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Abstract--Counter-examples are given to show that in decision making, different methods of 
deriving priority vectors may be close for every single pairwise comparison matrix, yet they can lead 
to different overall rankings. When the judgments are inconsistent, their transitivity affects the final 
outcome, and must be taken into consideration in the derived vector. It is known that the principal 
eigenvector captures transitivity uniquely and is the only way to obtain the correct ranking on a ratio 
scale of the alternatives of a decision. Because of this and of the counter-examples given below, one 
should only use the eigenvector for ranking in making a decision. © 1998 Elsevier Science Ltd. All 
rights reserved. 
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1. I N T R O D U C T I O N  

It  is essential that  a credible decision theory yields unique answers for the alternatives of a 

decision, perhaps not only in terms of ranks, but also in terms of priorities. A mathematical 

approach to decision making may have different algorithms suggested for deducing scales or pri- 

ority vectors from elicited judgments. The Analytic Hierarchy Process (AHP) is a mathematical 

theory for deriving ratio scale priority vectors from positive reciprocal matrices with entries es- 

tablished by paired comparisons. The AHP uses a principal Eigenvalue Method (EM) to derive 

priority vectors (see [1,2]). Several other methods have also been proposed. Among them are 

the geometric mean or Logarithmic Least Squares Method (LLSM) (see [3,4]), the Least Squares 
Method (LSM), and others. It has been proved that  when the positive reciprocal matrix is consis- 

tent (aijajk = aik), all these methods lead to the same outcome, and hence, by synthesizing the 
overall ranking according to a well-prescribed procedure, they lead to the same decision. But in 
real life, judgments are frequently inconsistent, and these different methods give rise to different 

priority vectors (see [1,5,6]). In multicriteria processes, different methods may each produce a 
ranking of the alternatives of a decision that  is different than another method. Such variability 
in ranking violates the uniqueness requirement mentioned above and is, therefore, unacceptable. 
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Some people have argued that if the inconsistency is "small", and hence, the results of all the 
methods are small perturbations of their values at consistency where they coincide, it may not 
matter much which method one uses. Their thought may be that since some other methods, for 
example LLSM, are computationally simpler than EM, it is both convenient and efficient to use 
methods other than EM. But it does matter because of the potential variability in the rankings. 
Surprisingly, in multicriteria processes even when different methods yield priority vectors that 
are close, both on criteria and alternatives, after synthesis (weighting and adding) the rank order 
of the alternatives may differ, one may end up choosing a less desirable alternative over a more 
desirable one. We show this below with examples. 

We need to highlight to the reader the importance of transitivity in this context. There are two 
kinds of transitivity: one is ordinal and the other is cardinal. The first is that if A is preferred 
to B and B to C, then A must be preferred to C. The second is that if A is preferred to B three 
times and B to C twice, then A must be preferred to C six times, a much stronger requirement 
which implies consistency. A consistent matrix is cardinally transitive and, therefore, ordinally 
transitive. An inconsistent matrix need not be either. How to capture the necessary numerical 
transitivities in an inconsistent matrix to produce a vector of priorities is a crucial concern. It has 
been shown that EM is the only method which "directly deals with the question of inconsistency 
and captures the rank order inherent in the inconsistent data" (see [1,5]). 

2. E X A M P L E S  

Our examples begin by perturbing several consistent matrices of judgments occurring in a 
decision to get inconsistent matrices. We then derive priorities for these matrices using different 
methods. The different methods yield close results for each matrix. However, when these priority 
vectors are synthesized according to the AHP, the final vectors for the alternatives yield different 
rankings. It suffices to show that two such methods can give different final rankings. Because EM 
is known to uniquely capture transitivity in inconsistent matrices, we will compare the outcome 
of perturbations from consistency of EM with one other method (LLSM) because of the simple 
way in which we can represent and compute with the latter. 

We denote the priority vector derived from the two methods by w = (wl ,  w 2 , . . . ,  wn) r and 
x = ( x l , x 2 , . . .  , xn )  r ,  respectively. The judgment matrix is denoted as A = (aij), aji = 1/ai j ,  
aij > O, i , j  = 1, 2 , . . . ,  n. EM solves for the principal eigenvector in A w  = ~maxW, where )kma x is 
the principal eigenvalue of A. The EM solution is given by 

w = lim / /Ake-r~ 
t, ) ' 

• . .  l i  l where e = (1, 1, ,1). LLSM minimizes  ~-'~i,j----l( ogaij -- l o g x i l x j )  2 with respect to x. The 
LLSM solution is given by the normalized products of the elements in each row: 

n \ l l n  

1-Ij= 1 ai j )  
x i =  l in '  i = l , . . . , n .  

° ( n  ° ) Ei= 1 aij j----1 

The LLSM formulation requires the extra assumption of the minimization of differences. The 
EM formulation requires no such assumption. It is known that EM and LLSM coincide in their 
results when n < 3. Thus, for the simplest example to demonstrate variability in ranks, we must 
use at least four criteria and four alternatives. That is what we do here. It should be even easier 
to construct examples with a larger number of criteria and of alternatives. 

Our first example is a simple AHP model. Under the overall goal, there are four criteria: 
C1, C2, C3, and C4. Under each criterion, there are four alternatives: A1, A2, A3, and A4, which 
are the same for all the four criteria. The judgment matrices and the corresponding priority 
vectors derived by using EM and LLSM, respectively, are listed below: 
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with respect to the GOAL: 

C1 C2 C3 C4 EM LLSM 

C2 1/2 1 3 3 [ 0,316 ] 0.307 
C3 /1/2 1/3 1 4 [0.194] 0.191 ' 
C4 \1/4 1/3 1/4 1 \0.079] 0.080 

with respect to criterion C1: with respect to criterion C2: 

A1 A2 A3 A4 EM LLSM A1 A2 As A4 EM LLSM 
A1 ( 1  2 2 4 ) (0 .412 '~  ( 0 . 4 2 2 ) A 1  ( 1  1/4 1/3 1/4"~ /`0.075~ (0 .078)  1 ] 
A2 1/2 1 3 3 0.316] 0,307 A2 4 1 4 1/2[ [0.354] 0.347 
A3 ]1/2 1/3 1 4 0.194] 0,191 ' A3 3 1/4 1 1/2] [0.160] 0 .162 '  
A4 \1/4 1/3 1/4 1 0.079] 0.080 A4 4 2 2 \0.410/ 0.413 

with respect to criterion C3: with respect to criterion C4: 

A1 A2 ,'13 A4 EM LLSM A1 A2 A3 A4 EM LLSM 
A1 ( 1  1/4 1/3 1/4"~1 ] (0.075"~ ( 0 . 0 7 8 ) A 1  ( 1 2 2  4 ) / ' 0 . 4 1 2 ) ( 0 . 4 2 2 )  
A2 4 1 4 1/2 ] 0.354 ] 0.347 A2 1/2 1 3 3 ] 0.316 0.307 
A3 3 1/4 1 1/2] 0.160] 0.162 ' A3 1/2 1/3 1 4 [0.194 0.191 ' 
A4 4 2 2 0.410] 0.413 A4 1/4 1/3 1/4 1 \0.079 0.080 

We can see that for each judgment matrix above, the corresponding EM and LLSM priority 
vectors are close by any measure, and there is no difference in the ranks given by EM and LLSM. 
Nevertheless, after synthesis, we obtain the following overall ranking: 

EM LLSM 

A1 /0'240' I0'251 ) 
A2 [ 0.335 ] 0.327 
A3 ]0.177 / 0.176 
A4 \0.248] 0.246 

We note that the two methods rank the alternatives differently. We have 

EM 

LLSM 

A2 > A4 > A1 > A3, 

A 2 > A 1  >A4 >A3. 

The ranks of A1 and A 4 by the two methods are different here. The differences may seem 
to be small, but they are not. Note that the difference of the weights of A1 and A4 in EM is 
-0.008(0.240-0.248), and in LLSM is + 0.005(0.251-0.246). The sum of these differences caused 
by using the two methods is 0.013. Dividing 0.013 by the average weight of the alternatives, 
which is 0.246 = (0.240 + 0.248 + 0.251 + 0.246)/4, we obtain 5.3%. Under some circumstances 
of an important and very tight decision, one may consider this difference to be nontrivial and 
should not be ignored. 

Incidentally, the AHP synthesizes the final ranks of the alternatives in two ways. One is the 
distributive mode which involves weighting and adding just used in the above example. It allows 
rank reversal when alternatives are added or deleted. The other is the ideal or performance 
mode which involves dividing the priorities of the alternatives under each criterion by the largest 
among them, and then weighting by the priorities of the criteria and adding. It allows for rank 
preservation with respect to irrelevant or dominated alternatives. We also repeated the foregoing 
calculations with the ideal mode, and obtained the same ranks for the alternatives as above for 
each method, which means that variability between the two methods occurs with either of these 
two modes. 

In passing, we note that there has been a proposal by some users of LLSM to synthesize 
the weights of the alternatives by raising the priority of each to the power of its corresponding 
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criterion weight, multiplying the results for each alternative, and finally normalizing with respect 
to the overall weights of all the alternatives. We obtain for the foregoing example: 

A1 /0422o,~,o.o78o3o7,oo78o19,,0422o08o] (o.183] (o.211] 
.,t~ ]0.307o.,~, 0.347o.3o~, 0.347o.19,, o.3o7o.o8o) = 10.3271 [0.377[ 
A3 ]0.1910.422 "0.1620.307 "0.1620"191 *0.1910'0s0 /0.176 ] norma__llized |0'203 / . 
A4 \0.0800.422 * 0.4130.307 * 0.4130"191 * 0.0800.080 \0.181 / \0.209/ 

This process yields the same ranking as the additive composition of LLSM given above. In 

other words, it also yields A2 > A1 > A4 > A3, which is again different from the ranking given 
by EM. When this approach to composition is applied to the EM data above, one obtains the 
following ranks for the alternatives: A2 > A4 > A3 > A1, which is still at odds with the above 
result for EM. Note that hierarchic composition in the AHP as illustrated above is a special 
case of network composition that involves dependence and feedback. It has a strong theoretical 
foundation and has been used in numerous cases of successful numerical prediction that give 
credibility to the process of weighting and adding to obtain the overall results. 

A better example than the above would be that rank changes on all four alternatives so that 
A4 > A3 7> A2 > A1 becomes A1 > A2 > A3 > A4, which we call strong variability in ranks 
as opposed to the one in our first example, which we call weak variability in ranks occurring 
between only two alternatives. Again, in this example, the derived vectors are "close" for each 
matrix, yet the final ranks (but not the numerical values) are as far apart as possible: 

with respect to the GOAL: 
C1 C2 C3 C4 EM LLSM 

C2 1/4 1 1/3 1/4 0.079]  0.0s0 
c3 1/2 3 1 3 ] 0.316 / 0.307 ' 
C4 1/2 4 1/3 0.194/ 0.191 

with respect to criterion C1: with respect to criterion C2: 

A1 A2 A3 A4 EM LLSM A1 A2 A3 A4 EM LLSM 
A1 ( 1  4 2 2 / /0.412~ (0 .422 )  A1 ( 1  4 2 2 / /0.412~ ( 0 . 4 2 2 )  
A2 1/4 1 1/3 1/4 [0.079[ 0.080 A2 1/4 1 1/3 1/4 [0.079] 0.080 
A~ l i 2 3  1 3 1 ) / 0 . 3 1 6  ] 0 . 3 0 7 '  A 3 ] 1 / 2 3 1  31) ]0 .316 / 0 . 3 0 7  ' 

A4 1/2 4 1/3 \0.194/ 0.191 A4 \1 /2  4 1/3 \0.194/ 0.191 
with respect to criterion C3: with respect to criterion C4: 

A1 A2 A3 A4 EM LLSM A1 A2 A3 A4 EM LLSM 

A2 4 1 4 ~ /0'412/ 0.422 A2 4 1 4 ~ [0.412[ 0.422 
A3 4 1/2 1 113] /0.194! 0.191 ' A~ 4 112 1 1/3] /0.194/ 0 . 1 9 1 '  
A4 3 1/2 3 \0.316/ 0.307 A4 3 1/2 3 \0.316/ 0.307 

Here again, for each judgment matrix, the corresponding EM and LLSM priority vectors are 
close, and there is no difference in the ranks given by the two methods. Nevertheless, after 
synthesis, we obtain the following overall ranking: 

EM LLSM 
~1 [0.242) [02~18~ A2 [0.248 ]0.2503[ A3 ]0.2~3 ]0.2492/" 
A4 \0.256 \ 0.2487] 

We note that this is an example of strong variability in ranks, in which we have 

EM A a > A 3 > A 2 > A 1 ,  

LLSM A1 > A2 > A3 > A4. 

We now summarize with the following theorem. 
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THEOREM. The eigenvalue method is necessary and sufficient to uniquely capture the ratio scale 
rank order inherent in inconsistent pairwise comparison judgments. 

3. C O N C L U S I O N  

Our example illustrates the difference between metric topology and order topology. In the 
former, the central concern is closeness; in the latter, it is both closeness and order preservation 
as in EM. 

To recapitulate, EM is the only valid method for deriving the priority vector from a pairwise 
comparison matrix, particularly when the matrix is inconsistent. In the context of multicriteria 
decisions, even if variability in ranks does not occur for each individual judgment matrix, it may 
still occur in the overall ranking of the final alternatives due to the multicriteria process itself. 
Because all other proposed methods, for example LLSM, can give different rankings, they are 
unacceptable for deriving priorities in decision making as they do not capture the essential idea 
of transitivity. 
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