon E2 as well as basal conditions

under negative siCont, siBRD4, JQ1, and ICI182780 treatment.

(B–D) Three-week-old mice injected with Veh (Cont [control]) and JQ1 for

3 weeks were dissected, and uteri were analyzed for their size (B) and wet

weight (wt.) (C). ***p % 0.001. Data are represented as mean ± SD (n = 8). (D)

Single-gene expression analyses of E2-induced genes (Ran,Mad2l1, and Il1b)

after Veh (cont) or JQ1-injected mouse uteri. *p % 0.05; **p % 0.01. The data

are represented as median ± SD (n = 4). Rel. mRNA exp., relative mRNA

expression.

See also Figures S2A–S2C.
E2-downregulated genes (Figure S1D). The inhibition of E2-

induced transcription by BRD4 perturbation was further verified

for representative E2-upregulated genes (Figure S1B). Strikingly,

in addition to the known targets of BRD4 such as cell prolifera-

tion-specific and tumor necrosis factor-nuclear factor kB target

genes (Mochizuki et al., 2008; Zou et al., 2014), gene set enrich-

ment analyses (GSEAs) identified multiple E2- and ERa-related

pathways as being significantly enriched following BRD4 knock-

down or inhibition under vehicle (Veh) as well as E2-treated con-

ditions (Figures 1B, S1E, and S1F). Similar effects were also seen

in the ER+ Ishikawa endometrial cancer cell line (Figure S1G),

whereas BRD4 depletion had little or no effect on transforming

growth factorb1 (TGF-b1)-inducedgeneexpression (FigureS1H).

Together, these findings indicate a specific and central role for

BRD4 in regulating E2-induced transcription in ER+ cancers.
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BRD4 Regulates RNAPII Phosphorylation and H2Bub1
Given the importance of BRD4 in controlling RNAPII elongation

(Liu et al., 2013; Patel et al., 2013), and the established roles

for RNAPII p-Ser2 (Kininis et al., 2009) and H2Bub1 (Prenzel

et al., 2011) in E2-induced gene transcription, we examined

whether BRD4 depletion or inhibition affects RNAPII p-Ser2

or H2Bub1. Interestingly, both RNAPII p-Ser2 and H2Bub1 sub-

stantially increased upon E2 treatment, and depletion or inhibi-

tion of BRD4 decreased their levels under basal as well as

E2-induced conditions (Figures 1C, 1D, and S1J). Similar effects

were also observed in Ishikawa and H1299 cells upon BRD4

depletion (Figure S1I).

BRD4 Regulates ERa-Dependent Cell Proliferation and
Uterine Growth
In order to investigate the physiological function of BRD4 in con-

trolling ERa activity, we examined cell proliferation after knock-

down or inhibition of BRD4 in both MCF7 and Ishikawa cells.

Notably, consistent with gene expression results (Figures 1A,

1B, and S1B–S1F), BRD4 perturbation decreased cell prolifera-

tion in a manner similar to the pure anti estrogen ICI182780 both

in the presence and absence of E2 (Figures 2A, S2A, and S2B).

Decreased uterine weight is a hallmark of diminished estrogen

signaling in vivo. Consistent with in vitro experiments, JQ1-

injected mice demonstrated a substantial decrease in uterine

growth (Figure 2B) and uterine wet weight (Figure 2C), without

significant changes in total body weight (Figure S2C). Gene

expression analyses confirmed decreased expression of E2-

dependent genes in uteri from JQ1-injected mice (Figure 2D),

confirming a central role for BRD4 in controlling E2-induced pro-

liferation and growth both in vitro and in vivo.

BRD4 Occupancy Is Associated with an Active
Epigenetic Context and Transcription
Togainmechanistic insight into the functionofBRD4andH2Bub1

inERa-regulated transcription,weperformedgenome-widechro-

matin immunoprecipitation (ChIP) and sequencing (ChIP-seq)

analyses. Consistent with its role in E2-induced gene transcrip-

tion, genome-wide profiling and single-gene analyses revealed

increased BRD4 occupancy slightly downstream of the TSS

and continuing into the transcribed region of E2-induced genes

(Figures 3A, 3B, and S3A–S3G). This occupancy is decreased

upon JQ1 treatment (Figure S3B). Conversely, E2 reduced

BRD4 recruitment on E2-repressed genes (Figures S3D and

S3F). Consistent with a previous study by Minsky et al. (2008),

H2Bub1 preferentially occupied gene bodies (Figures 3C, 3D,

and S3H–S3L). Notably, E2 treatment increased H2Bub1 levels

on E2-stimulated genes significantly, and this effect was

reduced by JQ1 treatment (Figures 3C, S3I, andS3K–S3M). Inter-

estingly, the effect of JQ1 on H2Bub1 occupancy was most

pronounced on genes exhibiting de novo RNAPII recruitment,

such asGREB1 and TFF1, but less onRNAPII-recruited and -pre-

loaded and -constitutively bound genes like XBP1 (Figures S3K

and S3N).

Correlation and aggregate plots confirmed an association

of BRD4 and active transcription on E2-induced TSSs (Figures

3E, 3F, and S3O–S3R). Moreover, BRD4 occupancy positively

correlated with histone marks H3K27ac and H3K4me3, which



Figure 3. BRD4 Occupies Promoters and Correlates with Active Transcription

(A) Genomic binding profiles of BRD4 on E2-induced genes (GREB1 and TFF1) and a housekeeping gene (ACTB). Red indicates E2-treated and green indicates

Veh-treated conditions.

(B) Aggregate plots showing genomic binding profiles of BRD4 on E2-upregulated gene-specific TSS upon Veh and E2-treated conditions. x axis shows the

distance from the TSS of E2-upregulated genes in kilobase pairs. y axis shows the average BRD4 signal of the reads normalized per hundred million base pairs.

TSS is marked with a black dotted line.

(C) Aggregate plots showing genomic profiles of H2Bub1 on E2-upregulated genes upon Veh, JQ1, as well as Veh (JQ1 Veh), E2, and JQ1 as well as E2 (JQ1 E2)-

treated conditions. Weighted averages for each E2-upregulated gene, 1.5–2.5 kb downstream of each TSS, were used to calculate the p values using ANOVA

with multiple-regression model. ***p % 0.001.

(D) Genomic profiles of H2Bub1 on GREB1, TFF1, and ACTB. Red indicates E2-treated and green indicates JQ1 as well as E2 (JQ1 E2)-treated conditions.

(E) Correlation plot on E2-regulated gene-specific TSS +3 kb showing the association of BRD4, H3K27ac, H3K4me3, nascent RNA transcription (GRO-seq),

RNAPII, H2Bub1, and DNase I-hypersensitivity sites (DNase-seq) and H3K27me3.

(F) Aggregate plot analyses of BRD4, H3K27ac, RNAPII, and H2Bub1 on GRO-seq-based groups (high, medium, low, and null), at specific TSSs on E2-regulated

genes. ‘‘High’’ group corresponds to E2-upregulated TSS having aweighted average of GRO-seq signal fromE2-treatedMCF7 cells >0.3, ‘‘medium’’R0.15 <0.3,

‘‘low’’ >0 <0.15, and ‘‘null’’ with no value of average. A class of H3K27me3-positive summits was examined as a negative control of active transcription.

See also Figures S3A–S3R.
are hallmarks of active transcription, as well as RNAPII,

H2Bub1, and DHSs (DNase I-hypersensitivity sites), but not

with H3K27me3 (Figures 3E and S3O). Similarly, H2Bub1 also

correlated with transcription, H3K4me3, BRD4, H3K27ac,

and RNAPII (Figures 3E and S3O). Grouping of TSSs according

to the level of nascent RNA expressed (high, medium, low, and

null) and aggregate plot and heatmap analyses revealed a

clear association of BRD4, H3K27ac, H3K4me3, RNAPII, and

H2Bub1 occupancy as well as DHSs and gene transcription

(Figures 3F and S3P–S3R).
BRD4 Functions Downstream of ERa, H3K27ac, and
Cohesin
Because BRD4 inhibition prevents E2-dependent gene induction

without appreciably affecting ERa protein levels (Figures 1D and

S4A), we also examined the effects of JQ1 treatment on the

recruitment of ERa and the Cohesin subunit RAD21. Single-

gene analyses of ERa binding suggested that ERa binding is

not affected at specific EREs after BRD4 inhibition (Figures 4A

and S4B). Consistent with a recent report describing an effect

of BRD4 inhibition on androgen receptor (AR) recruitment
Cell Reports 8, 460–469, July 24, 2014 ª2014 The Authors 463
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(Asangani et al., 2014), genome-wide analyses confirmed that

JQ1 treatment decreases ERa binding at most EREs (Figures

4B, S4D, and S4E). However, these effects are only partial,

and substantial levels of ERa are still bound to EREs after JQ1

treatment (Figure S4F). Consistent with the recent studies that

BRD4 does not promote chromosomal looping between en-

hancers and promoters (Liu et al., 2013), RAD21 binding to three

different EREs known to serve as hubs for ERa-dependent loop-

ing (Fullwood et al., 2009) was unaffected by JQ1 treatment

(Figure S4C). Interestingly, whereas BRD4 binding correlated

with H3K27ac (Figure 3E) (Zhang et al., 2012b), BRD4 inhibi-

tion did not influence the E2-induced H3K27ac on individual

E2-regulated enhancers and promoters (Figures 4C and S4H).

These results suggest that BRD4 is recruited to E2-regulated

genes subsequent to ERa binding, histone acetylation, and

Cohesin recruitment.

BRD4 Occupies Enhancers and Regulates eRNA
Synthesis by Affecting RNAPII Recruitment and
Elongation
BRD4 was recently shown to occupy and regulate enhancer

function (Liu et al., 2013; Zhang et al., 2012b). Thus, we exam-

ined BRD4 occupancy at distal EREs and observed that BRD4

is recruited to distal EREs in an E2-dependentmanner and corre-

lated with H3K27ac, ERa, FOXA1, RNAPII, and DHS (Figures 4D,

4E, 4H, S4G, and S4I–S4L). Surprisingly, nascent RNA transcrip-

tion on enhancers correlated with BRD4 occupancy to a greater

extent than the other investigated profiles (Figures 4E–4H).

RNAPII occupancy is also well associated with BRD4 on en-

hancers (Figure 4E). Interestingly, high eRNA-producing EREs

exhibited high E2-induced RNAPII recruitment that extended to

more than 5 kb upstream and downstream of the ERE summits,

suggesting a tight association between RNAPII recruitment and
Figure 4. BRD4 Binds to ER+ Enhancers after ERa Recruitment and H3

(A) ChIP-quantitative PCR (ChIP-qPCR) analyses of ERa occupancy onGREB1 ER

represented as mean ± SD (n = 3). Dotted line indicates background.

(B) Aggregate plot showing genomic binding profiles of ERa on distal EREs upon

distance from the center of ERE in kilobase pairs. y axis shows the average ERa sig

for each ERE ±100 bp were used to calculate the p values using ANOVA with

mentioned in the plot.

(C) ChIP-qPCR analyses of H3K27ac after DMSO or JQ1 treatment with Veh or E

represented as mean ± SD (n = 3). **p % 0.01; n.s., not significant.

(D) Aggregate plot showing genomic binding profiles of BRD4 on distal EREs up

(E) Correlation plot on distal EREs ±1.5 kb showing the association of BRD4, H3K2

and H3K27me3.

(F) Aggregate plot analyses of BRD4, H3K27ac, ERa, FOXA1, and RNAPII occup

distal EREs having a weighted average >0.45, ‘‘medium’’ >0.25 <0.45, ‘‘low’’ >0

(G) Heatmap profiles of BRD4, H3K27ac, ERa, FOXA1, nascent RNA transcription

null GRO-seq signals. Center of each heatmap denotes center of distal EREs.

(H) Binding profiles of BRD4, H3K27ac, ERa, GRO-seq, and RNAPII onGREB1 pro

and green indicates Veh-treated conditions. RNAPII with blue peaks indicates E

(I) Aggregate plot showing genomic binding profiles of RNAPII on distal EREs

conditions.

(J and K) ChIP-qPCR analyses of RNAPII (J) and RNAPII-PSer2 (K) occupancy on

Data are represented as mean ± SD (n = 3). Dotted line indicates background.

(L) eRNA-qPCR results showing E2-induced eRNA (eGREB1 and eXBP1) upon ne

levels are shown as ‘‘Rel. RNA levels.’’ Data are represented as mean ± SD (n =

(M) Model depicting the role of BRD4 on E2-induced transcription. ER, ERa; HA

H2Bub1.

See also Figures S4A–S4N.
elongation at eRNA-producing enhancers (Figures 4I and S4N).

ChIP analyses confirmed that E2-induced RNAPII recruitment

and elongation at the GREB1 ERE are decreased by JQ1 treat-

ment (Figures 4J, 4K, and S4O). Altogether, these studies sug-

gest that in addition to its role in transcriptional elongation,

BRD4 affects both recruitment and elongation of RNAPII on

ERa-dependent enhancers.

Importantly, BRD4 depletion or inhibition significantly

decreased eRNA synthesis from E2-regulated enhancers (Fig-

ure4L). This suggests that in addition to its reportedcis-regulatory

function, BRD4 may stimulate E2-induced mRNA transcription

by promoting eRNA production at distal EREs.

DISCUSSION

The hierarchical epigenetic regulation of transcriptional

activation involves an intricate network of interactions among

various transcription factors, histone-modifying enzymes, epige-

netic readers, and the transcriptional machinery. In this study,

we investigated the function of the epigenetic reader BRD4 in

controlling E2-regulated gene transcription. Our findings support

a model in which ERa recruits histone acetyltransferases to a

subset of EREs enriched for FOXA1 to facilitate histone acetyla-

tion and subsequent recruitment of BRD4 and RNAPII in order to

promote eRNA synthesis (Figure 4M).

To date, most studies have focused largely on the role of

BRD4 as a promoter proximal regulator of mRNA synthesis by

increasing P-TEFb recruitment. Consistent with a direct function

of BRD4 on target gene transcription, we show that BRD4 pro-

motes elongation-associated phosphorylation of RNAPII and

monoubiquitination of histone H2B. These results are consistent

with an established essential role for H2Bub1 in E2-stimulated

transcription (Prenzel et al., 2011) and the dependence of
K27ac and Regulates eRNA Synthesis

E after DMSOor JQ1 treatment with Veh or E2 induction. ***p% 0.001. Data are

E2-treated and JQ1 as well as E2 (JQ1 E2)-treated conditions. x axis shows the

nal of the reads normalized per hundredmillion base pairs. Weighted averages

repeated measures with ANOVA with multiple-regression model. p value is

2 induction on GREB1 ERE overlapping region and GREB1 TSS. The data are

on Veh and E2-treated conditions.

7ac, ERa, FOXA1, nascent RNA transcription (GRO-seq), RNAPII, DNase-seq,

ancy on GRO-seq-based classified distal EREs. ‘‘High’’ group corresponds to

% 0.25, and ‘‘null’’ with no value of average.

(GRO-seq), and RNAPII occupancy on ±5 kb of distal EREs aligned from high to

ximal and distal EREs and promoter. BRD4with red peaks indicates E2-treated

2-treated and light green indicates Veh-treated conditions.

that produce high eRNA (GRO-seq group ‘‘high’’) upon Veh and E2-treated

GREB1 ERE after DMSO or JQ1 treatment with Veh or E2 induction. *p% 0.05.

gative siCont, siBRD4, or JQ1 treatment with Veh or E2 induction. Relative RNA

3).

T, histone acetyltransferase; ac, histone acetylation; S2P, RNAPII p-Ser2; Ub,
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H2Bub1 upon CDK9 (Pirngruber et al., 2009). In addition to a cis-

regulatory function of BRD4, our results uncover a role for BRD4

on enhancers. This is consistent with a previous finding that

CDK9 is recruited by BRD4 to distal intergenic enhancer

regions marked by H3K27ac (Lovén et al., 2013). Notably, we

show that BRD4 co-occupies eRNA-producing enhancers with

ERa, FOXA1, and H3K27ac, regulates RNAPII recruitment on

ERa-bound enhancers, and is required for the production of

eRNA transcripts. These findings support a role for BRD4 in

hormone-dependent cancers (Asangani et al., 2014) and sug-

gest a model in which eRNA synthesis requires a coordinated

epigenetic hierarchy that culminates in the recruitment of

BRD4 and RNAPII and subsequent transcription from a select

subset of distal EREs.

The importance of BRD4 in E2-regulated transcription is

consistent with previously identified interactions between

BRD4 and ERa (Wu et al., 2013) as well as ERa and CDK9 (Sharp

et al., 2006) or cyclin T1 (Wittmann et al., 2005). Furthermore, the

7SK component HEXIM1, which suppresses P-TEFb activity,

negatively regulates ERa transcriptional activity (Wittmann

et al., 2005), and its overexpression induces tamoxifen resis-

tance (Ketchart et al., 2011). Importantly, recent data showed

that CDK9 activity is required for the production of eRNAs at

distal EREs (Hah et al., 2013) and the role of eRNA and MED1

in regulating AR-dependent transcription and looping (Hsieh

et al., 2014). Thus, consistent with our model, P-TEFb and

BRD4 likely promote ERa-mediated transcriptional activation

at least in part by promoting eRNA transcription.

ERa functions together with Cohesin to nucleate chromo-

somal looping that promotes E2-regulated transcription (Full-

wood et al., 2009; Schmidt et al., 2010). Our previous study

showed that proteasomal inhibition specifically decreases

ERa-regulated transcription by decreasing H2Bub1 and tran-

scriptional elongation without affecting long-range chromo-

somal interactions (Prenzel et al., 2011). Consistently, CDK9

inhibition decreased ERa-dependent gene expression without

affecting ERa occupancy, coactivator recruitment, or chromo-

somal looping (Hah et al., 2013). Similarly, our data show that

BRD4 inhibition had little or no effect on ERa recruitment,

E2-stimulated H3K27 acetylation, or Cohesin recruitment, indi-

cating that BRD4 functions along with CDK9 downstream of

early enhancer activation events but precedes RNAPII recruit-

ment and elongation.

Numerous recent studieshave shownasubstantial therapeutic

potential for BRD4 inhibition in variousmalignant diseases (Asan-

gani et al., 2014; Filippakopoulos et al., 2010; Herrmann et al.,

2012; Lockwood et al., 2012; Ott et al., 2012; Zhang et al.,

2012a; Zuber et al., 2011), leading to the testing of several BET

domain inhibitors in a clinical setting for certain types of tumors

(Filippakopoulos andKnapp, 2014).However, theutility ofBET in-

hibitors in ERa+ breast cancer has not been investigated. Here,

we describe a function of BRD4 in specifically controlling E2-

dependent gene transcription in ERa+ normal andmalignant cells

in vitro and in vivo. We provide mechanistic insight to support a

previously unknown mechanism by which BRD4 controls distal

enhancer activity and target gene expression by promoting

eRNA synthesis. We hypothesize that this BRD4-dependent

mechanism likely controls other enhancer-driven transcriptional
466 Cell Reports 8, 460–469, July 24, 2014 ª2014 The Authors
programs directing processes such as lineage specification

during cell differentiation and development. Moreover, these

findings may potentially serve to provide a mechanistic-based

approach to the treatment of ERa+ breast cancer.

EXPERIMENTAL PROCEDURES

Cell Culture, Transfections, Inhibitors, and siRNAs

MCF7 cells were provided by K. Pantel (University Medical Center, Hamburg-

Eppendorf), Ishikawa from T. Spelsberg (Mayo Clinic, Rochester), and H1299

from M. Dobbelstein (University Medical Center, Göttingen). They were grown

in phenol red-free high-glucose Dulbecco’s modified Eagle’s media (DMEMs;

Invitrogen) supplemented with 10% bovine growth serum (Thermo Scientific),

1% sodium pyruvate, and 1% penicillin/streptomycin (Sigma-Aldrich). For-

ward and reverse transfections were performed using DharmaFECT 1 (Thermo

Scientific) for small interfering RNAs (siRNAs) according to the manufacturer’s

instructions. Nontargeting (negative control) and BRD4 siRNAs (siBRD4s)

were obtained from Dharmacon (Thermo Scientific). BRD4 SmartPool siRNA

(Dharmacon) contained the sequences 50-AGCUGAACCUCCCUGAUUA-30,
50-UGAGAAAUCUGCCAGUAAU-30, 50-UAAAUGAGCUACCCACAGA-30, and
50-GAACCUCCCUGAUUACUAU-30. JQ1 (150 nM) was used to pretreat the

cells 30 min before E2 induction. 17 b-estradiol and ethinyl estradiol (Sigma-

Aldrich) were used at the concentration of 10 nM. DMSO or ethanol was

used as Veh. ICI182780 (Fulvestrant) was used at the concentration of 1 mM.

TGF-b1 (2 ng/ml) treatment was done on H1299 cells for 90 min.

E2-induction experiments were carried out by changing the media to

DMEM supplemented with 5% charcoal-dextran-treated fetal bovine serum

(CSS; Sigma-Aldrich), 1% sodium pyruvate, and 1% penicillin/streptomycin

after 24 hr of cell growth. After 48 hr of hormone deprivation, they were treated

with 17 b-estradiol for 2, 6, or 24 hr. Ethinyl estradiol was used for proliferation

assays in Ishikawa cells. TGF-b1 treatment in H1299 cells was given after

growing the cells in serum-free media for 48 hr.

MCF-7 cells were harvested for RNA upon Veh or E2 treatment, and negative

control siRNA (siCont), siBRD4, or JQ1 transfection. JQ1-treated cells were

also transfected with negative siCont. Ishikawa and H1299 cells were har-

vested for RNA under Veh or E2 treatment, or TGF-b1 treatment and negative

siCont or siBRD4.

RNA-Seq

RNA integrity was checked using Bioanalyzer 2100 (Agilent Technologies).

A total of 500 ng of total RNA was used for preparing libraries using TruSeq

RNA Sample Preparation Kit (Illumina), and the size range was checked to

be 280 bp using Bioanalyzer. These samples were amplified and sequenced

by using cBot and HiSeq 2000 from Illumina, respectively, for 51 bp single-

ended tagswith single indexing. Images from the sequencing results were pro-

cessed using BaseCaller to bcl files function in Illumina software. These were

demultiplexed to fastq files using CASAVA 1.8.2 and mapped to the human

reference transcriptome (UCSC HG19) using Bowtie 2 (version 2.1.0) (Lang-

mead and Salzberg, 2012). Read counts for each sample and each gene

were aggregated using a custom Ruby script. DESeq (version 1.14.0) was

used for measuring differential expression (Anders and Huber, 2010).

Gene Set Enrichment Analysis

Pathway enrichment scores were calculated by GSEA (Subramanian et al.,

2005). The gene expression data from RNA sequencing (RNA-seq) analyses

are sorted by correlation with log2-fold changes between different

conditions. This sorted expression data set was compared with C2-curated

gene sets that include published gene sets from pathways of chemical

and genetic perturbations, canonical pathways, BIOCARTA, Reactome,

and KEGG. WILLIAMS_ESR1_TARGETS_UP (Williams et al., 2008),

FRASOR_RESPONSE_TO_ESTRADIOL_UP (Frasor et al., 2004),

MASSERWEH_RESPONSE_TO_ESTRADIOL (Massarweh et al., 2008),

BHAT_ESR1_TARGETS_NOT_VIA_AKT1_UP (Bhat-Nakshatri et al., 2008),

DUTERTRE_ESTRADIOL_RESPONSE_6HR_UP (Dutertre et al., 2010),

PID_HNF3A_PATHWAY (Schaefer et al., 2009), STEIN_ESR1_TARGETS

(Stein et al., 2008), MASSERWEH_TAMOXIFEN_RESISTANCE_DN



(Massarweh et al., 2008), and CREIGHTON_ENDOCRINE_THERAPY_

RESISTANCE_4 (Creighton et al., 2008) are shown as E2-related topmost

enriched pathways under BRD4 perturbation.

ChIP

ChIP and subsequent real-time PCR analyses with specific primers (Table S3)

were performed as before (Prenzel et al., 2011; Bedi et al., 2014) for BRD4,

ERa, RAD21, H3K27ac, and H2Bub1. ChIP-seq was performed for BRD4,

ERa, and H2Bub1. BRD4 ChIP was performed by crosslinking the chro-

matin for 20 min in 1% formaldehyde. Other antibodies and their dilutions

were used as described before (Table S1) (Prenzel et al., 2011; Bedi et al.,

2014).

ChIP-Seq and Bioinformatic Analyses

Prior to library preparation, immunoprecipitated DNA was sonicated an addi-

tional time to ensure fragment sizes less than 200 bp. Libraries were prepared

using the NEBNext Ultra DNA library preparation kit according to the manu-

facturer’s instructions. Size range was verified to be 280–300 bp using Bio-

analyzer 2100. A total of 50 cycles were used for amplification in cBot, and

101 bp single-ended tags for BRD4 and 51 bp single-ended tags for other

ChIP samples were sequenced with single indexing using Illumina HiSeq

2500. Raw data for FOXA1, H3K4me3, H3K27me3 (Joseph et al., 2010),

H3K27ac (Theodorou et al., 2013), RNAPII (Welboren et al., 2009), DNase

sequencing (DNase-seq) (Thurman et al., 2012), and global run-on (GRO)

sequencing (GRO-seq) (Hah et al., 2013) were downloaded from the Euro-

pean Nucleotide Archive, and their accession numbers are listed in Table

S4. The reads were mapped to the human reference genome (UCSC HG19)

using Bowtie (version 1.0.0) (Langmead et al., 2009). Peak calling was done

by Model-based Analysis of ChIP-Seq (version 1.4.2) (Zhang et al., 2008).

Coverage was determined by normalizing the total number of mapped reads

per hundred million. For plotting correlation, aggregation, ChIP enrichment

signals over specific genomic features, and heatmaps, Cistrome (Liu et al.,

2011) based on the Galaxy framework was used. Data were visualized in

Integrative Genomics Viewer (version 2.3.14) (Thorvaldsdóttir et al., 2013).

Common TSS and gene body coordinates were obtained from UCSC Table

Browser (Karolchik et al., 2004). Distal EREs were defined as ERa binding

sites not within gene bodies or regions 5 kb upstream or downstream thereof.

Regions covering the TSS and 3 kb downstream of it were used for TSS-ori-

ented correlation plots and 1.5 kb up- and downstream to distal EREs for

distal ERE-oriented correlation plots. Average signals of GRO-seq data with

E2 treatment were calculated using assign weighted average function in Cis-

trome surrounding TSS (plus 3 kb) or ERE (±1.5 kb). These values were used

to group the TSS or ERE coordinates as high, medium, low, and null. For

distal EREs, the ‘‘high’’ group corresponds to distal EREs having a weighted

average greater than 0.45, ‘‘medium’’ has >0.25 <0.45, ‘‘low’’ has >0 %0.25,

and ‘‘null’’ has a zero (0) average. For TSSs, the ‘‘high’’ group corresponds

to distal EREs having a weighted average greater than 0.3, ‘‘medium’’

has R0.15 <0.3, ‘‘low’’ has >0 <0.15, ‘‘null’’ has a zero (0) average. The range

for these groups was chosen according to the similar number of TSSs or

EREs in each group and adequate GRO-seq enrichment signal defined for

each group. H3K27me3-positive coordinates were obtained using the sum-

mits of H3K27me3 ChIP-seq signal (Joseph et al., 2010). For measuring

statistical significance of aggregate plots, weighted averages for each E2-up-

regulated gene, 1.5–2.5 kb downstream of each TSS or distal ERE ±100 bp,

were used to compute a multiple-linear regression model. Within the multiple-

linear regression model, the weighted average within a 1 kb window was

used as a dependent variable, given the independent variables of condition

and gene. The condition variable was tested for significant impact using an

ANOVA. Groups of E2-upregulated genes based on RNAPII occupancy

(RNAPII recruited de novo, RNAPII preloaded and recruited, and RNAPII

constitutively bound) were kindly provided by W. Lee Kraus. E2 up- (R1.5-

fold), down- (%0.8-fold), and nonregulated genes were retrieved from

RNA-seq data.

In Vivo Experiments in JQ1-Injected Mice

Three-week-old C57BL/6 female mice were injected intraperitoneally with JQ1

(50 mg/kg) or Veh (5% DMSO in 5% dextrose) for 3 weeks (n = 8 for each
group). Mice were sacrificed via CO2 inhalation, and uteri were collected to

examine differences in their size and weight. Difference in the uterine weight

between control (DMSO) and JQ1-injected mice was calculated by normal-

izing the uterine wet weight (in milligrams) with respect to body weight

(in grams). Uteri (n = 4 for each group) were homogenized using beads by

FastPrep FP120 homogenizer (Thermo Scientific), and RNAwas isolated using

TRIzol (QIAGEN) according to manufacturer’s instructions. Normalization was

done using starting quantity values of glyceraldehyde 3-phosphate dehydro-

genase. Relative mRNA expression analyses were done as mentioned before

(but not normalized for control conditions) using gene-specific primers

for the E2-dependent and cell-cycle-related genes Ran and Mad2l1 (Suzuki

et al., 2007) and the reproduction-related gene Il1b (Weihua et al., 2000).

Primers are listed in Table S2. Statistical significance was analyzed using

Student’s t test. All animal studies were performed in compliance with the

requirements of the German Animal Welfare Act.
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Vakoc, C.R., Sperr, W.R., Horny, H.P., Bradner, J.E., et al. (2012). Small-

molecule inhibition of BRD4 as a new potent approach to eliminate leukemic

stem- and progenitor cells in acute myeloid leukemia AML. Oncotarget 3,

1588–1589.

Hsieh, C.L., Fei, T., Chen, Y., Li, T., Gao, Y., Wang, X., Sun, T., Sweeney, C.J.,

Lee, G.S., Chen, S., et al. (2014). Enhancer RNAs participate in androgen

receptor-driven looping that selectively enhances gene activation. Proc.

Natl. Acad. Sci. USA 111, 7319–7324.

Hurtado, A., Holmes, K.A., Ross-Innes, C.S., Schmidt, D., and Carroll, J.S.

(2011). FOXA1 is a key determinant of estrogen receptor function and endo-

crine response. Nat. Genet. 43, 27–33.

Joseph, R., Orlov, Y.L., Huss, M., Sun, W., Kong, S.L., Ukil, L., Pan, Y.F., Li, G.,

Lim, M., Thomsen, J.S., et al. (2010). Integrative model of genomic factors
468 Cell Reports 8, 460–469, July 24, 2014 ª2014 The Authors
for determining binding site selection by estrogen receptor-a. Mol. Syst.

Biol. 6, 456.

Karolchik, D., Hinrichs, A.S., Furey, T.S., Roskin, K.M., Sugnet, C.W., Hauss-

ler, D., and Kent, W.J. (2004). The UCSC Table Browser data retrieval tool.

Nucleic Acids Res. 32 (Database issue), D493–D496.

Karpiuk, O., Najafova, Z., Kramer, F., Hennion, M., Galonska, C., König, A.,

Snaidero, N., Vogel, T., Shchebet, A., Begus-Nahrmann, Y., et al. (2012).

The histone H2B monoubiquitination regulatory pathway is required for differ-

entiation of multipotent stem cells. Mol. Cell 46, 705–713.

Ketchart, W., Ogba, N., Kresak, A., Albert, J.M., Pink, J.J., and Montano, M.M.

(2011). HEXIM1 is a critical determinant of the response to tamoxifen. Onco-

gene 30, 3563–3569.

Kim, T.K., Hemberg, M., Gray, J.M., Costa, A.M., Bear, D.M., Wu, J., Harmin,

D.A., Laptewicz, M., Barbara-Haley, K., Kuersten, S., et al. (2010). Widespread

transcription at neuronal activity-regulated enhancers. Nature 465, 182–187.

Kininis, M., Isaacs, G.D., Core, L.J., Hah, N., and Kraus, W.L. (2009). Postre-

cruitment regulation of RNA polymerase II directs rapid signaling responses

at the promoters of estrogen target genes. Mol. Cell. Biol. 29, 1123–1133.

Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with

Bowtie 2. Nat. Methods 9, 357–359.

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast and

memory-efficient alignment of short DNA sequences to the human genome.

Genome Biol. 10, R25.

Li, W., Notani, D., Ma, Q., Tanasa, B., Nunez, E., Chen, A.Y., Merkurjev, D.,

Zhang, J., Ohgi, K., Song, X., et al. (2013). Functional roles of

enhancer RNAs for oestrogen-dependent transcriptional activation. Nature

498, 516–520.

Liu, T., Ortiz, J.A., Taing, L., Meyer, C.A., Lee, B., Zhang, Y., Shin, H., Wong,

S.S., Ma, J., Lei, Y., et al. (2011). Cistrome: an integrative platform for tran-

scriptional regulation studies. Genome Biol. 12, R83.

Liu, W., Ma, Q., Wong, K., Li, W., Ohgi, K., Zhang, J., Aggarwal, A.K., and

Rosenfeld, M.G. (2013). Brd4 and JMJD6-associated anti-pause enhancers

in regulation of transcriptional pause release. Cell 155, 1581–1595.

Lockwood, W.W., Zejnullahu, K., Bradner, J.E., and Varmus, H. (2012). Sensi-

tivity of human lung adenocarcinoma cell lines to targeted inhibition of BET

epigenetic signaling proteins. Proc. Natl. Acad. Sci. USA 109, 19408–19413.

Lovén, J., Hoke, H.A., Lin, C.Y., Lau, A., Orlando, D.A., Vakoc, C.R., Bradner,

J.E., Lee, T.I., and Young, R.A. (2013). Selective inhibition of tumor oncogenes

by disruption of super-enhancers. Cell 153, 320–334.

Massarweh, S., Osborne, C.K., Creighton, C.J., Qin, L., Tsimelzon, A., Huang,

S., Weiss, H., Rimawi, M., and Schiff, R. (2008). Tamoxifen resistance in breast

tumors is driven by growth factor receptor signaling with repression of classic

estrogen receptor genomic function. Cancer Res. 68, 826–833.

Minsky, N., Shema, E., Field, Y., Schuster, M., Segal, E., and Oren, M. (2008).

Monoubiquitinated H2B is associated with the transcribed region of highly

expressed genes in human cells. Nat. Cell Biol. 10, 483–488.

Mochizuki, K., Nishiyama, A., Jang, M.K., Dey, A., Ghosh, A., Tamura, T.,

Natsume, H., Yao, H., and Ozato, K. (2008). The bromodomain protein Brd4

stimulates G1 gene transcription and promotes progression to S phase.

J. Biol. Chem. 283, 9040–9048.

Ott, C.J., Kopp, N., Bird, L., Paranal, R.M., Qi, J., Bowman, T., Rodig, S.J.,

Kung, A.L., Bradner, J.E., and Weinstock, D.M. (2012). BET bromodomain

inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leuke-

mia. Blood 120, 2843–2852.

Patel, M.C., Debrosse, M., Smith, M., Dey, A., Huynh, W., Sarai, N., Height-

man, T.D., Tamura, T., and Ozato, K. (2013). BRD4 coordinates recruitment

of pause release factor P-TEFb and the pausing complex NELF/DSIF to regu-

late transcription elongation of interferon-stimulated genes. Mol. Cell. Biol. 33,

2497–2507.

Peterlin, B.M., and Price, D.H. (2006). Controlling the elongation phase of tran-

scription with P-TEFb. Mol. Cell 23, 297–305.

Picaud, S., Da Costa, D., Thanasopoulou, A., Filippakopoulos, P., Fish, P.V.,

Philpott, M., Fedorov, O., Brennan, P., Bunnage, M.E., Owen, D.R., et al.



(2013). PFI-1, a highly selective protein interaction inhibitor, targeting BET

Bromodomains. Cancer Res. 73, 3336–3346.

Pirngruber, J., Shchebet, A., Schreiber, L., Shema, E., Minsky, N., Chapman,

R.D., Eick, D., Aylon, Y., Oren,M., and Johnsen, S.A. (2009). CDK9 directs H2B

monoubiquitination and controls replication-dependent histone mRNA 30-end
processing. EMBO Rep. 10, 894–900.

Prenzel, T., Begus-Nahrmann, Y., Kramer, F., Hennion,M., Hsu, C., Gorsler, T.,

Hintermair, C., Eick, D., Kremmer, E., Simons, M., et al. (2011). Estrogen-

dependent gene transcription in human breast cancer cells relies upon

proteasome-dependent monoubiquitination of histone H2B. Cancer Res. 71,

5739–5753.

Schaefer, C.F., Anthony, K., Krupa, S., Buchoff, J., Day, M., Hannay, T., and

Buetow, K.H. (2009). PID: the Pathway Interaction Database. Nucleic Acids

Res. 37 (Database issue), D674–D679.

Schmidt, D., Schwalie, P.C., Ross-Innes, C.S., Hurtado, A., Brown, G.D., Car-

roll, J.S., Flicek, P., and Odom, D.T. (2010). A CTCF-independent role for

cohesin in tissue-specific transcription. Genome Res. 20, 578–588.

Sharp, Z.D., Mancini, M.G., Hinojos, C.A., Dai, F., Berno, V., Szafran, A.T.,

Smith, K.P., Lele, T.P., Ingber, D.E., andMancini, M.A. (2006). Estrogen-recep-

tor-alpha exchange and chromatin dynamics are ligand- and domain-depen-

dent. J. Cell Sci. 119, 4101–4116.

Stein, R.A., Chang, C.Y., Kazmin, D.A., Way, J., Schroeder, T., Wergin, M.,

Dewhirst, M.W., and McDonnell, D.P. (2008). Estrogen-related receptor alpha

is critical for the growth of estrogen receptor-negative breast cancer. Cancer

Res. 68, 8805–8812.

Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gil-

lette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., and Me-

sirov, J.P. (2005). Gene set enrichment analysis: a knowledge-based approach

for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA

102, 15545–15550.

Suzuki, A., Urushitani, H.,Watanabe, H., Sato, T., Iguchi, T., Kobayashi, T., and

Ohta, Y. (2007). Comparison of estrogen responsive genes in the mouse

uterus, vagina and mammary gland. J. Vet. Med. Sci. 69, 725–731.

Theodorou, V., Stark, R., Menon, S., and Carroll, J.S. (2013). GATA3 acts up-

stream of FOXA1 in mediating ESR1 binding by shaping enhancer accessi-

bility. Genome Res. 23, 12–22.
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