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Abstract

In this paper, we 2nd an expression of the rook vector of a matrix A (not necessarily square) in
terms of permanents of some matrices associated with A, and obtain some simple exact formulas
for the permanents of all n × n Toeplitz band matrices of zeros and ones whose bands are of
width not less than n− 1.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

For an m× n matrix A= [aij] with m6n, the permanent of A, per A, is de2ned by

per A=
∑
�

a1�(1)a2�(2) · · · am�(m);

where the summation runs over all one to one functions of {1; 2; : : : ; m} into {1; 2; : : : ;
n}. For 
⊂{1; 2; : : : ; m} and �⊂{1; 2; : : : ; n}, let A[
|�] denote the submatrix of A
whose rows and columns are indexed by 
 and �, respectively. It is clear that

per A=
∑
�

per A[1; 2; : : : ; m|�];
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where the summation runs over all m-subsets � of {1; 2; : : : ; n}. For k =1; 2; : : : ; m, let

�k(A)=
∑

; �

per A[
|�];

where the summation runs over all k-subsets 
 of {1; 2; : : : ; m} and all k-subsets � of
{1; 2; : : : ; n}. We adopt the natural convention that �0(A)= 1 and �k(A)= 0 for k¿m.
Note that �m(A)= per A.
Suppose that the m × n matrix A is a (0; 1)-matrix. A may be identi2ed with an

m× n board in which the square in row i and column j has been removed for every
pair (i; j) with aij =0. Then �k(A) equals the number of ways to place k identical
rooks on this board so that no rook can attack another, i.e., no two rooks lie on a
same row or column. In this sense, �k(A) is called the kth rook number of A and
rA(x)= �0(A)+�1(A)x+ · · ·+�m(A)xm is called the rook polynomial of A. The vector
(�0(A); �1(A); : : : ; �m(A))T is called the rook vector of A.

The evaluation of the permanent of a matrix is known to be a very hard problem. In
fact, in 1979, Valiant [4,5] proved that determining the permanent of a (0; 1)-matrix is a
#P-complete problem. So it is worthwhile to investigate eJcient methods of permanent
evaluation for various classes of matrices.
In this paper, we 2nd some relationship between the permanent of a matrix and the

rook vectors of some related matrices and make use of it to evaluate permanents of
certain types of matrices including a large class of (0; 1) Toeplitz matrices.
In the sequel, let Jm; n denote the m × n matrix of 1’s which may also be denoted

simply by J in case that the size is clearly seen within the context. Let Jn denote the
matrix Jn; n.

2. Rook polynomials to permanents

We 2rst discuss how the permanent of a matrix is related to the rook vectors of
certain submatrices of it.
For a 2nite set S of positive integers and for each r=0; 1; : : : ; |S|, where |S| stands

for the number of elements of S, let Qr(S) denote the set of all r-subsets of S. For

∈Qr(S), we denote by M
 the complement of 
 relative to S.

For an n× n nonnegative matrix A, we shall call a p× (n+ 1− p) zero submatrix
of A a killing zero block(KZB) of A. It is well known as a Frobenius–KNonig theorem
that the permanent of a nonnegative square matrix is zero if and only if it has a KZB.
We believe that the following formula has been noted and applied before.

Theorem 1. Let C be a nonnegative square matrix of order m+ n partitioned as

C =
[
A X
Y B

]
;

where A; B are nonvacuous square matrices of order m; n, respectively, m6n. Then

per C =
m∑
r=0

∑
(per X [
|�] per Y [�|�] per A[ M
| M�] per B[M�| M�]); (1)
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where the second summation runs over all 
; �∈Qr(1; : : : ; m) and all �; �∈Qr(m +
1; : : : ; m+ n).

Proof. By Frobenius–KNonig theorem, it follows that a nonzero term in the expansion
of per C uses exactly r entries of X if and only if it uses exactly r entries of Y , for
each r=0; 1; : : : ; m. Suppose that a nonzero term in per C uses exactly r entries of
X and exactly r entries of Y . Among the remaining m + n − 2r entries in the term,
m − r are those of A and n − r are those of B. Letting r vary from 0 to m, we
get (1).

For square matrices A and B of orders m and n, respectively, let A#B denote the
(m+ n)× (m+ n) matrix de2ned by

A#B=
[
A J
J B

]
:

For a real number x and a nonnegative integer k, let [x]k denote the number de2ned
by

[x]k =
{
1 if k =0;
x(x − 1) · · · (x − k + 1) if k¿1:

For a positive integer n, let Dn =diag(0!; 1!; : : : ; n!).

Corollary. Let A; B be square matrices of order m and n, respectively, with m6n.
Then

per (A#B)= (�m(A); : : : ; �0(A); 0; : : : ; 0)D2
n (�n(B); : : : ; �0(B))

T:

Proof. In Theorem 1, letting X = Jm; n; Y = Jn;m, we have per X [
|�] = per Y [�|�] = r!
for all 
; �∈Qr(1; : : : ; m), all �; �∈Qr(m + 1; : : : ; m + n); (r=0; 1; : : : ; m). Thus by
Theorem 1,

per(A#B) =
m∑
r=0

r!2
∑


; �; �; �

per A[ M
| M�] per B[M�| M�]

=
m∑
r=0

r!2�m−r(A)�n−r(B)

= (�m(A); : : : ; �0(A); 0; : : : ; 0)



0!2 0 · · · 0

0 1!2 · · · 0
...

...
. . .

...

0 0 · · · n!2







�n(B)

�n−1(B)

...

�0(B)


 :
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Our Theorem 1 and its Corollary can often be useful tools for evaluation of perma-
nents of some classes of matrices. For instance, if

A=

[
Im J

J In

]
; B=

[
Jm J

J In

]
;

where we assume m6n, then

per A=
m∑

k=0

k!2�m−k(Im)�n−k(In)

=
m∑

k=0

k!2
(

m

m− k

)(
n

n− k

)

=
m∑

k=0

[m]k [n]k ;

per B=
m∑

k=0

k!2�m−k(Jm)�n−k(In)

=
m∑

k=0

k!2
(

m

m− k

)
(m− k)!

(
n

n− k

)

=
m∑

k=0

[m]k [m]m−k [n]k :

Let S(n; k) denote the Stirling number of the second kind and let Ln = [aij] be the
strict lower triangular matrix of order n de2ned by

aij =

{
1 if i¿j;

0 otherwise:
(2)

It is well known that the rook polynomial of Ln is

n∑
k=0

S(n; n− k)xk :

For positive integers m; n with m6n, let Tm;n denote the (0; 1) Toeplitz matrix of order
m+ n de2ned by

Tm;n =

[
J Lm
LTn J

]
:
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We have, by Corollary to Theorem 1,

per Tm;n =




S(m; 0)

S(m; 1)

...

S(m;m)

0

...

0




T




0!2 0 · · · 0 0

0 1!2 · · · 0 0

...
...

. . .
...

...

0 0 · · · (n− 1)!2 0

0 0 · · · 0 n!2







S(n; 0)

S(n; 1)

...

S(n; n)




=
m∑

k=0

k!2S(m; k)S(n; k):

3. Rook polynomials from permanents

In this section, we discuss how to 2nd the rook polynomial of a matrix in
terms of the permanents of some other related matrices. In this case, it has to be
that the permanents of other matrices considered should be rather easily
evaluated.
For an m× n nonnegative matrix A with m6n, let

Ã=

[
A

O

]

be the square matrix of order n obtained from A by putting n − m zero rows at the
bottom. Then �k(Ã)= �k(A) for all k =0; 1; : : : : Let Y0(A)=A and

Yk(A)=

[
J Ã

Jk J

]
; yk(A)= per Yk(A) (k =1; 2; : : :):

Let

yA =




y0(A)

y1(A)

...

yn(A)


 ; rA =




�n(A)

...

�1(A)

�0(A)
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and let 	n denote the (n+ 1) square Pascal matrix

	n =




(
0

0

)
0 0 · · · 0

(
1

0

) (
1

1

)
0 · · · 0

(
2

0

) (
2

1

) (
2

2

)
· · · 0

...
...

...
. . .

...(
n

0

) (
n

1

) (
n

2

)
· · ·

(
n

n

)




:

Theorem 2. For an m× n nonnegative matrix A with m6n, we have

yA =Dn	nDnrA: (3)

Proof. Since �k(Ã)= �k(A) for all i=0; 1; : : : ; we have, by Corollary to Theorem 1,
that, for each k =0; 1; : : : ;

yk(A) =




�k(Jk)
...

�1(Jk)

�0(Jk)

0
...

0




T 


0!2 0 0 · · · 0 0

0 1!2 0 · · · 0 0

0 0 2!2 · · · 0 0
...

...
...

. . .
... 0

0 0 0 · · · (n− 1)!2 0

0 0 0 · · · 0 n!2






�n(A)

...

�1(A)

�0(A)




=
k∑

j=0

(
k

k − j

)2

(k − j)!j!2�n−j(A)

=
k∑

j=0

k!

(
k

j

)
j!�n−j(A);

and equality (3) follows.

In [2], it is shown that for every m× n matrix A,
m∑

k=0

�n−k(A)[x]k =per[Jm; x; A]: (4)

We would like to point out that equality (3) can also be derived from (4).
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Since

�−1
n =




(
0

0

)
0 0 · · · 0 0

−
(

1

0

) (
1

1

)
0 · · · 0 0

(
2

0

)
−
(

2

1

) (
2

2

)
· · · 0 0

...
...

...
. . .

...
...

(−1)n−1

(
n− 1

0

)
(−1)n

(
n− 1

1

)
(−1)n+1

(
n− 1

2

)
· · ·

(
n− 1

n− 1

)
0

(−1)n
(

n

0

)
(−1)n+1

(
n

1

)
(−1)n+2

(
n

2

)
· · · −

(
n

n− 1

) (
n

n

)




;

we have:

Corollary 1. For an m× n nonnegative matrix A, we have

�n−k(A)=
k∑

j=0

(−1)k+j 1
k!j!

(
k

j

)
yj(A); (k =0; 1; : : :):

For positive integers m; n with m6n, an m×n (0; 1)-matrix A= [aij] with the property

aij¿ai; j+1; (i=1; : : : ; m; j=1; : : : ; n− 1);

aij6ai+1; j ; (i=1; : : : ; m− 1; j=1; : : : ; n)

is called a Ferrers matrix. An m × n Ferrers matrix whose row sum vector equals
(b1; : : : ; bm)T is denoted by Fn(b1; : : : ; bm) or simply by F(b1; : : : ; bm) in case that bn =m.
It is well known that

per F(b1; : : : ; bm)=
n∏

i=1

(bi − i + 1):

For A=Fn(b1; : : : ; bm), let Ã be the n× n matrix de2ned by

Ã=

[
O

A

]
:
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Then Ã is also a Ferrers matrix and �i(Ã)= �i(A) for all i=0; 1; 2; : : : : Thus, in
dealing with the rook vector of a Ferrers matrix, we need to deal with only square
matrices.
For an n× n Ferrers matrix A=Fn(b1; : : : ; bn), let fA(t)= per A[Jn; t ; A], i.e.,

fA(t)=
n∏

i=1

(t + bi − i + 1):

Then, for each t=0; 1; : : : ; per Yt(A)=fA(t)t! so that

yA =Dn




fA(0)

fA(1)

...

fA(n)


 :

Thus, we have, as another corollary to Theorem 2, the following direct formula for the
rook vector of a Ferrers matrix.

Corollary 2. For the n× n Ferrers matrix A=Fn(b1; : : : ; bn), we have

rA =D−1
n 	−1

n (fA(0); : : : ; fA(n))T:

If A=Ln =Fn(0; 1; : : : ; n− 1), then




fA(0)

fA(1)

...

fA(n)


 =




0n

1n

...

nn


 ; rA =




S(n; 0)

S(n; 1)

...

S(n; n)


 ;

from which we also have the following matrix equation relating the Stirling numbers
of the second kind and the binomial coeJcients, which is known in the literature in
some other form:




S(0; 0) 0 0 · · ·
S(1; 0) S(1; 1) 0 · · ·
S(2; 0) S(2; 1) S(2; 2) · · ·

...
...

...
. . .
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=




1 0 0 0 · · ·
01 11 0 0 · · ·
02 12 22 0 · · ·
03 13 23 33 · · ·
...

...
...

...
. . .







(
0

0

)
−
(
1

0

) (
2

0

)
−
(
3

0

)
· · ·

0

(
1

1

)
−
(
2

1

) (
3

1

)
· · ·

0 0

(
2

2

)
−
(
3

2

)
· · ·

...
...

...
...

. . .







0!−1 0 0 0 · · ·
0 1!−1 0 0 · · ·
0 0 2!−1 0 · · ·
0 0 0 3!−1 · · ·
...

...
...

...
. . .



:

4. Permanents of Toeplitz matrices

An n×n matrix A= [aij] is called a Toeplitz matrix if aij = ai+1; j+1 for all i; j. The
evaluation of the permanent of a Toeplitz matrix has long time been one of the main
interests in combinatorial matrix theory.
In 1991, Shevelev [3] obtained linear homogeneous relations with constant coeJ-

cients for sequences of permanents and determinants of Toeplitz band matrices with
complex elements of an arbitrary 2xed width. In 1997, Codenotti et al. [1] obtained an
algorithm for the permanents of certain very sparse (0; 1) Toeplitz matrices. However,
there do not exist any exact formulas for the permanent of general Toeplitz matrices
up to present time. In this section, we give some precise formulas for a large class of
(0; 1) Toeplitz band matrices with bandwidth ¿n− 1.
For positive integers n; p; q with p + q6n, let Tn(p; q) denote the n × n Toeplitz

matrix de2ned by

Tn(p; q)=




J J Lq
J Jr J

LTp J J


 ;

where r= n − p − q¿0 and the central block Jr may be vacuous in case that r=0.
Recall that the matrices Lp and Lq are the strictly lower triangular (0; 1)-matrices
de2ned by (2).
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Now we are ready to prove the following:

Theorem 3. Let n; p; q be positive integers with p6q; p+ q6n. Then

per Tn(p; q)= (0p; 1p; : : : ; pp; 0; : : : ; 0)(	−1
k )T	−1

k



(r + 0)q[r + 0]r
(r + 1)q[r + 1]r

...

(r + k)q[r + k]r


 ;

where r= n− p− q and k = n− p.

Proof. Note that k = r + q. Let A=LTp and

B=

[
J Lq
Jr J

]
:

Then B=Fk(r; r + 1; : : : ; k − 1; k; : : : ; k) and

Tn(p; q)=

[
J B

A J

]
:

Let up =(0p; 1p; : : : ; pp)T and v=(v0; v1; : : : ; vk)T where vi =(r+i)q[r+i]r ; (i=0; 1; : : : ;
k). For t=0; 1; : : : ; k, we have

fB(t)= per[Jk; t ; B] = per[Jq+r; t ; B] = (t + r)q[t + r]r

so that

rB =D−1
k 	−1

k v

by Corollary 2 to Theorem 2. Note that rA =D−1
p 	−1

p up. If we set

r̃A =

[
rA

0k−p

]
; u=

[
up

0k−p

]

where 0k−p denotes the (k − p)-vector of zeros, then r̃A =D−1
k 	−1

k ũp. Since Tn(p; q)
can be transformed into A#B, we have by Corollary to Theorem 1, that

per Tn(p; q) = r̃TAD
2
k rB = uT(	−1

k )TD−1
k D2

kD
−1
k 	−1

k v

= uT(	−1
k )T	−1

k v

and the proof is complete.

With some more restrictions on the parameters n; p; q the expression of per Tn(p; q)
gets more elegance. Here are some examples.
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Case (i): p+ q= n. In this case r=0 and

per Tn(p; q)=

[
up

0n−p

]T
(	−1

n−p)
T	−1

n−pun−p:

Case (ii): k =2n and Tn(p; q) is symmetric. In this case we have p= q and

T2k(p; q)=




J J Lp
J T2s J

LTp J J


 ;

where s= k − p. Let

vk;p =



(s+ 0)p[s+ 0]s
(s+ 1)p[s+ 1]s

...

(s+ k)p[s+ k]s


=


(k − p+ 0)p[k − p+ 0]k−p

(k − p+ 1)p[k − p+ 1]k−p

...

(k − p+ k)p[k − p+ k]k−p


 :

Then

per T2k(p;p)= vTk;p(	−1
k )T	−1

k vk;p = ‖	−1
k vk;p‖2;

where ‖ · ‖ stands for the Euclidean norm.
Moreover if, in addition, s=0, i.e., if k =p, then

T2k(k; k)=

[
J Lk
LTk J

]
:

Since vk; k = uk and since

	−1
k uk =Dk



S(k; 0)

S(k; 1)
...

S(k; k)


=


0!S(k; 0)

1!S(k; 1)
...

k!S(k; k)


 ;

we have

per T2k(k; k)=
k∑

i=0

i!2S(k; i)2:
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