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Abstract

With the growing complexities of the software, the number of potential bugs is also increasing rapidly. These bugs hinder the rapid

software development cycle. Bugs, if left unresolved, might cause problems in the long run. Also, without any prior knowledge

about the location and the number of bugs, managers may not be able to allocate resources in an efficient way. In order to overcome

this problem, researchers have devised numerous bug prediction approaches so far. The problem with the existing models is that

the researchers have not been able to arrive at an optimized set of metrics. So, in this paper, we make an attempt to select the

minimal number of best performing metrics, thereby keeping the model both simple and accurate at the same time. Most of the

bug prediction models use regression for prediction and since regression is a technique to best approximate the training data set,

the approximations don’t always fit well with the test data set. Keeping this in mind, we propose an algorithm to predict the bug

proneness index using marginal R square values. Though regressions are performed as intermediary steps in this algorithm, the

underlying logic is different in nature when compared with the models using regressions alone.
c© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Organizing Committee of ICACC 2016.

Keywords: Bug prediction metrics, Multiple regression, Marginal R square, F-measure.

1. Introduction

Since the inception of software development, bug fixing has been considered as one of the tedious tasks, mainly

because of its inherent uncertainty. In addition to this, the process of fixing bugs is also time consuming. In fact,

according to Rogue Wave Software, half the developer’s time is spent in debugging. To add to these problems, some

bugs can’t be detected at an early phase as it might take time for their effects to manifest. The severity of bugs increases

when fixing them might allow other unanticipated bugs to creep in. Considering the aforementioned reasons, it can

be said that the process of bug-fixing has a major stake in the software development time. In order to alleviate the

issue of bug fixing, bug prediction has been studied extensively by the researchers. Many machine learning driven

prediction models have been built and tested on various grounds.

Given the historical data of a project (data extracted from CVS, Bugzilla, etc), the task is to predict the number

of bugs in the future releases. Since indicating an exact number of bugs expected would be difficult, we resort to

determining the probability of the occurrence of bugs. Filtering the input further, more specific prediction models can
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be built to cater the requirements. For instance, a model can be built to predict the occurrence of most critical bugs.

And, these prediction models can be evaluated on a variety of criteria, depending on the nature of the results required.

The prediction models can be incorporated in the development environments so that the developers can get feedback

as and when they write codes. Although models can be built near to perfection, it is unreasonable to expect the

prediction to be 100% accurate. Not all the reasons for the occurrence of bugs can be related to the history of the

software. Although few in number, false predictions are inevitable. And, these false predictions can be of two types,

one in which a clean code is classified as buggy and the other one is which a buggy code is classified as clean. In order

to make developers trust the model, it is necessary to get an optimal model, balancing the false predictions. Despite

the lack of standard benchmarks for the comparison of the models, efforts have been made to study the models in

terms of the level of accuracy and complexity.

The selection of metrics being the first and the foremost stage in the bug prediction, has a great influence in the

accuracy and the complexity of the model. More the number of metrics in the model, more complex is the process17.

Inclusion of irrelevant metrics can cause the accuracy to drop considerably. Moreover, the impact of these metrics

can be counter-intuitive. It is possible that the seemingly important metrics can have less equity in the bug prediction,

attributing to some subtle, unforeseen factors. It turns out that the selection of appropriate metrics is possible only by

empirical verifications. Keeping in mind the severe consequences that the poor metrics selection can engender, we

devote extra efforts to carefully select the determinant metrics.

Bug prediction can be considered as a function of metrics and the nature of this function remains unknown. In

the past, researchers have designed prediction models using determinants like past bugs19, code churn15, number of

developers, file length, code refactoring20 and so on. After making a comprehensive study of the developed models

and approaches, we devise a novel approach to estimate the bug proneness of source code at the class level.

The rest of the paper is organized as follows. Section 2 enumerates the past research done in the area of bug predic-

tion and likes. Section 3 gives a detailed description of the algorithm proposed for bug proneness index determination.

And, we present the results obtained when the proposed model is implemented in the section 4. Also, a comparison

is made between the proposed model and few other representative models in the same section. In section 5, we dis-

cuss the threats to the validity of the model. The paper ends with the conclusion drawn from this study (section 6).

Furthermore, a small discussion on the possibility of future work in this area is also presented (section 6).

2. Literature Survey

In the past, there have been many works in the areas of bug prediction and likes2. Different measures have been

used to predict the incidence of bugs in the source codes. Nagappan et. al found that fault prone software entities are

statistically correlated to the the complexity of the code4. Hassan et al. proposes that the code change complexity

is a good determinant of the occurrence of bugs2. There have been works in which the history information was

used to study about refactorings. In this regard, van Rysselberghe has given approaches to recognize move and

inheritance change operations and refactorings as well5. The requirements of refactorings have also been discussed,

i.e. the error proneness of refactorings has been addressed6. However, this approach remained inconclusive. Using

classification trees, Khoshgoftaar et al. 12 predicted error prone modules. Nagappan et al. showed that there is a high

positive correlation between the density of defects obtained by performing a static analysis and the pre-release defect

density10. The types of changes between releases of software have been studied by Fluri et al. 9. Kim et al. also used

software history to predict error proneness of software entities11. The relationship between distributed development

and software quality has been discussed using a case study of Windows Vista8. A recency weighting approach has

been proposed in which the historical bug data has been analysed both locally and globally19. Kim. et al. proposes

noise detection and elimination algorithm to remove the FP (false postive) and FN (false negative) noises present in

the defect data13.

3. Proposed Model

Regression is one of the machine learning methods to derive the relationship between variables of interest, i.e.

regression enables the determination of best fit curve to the data in hand. Many regression methods are known and

depending on the nature and the number of both independent and dependent variables, a suitable method can be
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chosen. The regression works to minimize the sum of the squares of the errors (least squares). This amounts to saying

that the regression techniques provide the best fit curve globally, though there may be some discrepancies locally. But,

the performance of regression models on the test data may not chime with that of training data.

It has been shown that the linear model is the close approximation for the bug predictions18. Moreover, the linear

model is the simplest of all the models known. So, we resort to a linear model on the carefully chosen metrics and

their weights determined using the proposed algorithm. But instead of using the regression coefficients directly in the

model, we use the differences in the coefficients of determination (R square) as the weights. The steps in the proposed

model are described below according to the algorithm 1.

3.1. Selection of metrics

The input to any regression model is a good set of metrics (independent variables) which can determine the de-

pendent variable to the highest accuracy achievable. We choose metrics after a careful evaluation of their coefficients

of determination (R square) in simple linear regressions. Taking the actual bug count as the dependent variable and

the metric in hand as the independent variable, we perform simple linear regression to determine the coefficient of

determination. Once the coefficients of determination of every metric are obtained through linear regressions, we sort

the metrics in the decreasing order of their coefficients of determination. Finally, we select just the top ’n’ metrics and

these metrics will be used in the next step. Here, ’n’ is the number of metrics that will be used in the final prediction

model. And this number can vary from one project to another, depending on the tolerance for the complexity of the

prediction model.

3.2. Perform multiple regression

Linear multiple regression is a good machine learning method to obtain the best fit curve for the training data set.

Taking the ’n’ chosen metrics as the independent variables and the actual bug count as the dependent variable, we

perform a linear multiple regression. The coefficient of determination obtained will be used in the further steps to

determine the marginal R square values, which in turn will be used to determine the weights of the metrics in the final

model.

3.3. Compute marginal R square values

In order to find the weights of the ’n’ chosen metrics, we perform ’n’ linear multiple regressions taking all the ’n’

chosen metrics except one (a total of (n-1)) as the independent variables and the actual bug count as the dependent

variable. The differences in the coefficients of determination (marginal R square) obtained in the current regressions

and that obtained in the previous step are determined and these values when normalized in the range of 0 to 1 give the

weights of the metrics left out in the current regressions. Higher marginal R square value of a metric indicates that the

error in the regression is more because this metric was not considered. This, in turn, means that the contribution of

the metric in the bug prediction is high. So, we use these normalized marginal squares as the weights of the metrics.

3.4. Compute bug proneness index

Once the weights of the ’n’ chosen metrics are obtained, the next step is to normalize the ’n’ metric values of the

test set in the range of 0 to 1. The sum of the products of the normalized marginal R squares obtained in the previous

step and the corresponding normalized metric values gives the bug proneness index in the range of 0 to 1 as shown in

the method 2. More the index close to 1, more buggy is the class.

4. Results

We chose Eclipse JDT Core18 for the testing of our model and this dataset is freely available at bug.inf.usi.ch.

This data set is designed to perform bug prediction at the class level. This approach can be extended to file, package,

project and other levels in a straight forward manner. The results obtained when each of the above mentioned 4 steps

are acted upon this data set are shown below.
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Algorithm 1: Proposed algorithm to find the weights of metrics

Data: The training data set D of m metrics and actual bug counts, desired number of metrics n

Result: Weights of n metrics

1 Normalize all the m metrics and the actual bug counts in the range of 0 to 1.

2 for each metric i in m normalized metrics do
3 Perform the simple linear regression of i (independent variable) vs actual bug count, b (dependent variable)

and determine R square value.
4 end
5 Sort the m metrics in the decreasing order of R square values and select top ’n’ of them for the further process.

6 Perform multiple linear regression of the top ’n’ normalized metrics (independent variables) vs actual bug count,

b (dependent variable) and determine the R square value. Let it be ru.

7 for each metric i in the set of top ’n’ normalized metrics do
8 Perform multiple linear regression of remaining n-1 metrics (independent variables) vs normalized actual

bug count, b (dependent variable) and determine the R square value. Let it be r−i.

9 Calculate the difference di = ru − r−i.

10 end
11 Normalize all the ’n’ dis in the range of 0 to 1. Let the normalized values be dni for i=1 to n. These dnis form the

weights of n metrics

Algorithm 2: Computation of bug proneness index

Data: The test data T=v1, v2,...,vn of n normalized metrics, and weights dnis of ’n’ metrics

Result: Bug proneness index I in the range of 0 to 1

1 I =
∑n

i=1(dni ∗ vi)

4.1. Running the proposed algorithm

4.1.1. Selection of metrics
The data set had many metrics like number of past bugs, lines of code, depth of inheritance and so on. After varying

the number of chosen metrics ’n’, we saw that the optimal value for ’n’ (project dependent) is 4. When simple linear

regressions were performed on the available metrics, the top 4 metrics in the decreasing order of the coefficients of

determination were ’number of bugs found until’, ’number of versions until’, ’LOC’ (lines of code) and ’entropy’.

The obtained R square values are shown in table 1.

Table 1. Simple linear regression results.

Metric R square

number of bugs found until 0.4491

number of versions until 0.3609

LOC 0.3553

entropy 0.1512

4.1.2. Perform multiple regression
When multiple regression is performed on the above mentioned 4 metrics, the obtained coefficient of determination

is 0.4762.
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4.1.3. Compute marginal R square values
When multiple regressions are done on different sets of n-1 metrics, the results obtained are as shown in the table

2. Each row indicates the results obtained when the regression was performed on all the metrics except the one

mentioned in the first column. The final weights in the range of 0 to 1 are also shown in the last column of table 2.

Table 2. Weights of the metrics.

Metric R square marginal R square Weight

number of bugs found until 0.4364 0.0397 0.5910

number of versions until 0.4751 0.0011 0.0159

LOC 0.4521 0.0241 0.3581

entropy 0.4738 0.0023 0.0350

4.1.4. Compute bug proneness index
We choose two classes of this software for the verification of the model. The metric values and the actual bug

counts are normalized in the range of 0 to 1. The results are shown in the table 3. From the table, we can see that the

actual normalized bug count and the predicted bug proneness index are very close to each other in their values.

Table 3. Test data results.

Number of bugs found until Number of versions until LOC Entropy Actual Bug count Bug proneness index

0.0187 0.0028 0.0118 0.0260 0 0.0133

0.0888 0.0706 0.0473 0.6173 0.1111 0.1333

4.2. Comparison of different models

We chose two existing models for comparison, the simple linear regression based model and the multiple regression

model.

The different training and test instance results can be divided into 4 classes as shown in table 4. The different

parameters for the measurement of the quality of the model are accuracy, precision, recall and F-measure. Accuracy

is the proximity of measurement results to the true value (Eq. 1). And, precision can be seen as a measure of exactness

or quality (Eq. 2), whereas recall is a measure of completeness or quantity (Eq. 3). Finally, F-measure is the harmonic

mean of precision and recall (Eq. 4).

Table 4. Classification of data instances.

Representation Meaning

nb−>b number of buggy instances classified as buggy

nb−>c number of buggy instances classified as clean

nc−>b number of clean instances classified as buggy

nc−>c number of clean instances classified as clean

Accuracy =
nb−>b + nc−>c

nb−>b + nb−>c + nc−>b + nc−>c
(1)
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Fig. 1. Performance measurement in bug prediction models in the order: (a) Simple prediction model (b) Multiple regression model (c) Proposed

model.

Precision (bug) =
nb−>b

nb−>b + nc−>b
(2)

Recall (bug) =
nb−>b

nb−>b + nb−>c
(3)

F − measure (bug) =
2 ∗ P(b) ∗ R(b)

P(b) + R(b)
(4)

The results are shown separately for training and test data sets. The table 5 indicates the model having the highest

value for the parameter in the first column and these results are shown for both the training and test data sets. 1

indicates the simple regression model, 2 being the multiple regression model and 3 the proposed model. The graphs

shown below (Fig. 1) compare the actual bug counts with the predicted bug proneness index for different models

including the proposed one. The graph of the proposed model (Fig. 1 (c)) indicates the closeness of the results to

the actual bug counts. In fact, the graph coincides with the line y=x (Actual normalized bug count = Predicted bug

proneness index) at some points. It is evident that the proposed model performs the best for both the training and test

data sets when the composite measure of precision and recall (F-measure) is considered. Though other models might

perform better when other measures are considered, F-measure is a composite, comprehensive measure and a good

value of F-measure is an indication of high quality of the model. Though we see that the multiple regression model

performs well when training data set is considered it is the test data results that are more important because the very

purpose of the model is to predict the bugs in the future.

Table 5. Comparison of various prediction models.

Measure Training Test Overall

Accuracy 2 3 2

Precision 2 3 3

Recall 1 1 1

F-measure 3 3 3

5. Threats to validity

In the first place, the data set chosen might be biased or incomplete. Depending on the proficiency of the authors

and other factors, the nature and the number of bugs reported might vary. Also, since the experiment was performed
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on just few data sets, there is a possibility that the proposed model may not perform similarly with other data sets. In

addition to this, when metrics are selected for the model, it must be ensured that they are independent of each other.

If the predictor metrics are highly correlated, then the resulting linear equation might have redundant weights and

hence false results. However, this collinearity between the metrics can be eliminated to a fair extent by using suitable

methods like Partial Least Squares Regression (PLS), Principal Components Analysis22 and so on.

6. Conclusion and Future Work

After making a comprehensive study of the different existing prediction models, we realized that there should be

a deterministic strategy to select the metrics for predicting the bug count. Also, when regression was used as it is for

bug prediction, though the sum of the squares of the errors was the least for training set of data, the test data results

were not very convincing. Considering this, we developed a model that performs acceptably well on both the training

and the test data sets. This model can be run on any dataset that has the relevant metric values in it. We have used

the datasets18 that are simple and readily available. The results show that the composite measure of precision and

recall (F-measure) is the highest in the proposed model for both the training and the test data sets, in comparison

with other existing models. This model, when integrated with the software development environments, will lead to

reasonably accurate predictions. Furthermore, research has been made in adapting the fault prediction model to allow

inter language reuse16. In the future, we will attempt to include this to make our solution more encompassing.
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