
N O R T H - ~ TECHNICAL NOTE

EXPLOITING GOAL INDEPENDENCE IN THE ANALYSIS
OF LOGIC PROGRAMS

M I C H A E L CODISH, MAURICE BRUYNO OGHE ,

MARIA GARCIA DE LA BANDA, AND MANUEL H E R M E N E G I L D O

I> This paper illustrates the use of a top-down framework to obtain goal
independent analyses of logic programs, a task which is usually associated
with the bottom-up approach. While it is well known that the bottom-up
approach can be used, through the magic set transformation, for goal
dependent analysis, it is less known that the top-down approach can be
used for goal independent analysis. The paper describes two ways of doing
the latter. We show how the results of a goal independent analysis can be
used to speed up subsequent goal dependent analyses. However this
speed-up may result in a loss of precision. The influence of domain
characteristics on this precision is discussed and an experimental evalua-
tion using a generic top-down analyzer is described. Our results provide
intuition regarding the cases where a two phase analysis might be worth-
while. © Elsevier Science Inc., 1997 <1

1. INTRODUCTION

The framework of abstract interpretation [12] provides the basis for a semantic
approach to data-flow analysis. A program analysis is viewed as a nonstandard
semantics defined over a domain of data descriptions where the syntactic con-
structs in the program are given corresponding nonstandard interpretations. For a

Address correspondence to M. Codish, Department of Mathematics and Computer Science, Ben-
Gurion University, Israel, E-mail: codish@cs.bgu.ac.il; mbanda@cs.monash.edu.au; maurice@cs.
kuleuven.ac.be; herme@fi.upm.es.

A preliminary version of this paper appeared as [5]. This research was supported in part by CEC
DGXIII ESPRIT Project "PRINCE", CEC HCM-project ABILE (CHRX-CT94-0624), CEC DGIII
EC-Israel collaborative activity, ISC-IL-90-PARFORCE and CICYT project IPL-D. M. Codish was
supported by a post doctoral fellowship from K. U. Leuven. Maria Jos6 Garc~a de la Banda was
supported in part by a Spanish Ministry of Education Grant. M. Bruynooghe is supported by the
Belgium National Fund for Scientific Research.

Received January 1996; accepted November 1996.

THE JOURNAL OF L O G I C P R O G R A M M I N G
© Elsevier Science Inc., 1997
655 Avenue of the Americas, New York, NY 10010

0743-1066/97/$17.00
PII S0743-1066(96)00143-4

248 M. C O D I S H E T AL.

given language, different choices of a semantic basis for abstract interpretation
may lead to different approaches to analysis of programs in that language. For
logic programs we distinguish between two main approaches which have been
termed: "bottom-up analysis" and "top-down analysis" [20]. Bottom-up analyses
are typically based on abstractions of bottom-up semantics such as the classic Tp
semantics, while top-down analyses are typically based on abstractions of top-down
semantics such as the SLD semantics. In addition, we distinguish between "goal
dependent" and "goal independent" analyses. Intuitively, a goal dependent analysis
provides information about the possible behaviors of a specified set of initial goals
and a given logic program. In contrast, a goal independent analysis considers the
program in isolation.

Traditionally, the standard meaning of a logic program P is given as the set of
ground atoms in P' s vocabulary which are implied by P. The development of
top-down analysis frameworks was originally driven by the need to abstract not
only the declarative meaning of program, but also their behavior. To this end it is
straightforward to enrich the operational SLD semantics into a collecting seman-
tics which captures call patterns (i.e., how particular predicates are activated while
searching for refutations), and success patterns (i.e., how call patterns are instanti-
ated by the refutation of the involved predicate). Consequently, it is quite natural
to apply a top-down approach to derive goal dependent analyses.

Falaschi et al. [14] introduce the s-semantics which bridges the gap between the
declarative bottom-up semantics and the operational top-down semantics for logic
programs. This semantics basically consists of a nonground version of the bottom-up
T e operator. The meaning of a program is a set of possibly nonground atoms which
can later be applied to determine the answers for arbitrary initial goals. This
semantics is the basis for a number of frameworks for the bottom-up analysis of
logic programs [1, 4]. An analysis based on the abstraction of this semantics is
naturally viewed as goal independent. It computes an abstraction of the answers to
most general queries which in turn can be used to determine abstract answers to
arbitrary queries.

Bottom-up computations have also been used for query evaluation in the
context of deductive databases where "magic sets" and related transformation
techniques are applied to make the evaluation process goal dependent. These same
techniques have also been applied to enable bottom-up frameworks of abstract
interpretation to support goal dependent analysis (see [4] for a list of references).
In contrast, the practical application of top-down frameworks for goal independent
analysis has received little attention.

This paper describes the application of a top-down framework of abstract
interpretation to the goal independent analysis of logic programs. An immediate
benefit is to make goal independent analyses readily available using existing
top-down frameworks.

2. TOP-DOWN GOAL INDEPENDENT ANALYSIS

Falaschi et al. [14] illustrate that the computed answers for an arbitrary initial goal
G with a program P can be obtained by solving G in the s-semantics of P. Various
bottom-up frameworks of abstract interpretation for logic programs (e.g., [1, 4])
take advantage of this fact to provide for the goal independent bottom-up analysis

GOAL INDEPENDENCE IN LOGIC PROGRAMS 249

of logic programs. It is straightforward to apply also a top-down framework to
provide for such goal independent analyses. This follows from the observation [14]
that the s-semantics, [[P]] of a program P is determined by:

p(f f)0 p / n ~ pred(P) and 0 is a
[[P]] = computed answerforp(Yc) '

where ~ is an n-tuple of distinct variables and pred(P) is the set of predicate
symbols defined in P. An approximation of the s semantics of a program can be
obtained in a top-down framework by analyzing the set of "most general" initial
goal descriptions (p(~); K~> where p / n is a predicate in P and K, is the (most
precise) description of the empty substitution, for the abstract domain at hand. The
same result can be obtained with a single application of the top-down framework
by adding to P the set of clauses

{analyze ~ p($) [p / n ~ pred(P) } ,

where ana~yze/O fEpred(P). In this way, starting the analysis with the initial call
pattern (analyze; K,) there is a call pattern (p($); K,) for every p / n ~pred(P). We
will refer to this transformation as the naive transformation and the corresponding
analysis as the naive analysis.

The experimental results described in this paper are obtained using the top-down
framework, PLAI, described in [23]. However, the proposed techniques are general
and typically described in terms of source level transformations. Consequently, it is
straightforward to provide similar functionalities using other top-down frameworks
based on [2] such as for example those described in [19] (GAIA) and in [17]
(AMAI).

The experiments described in this paper are based on three well known abstract
domains: Prop [8, 9, 11, 18], Sharing [16, 23] and ASub [24]. For sharing analysis,
data descriptions are represented as lists of lists of variables which appear as
comments in the text of the program. The information describes properties of
possible substitutions when execution reaches different points in the clause. The
information given after the clause head describes properties of variables after
performing head unification. The information given after each subgoal describes
properties of variables after executing the clause body up to and including that
subgoal.

Example 2.1. Consider the following simple program P:

length(Y,N) :- length (Y, O, N) .

length([] ,N,N) .

length([XIXs] ,NI,N) :-N2 is NI+I, length(Xs,N2,N) .

The naive transformation adds the following clauses to P:

analyze : - length (X, Y) .

analyze : - length (X, Y, Z) .

250 M. CODISH ET AL.

A top-down Sharing analysis of the transformed program with the initial call
pattern (analyze;[]) gives the following annotations:

(i) analyze:- %[IX] , [Y]]

length(X,Y) . %[[X]]

(2) analyze:- %[[X] , [Y] , [Z]]

length(X,Y,Z) . %[[X], [Y,Z]]

(3) length(Y,N) :- %[[Y] , [N]]

length(Y,O,N) . %[[Y]]

(4) length([] ,N,N) . %[[N]]

(5) length([XIXs],NI, N) :- %[[NI],[N],[X],[X,Xs],[Xs],[N2]]

N2 is NI+I, %[[N], [X], [X,Xs], [Xs]]

length(Xs,N2,N) . %[[X] , [X,Xs] , [Xs]] .

Intuitively, each list [v~ u n] in an annotation represents a set of clause
variables and specifies that there may be a runtime environment in which these are
exactly the variables which are bound to terms containing a common variable x. If
a variable tJ does not occur in any list, then there is no variable that may occur in
the terms to which v is bound and thus those terms are definitely ground. If a
variable v appears only in a singleton list, then the terms to which it is bound may
contain only variables which do not appear in any other term. For example, after
executing the recursive call in clause (5) the variables N, N1 and N2 are ground
while X and Xs possibly share.

The analysis provides also the following information indicating the set of call
and success patterns:

Atom Call Pattern Success Pattern

analyze [] []
length(A,B,C) [[A], [B], [C]] [[A], [B,C]]
length(A,B) [[h], [B]] [[A]]
length(A,O,B) [[i], [B]] [[h]]
length(A,B,C) [[A], [C]] [[i]]

The first three rows in this table provide the goal independent information as
obtained in a bottom-up analysis. The other two rows correspond to information
inferred for additional call patterns which arise in the course of the analysis. For a
more detailed description of the Sharing domain see [16] and [23].

Observe that the analysis described in Example 2.1 is inefficient in that it
provides information concerning call patterns which are not required in a goal
independent analysis. A more efficient goal independent analysis is obtained by
transforming the program so that all of the calls in the body of a clause are "flat"
and involve only fresh variables. As a consequence, any call encountered in the
top-down analysis is in its most general form and corresponds to the most general
call patterns required by a goal independent analysis. In the sequel this transfor-
mation is referred to as the efficient transformation and involves replacing each
call of the form q(D in a clause body by q(~), ff = } l where ~ are fresh variables.
The corresponding analysis is called the efficient analysis.

1 Note however that, due to the transformation, the abstraction of built-ins such as is/2 has to be
adapted. See the discussion at the end of Section 4.

GOAL INDEPENDENCE IN LOGIC PROGRAMS 251

Example 2.2. Applying the efficient transformation to the program in Example 2.1
gives

analyze : - length (X, Y) .

analyze: - length (X, Y, Z) .

length (Y, N) :-

length (Ya, Ma, Na) ,

<Y, O, N) - (Ya, Ma, Na) .

length([] ,N,N) .

length([xlxs] ,NI ,N) :-
N2 is NI+I,

length(Xsa,N2a,Na) ,

<Xsa, N2a, Na> : <Xs,N2, N>.

A goal independent analysis of this program eliminates the last two rows in the
table of Example 2.1.

This paper illustrates that the "efficient" transformation often provides a
substantial speed-up over the "naive" approach. However, for some types of
domains, there can be a loss of precision which can exceptionally also increase the
cost of the analysis. This is discussed in Section 4. Applying a top-down analysis on
the transformed program gives an analysis which is closely related to the work of
Jacobs and Langen [16].

Finally, we would like to point out the strong similarities between the efficient
analysis described above, and a bottom-up analysis which traverses the clause
bodies from left to right. Consider the analysis of a call p(}) in some clause body
under a data description K i. The bottom-up analyzer solves the atom p 0) against
the abstraction of the s-semantics of the atom p / n (by analyzing an equality $ = t)
and uses the result to update Ki into a data description Kj. The top-down efficient
analysis solves p($) , ~ = t under a data description K i, which differs from K i in
expressing that ~ are fresh variables. In doing this, it first analyses p($) by
computing an abstraction of the s-semantics of p / n (or looks it up if it has been
computed before) and using this result to update the description of 2 in K~,. Then,
it performs the analysis of ~ --- t which has the effect of solving the call p (t) against
the abstracted s-semantics of p / n and of updating the data description into a Kj,.
Assuming that the same abstraction of the s-semantics of p / n is used, one can
expect that Kj,, after projecting out the variables $, is the same as Kj.

3. REFUSING GOAL INDEPENDENT INFORMATION

In this section we illustrate how the results of a goal independent analysis can be
used (and reused) to derive goal dependent information. There are two issues
involved: (1) using the result of the analysis to obtain abstract answers for an
abstract call; and (2) using the result of the analysis to obtain an approximation of
the set of call patterns which arise in the computation of a given initial call pattern,
The first issue is extensively discussed in the literature, both for top-down frame-
works as proposed by [16] and in the context of bottom-up frameworks as described
in [1] and [4]. Basically, the abstract answers for a given call pattern are obtained by
"solving" the call using the results of the goal independent phase. Also the second
issue is considered in the literature. The basic concept, underlying the Magic-set
transformation, is a recursive specification of the set of activated calls, for example
as described in [1] and as formalized in [15]: (1) if a I a i , . . . , a m is an initial goal

252 M. C O D I S H ET AL.

then aiO is a call if 0 is an answer for a~ a i - 1 (in particular a 1 is a call); and (2)
if h ~ bl , . . . , bi, . . . , b, is a (renamed) program clause, a is a call, mgu(a, h)= 0
and q~ is an answer of (b~ , bi ~)0 then biOq~ is a call.

Our contribution is to perform this collection of activated call patterns effi-
ciently from within a top-down analysis framework. Given the results of a goal
independent analysis for P and an initial call pattern G, the call patterns for P and
G are collected in a single pass over the program without performing any form of
fixpoint iteration.

We illustrate the approach with an example.

Example 3.1. Consider a Sharing analysis of the following simple Prolog program.

q(0,_,_,_,_,Y,V,V) .

q(s(A) ,X,Y,Z,W,U,V) :-q(A,Z,W,U,V,X,Y) .

The result of the goal independent analysis is:

Atom

q(A,X, Y, Z,W,U,V)

Call Pattern

[[A] , [X] , [Y] , [Z] , [W] , [U] , ~]]

SuccessPattern

[[X], [X,X], [Y], [Z], [Z,W], [W], [U], [U,V], IV]]

This result is obtained after three iterations, for both the naive and the efficient
analysis. In the first iteration, the analysis of the base clause yields sharing groups
[x] , [Y], [z] , [w], and [u, v] . During the analysis of the recursive clause, it is
observed that the recursive call q (A, z , W, U, V, x , Y) has the same call pattern as
the original query. Thus, in order not to go into an infinite loop, the success pattern
obtained so far (from the base clause) is used to estimate its success pattern. This
yields the additional sharing groups [u] , [v] and IX, Y]. The second iteration
reanalyzes the second clause, now using the success pattern of the firm iteration to
handle the recursive call and finds the additional share group [z , w]. After the
third iteration no new sharing groups are found and, therefore, a fixpoint is
reached.

Now consider a goal dependent analysis for a query q (A, X, Y, z , W, U, V) with
the call pattern [[x] , [Y], [z] , [w], [u] , [v]] (i.e., A is ground). A standard
top-down analysis will exhibit the same behavior illustrated above, i.e., it will
require three iterations deriving as success patterns the sharing groups
[x] , [Y] , [z] , [w] and [u , v] for the base case, plus [u] , [v] and [x ,Y] for
the first iteration, and [z , w] for the second iteration. However, if the results of a
goal independent analysis are available, the goal dependent analysis can be
sped-up as follows. The analysis of the base case proceeds as usual, obtaining the
sharing groups [x] , [Y] , [7.] , [w] and [u, v] . During the analysis of the recur-
sive clause it is observed that the recursive call has the same call pattern as the
original query. Hence, rather than using the success pattern of the base case to
proceed, the analysis can use the goal independent analysis to derive the final

GOAL INDEPENDENCE IN LOGIC PROGRAMS 253

result by performing an abstract conjunction of the goal independent information
([[X], [X,Y], [Y], [Z], [Z,W], [W], [U], [U,V], [V]])2 with the call pattern
([[×], [Y], [z] , [w], [u] , [v] 9. The result of the abstraction conjunction
([[x] , IX,Y], [Y], [z] , [z ,w] , [w], [u] , [u , v] , [v]]) is known to be a safe
data description for the program point following the recursive call. This informa-
tion is propagated to the query and no iteration is required.

This does not imply that each predicate is analyzed only once. Consider the
same query, but with call pattern [IX,Y] , [z] , [w], [u] , [v i i . During the
analysis of the recursive clause, the goal dependent analysis (both the standard as
well as our "reuse" version) creates a new call pattern [[x] , [Y], [z] , [w], [u,
v]]. Applying the predicate for this pattern yields yet another call pattern, namely
[IX], [Y], [z ,w] , [u] , [v]].This analysis of the recursive clause for this third
pattern creates for the recursive call the same pattern as the initial call. At this
point the traditional goal dependent analysis would use the result for the base
clause and start iterations for each of the nested calls created during the analysis.
(A quite complex process as the calls are nested, but which a system as PLAI
performs in a clever way to minimize the overall work.) However, if goal indepen-
dent information is available, the analysis can reuse such information yielding a
safe data description that will be propagated to the rest of the calls without the
need for any iteration.

4. DOMAIN D E P E N D E N T ISSUES

There are several domain-dependent issues which significantly affect the precision
of a program analysis. The following example illustrates that a naive top-down
analysis can provide a more precise analysis for some programs.

Example 4.1. Consider the following program:

naive : - efficient : -

Y=f(X,-) , Z=f(X,-), Y=f(X,-) , Z=f(X,_),

q(Y,Z) . q(U,V), (U,V):(Y,Z)

q(A,B) :-A:f (a,a) .
q(A,B) :-B:f(a,a) .

where the predicates naive/0 and efficient/0 correspond to our two differ-
ent approaches for goal independent analysis.

A top-down analysis based on the Sharing domain infers the groundness of x in
n a i v e / 0 but not in e f f i c i e n t / 0 . The reason is that q(Y,Z) is called with
pattern [[Y],[Z],[X,Y,Z]]. After the analysis of q(Y,Z), although the Sharing
domain cannot express that either Y or Z are ground, it definitely knows that they

2 The result of the goal- independent analysis is stored as a pair call pattern-success pattern, e.g., for
a binary predicate p/2, a pair could be [[Xl] IX2]] [[Xl] [X l , X 2]] . F o r a normalized call, e.g.,
p(A, B), the success pattern is simply renamed into [[A] [A, B]]. For an unnormalized call, addition-
ally an abstract unification has to be performed, e.g., for P(f(A), B) the success pattern is renamed into
[[x l] [x 1 , 1 3]] and , addi t ional ly , the uni f ica t ion X1 = f(A) is ab s t r ac t ed yie lding
[[XI,A] , [XI,A,B]].

254 M. CODISH ET AL.

cannot share, and thus X must be ground. On the other hand q(U,V) is called
with pattern [[U], [V], [Y], [Z], [X, Y, Z]]. If the groundness of either U or V could
be inferred after q(U, V), then the groundness of X could have been inferred due
to (U,V)= (Y,Z) . Unfortunately, the fact that U and V do not share after
q(U, V) does not imply the groundness of X, and therefore this information is lost.

The above example illustrates that the precision of an analysis is highly depen-
dent on the ability of the underlying abstract domain to capture information which
enables a good propagation of the property being analyzed.

Jacobs and Langen [16] prove that analyzing p(t) and analyzing p(~), ~ = t are
guaranteed to be equally precise when they involve an abstract unification function
which is idempotent, commutative and additive. Consequently, under these condi-
tions, the naive and efficient goal independent analysis are equally precise as well
as the standard one phase and our two phase goal dependent analysis. Idempo-
tence implies that repeating abstract unification does not change the result.
Commutativity allows abstract unification to be performed in any order. Finally,
additivity guarantees that precision is not lost when performing least upper bounds.
These conditions impose a restriction on the abstract domain which must support
an abstract unification algorithm satisfying these properties. Marriott and
S0ndergaard refine the terminology introducing the notion of a condensing domain
[21]. It is interesting to note that most of the domains used in practice are not
additive, and many not even commutative or idempotent. Consequently, the answer
to the question can we benefit from goal independent analyses (top-down or bottom-up)
remains an issue for practical experimentation.

In the remainder of the paper we describe an experimental investigation
involving the three well known abstract domains, Prop, Sharing and ASub. Note
that Prop comes equipped with an abstract unification operation which is idempo-
tent, commutative and additive; Sharing with an operation which is idempotent and
commutative; and ASub with an operation which is additive. Our choice of
domains is intended to illustrate the influence of domain properties on its ability to
support precise and efficient goal independent analysis. For a comparison of these
three domains see [10].

It is interesting to note that domain properties such as idempotence, commuta-
tivity and additivity have more influence on goal independent than on goal
dependent analyses. This is because, operations in a goal independent analysis
involve "more general" substitutions as there is no propagation of inputs from an
initial goal. Consequently, accuracy can be lost in weaker domains and may also
slow down analyses in domains where loss of accuracy, incurs larger representa-
tions. As an example, in ASub, when groundness information propagates from an
initial goal, the inability of the domain to capture groundness dependencies has
less effect on accuracy than in a goal independent analysis. In fact we observe in [7]
that the groundness information obtained with ASub is essentially the same as that
obtained with Sharing in a goal dependent setting (for a rich set of benchmarks).
We reason that most real Prolog programs tend to propagate groundness in a
top-down manner. However, the absence of such properties becomes more relevant
in goal-independent analyses, although less important in naive top-down analyses
than in bottom-up or efficient top-down analyses.

Another important issue concerns the analysis of Prolog built-ins. In standard
top-down analysis, the data descriptions in a program point describe the substitu-

GOAL INDEPENDENCE IN LOGIC PROGRAMS 255

tions which are possible at that point during the actual execution of the program.
This can be exploited in defining the abstraction of built-ins. Consider for example
an abstract domain which captures definite freeness information. In a standard
top-down analysis if we know that the clause p (x, Y) : - g r o u n d (x) , Y=a is
called with X a free variable then we may assume that the clause fails. This is no
longer the case when performing a goal independent analysis (whether naive or
efficient). Here one has to abstract the built-ins under the assumption that the
substitutions which occur during the execution are not only those described by the
data descriptions, but also their instances. As a free variable can have ground
instances, failure cannot be assumed in the above example. However, it remains
valid to claim that X is ground after executing the built-in. So, when doing a goal
independent analysis, all abstractions of built-ins have to be reconsidered.

5. OBJECTIVES, EXPERIMENTS AND RESULTS

Our objective is to illustrate the relative impact of the issues discussed in the
previous sections on efficiency and accuracy of goal independent analyses. We
compare the standard top-down, goal dependent analysis with the alternative two
phase analysis which first infers goal independent information and then reuses it to
obtain goal dependent information for given initial goals. For goal independent
analyses we compare the naive and efficient approaches described in Section 2. The
experiments focus on the domains ASub, Sharing, and Prop. For Prop the analyzer
is run on an abstract version of the program as described in [6]. The benchmark
programs are the same as those used in [7] 3 and they range in size from two clauses
with five variables (occurrences) to 227 clauses with 869 variables. All analyses are
obtained using SICStus 2.1 (native code) on a SPARC10. All times are in seconds.

Table 1 presents the results of the goal independent experiments for the three
domains considered. For each benchmark program (in the Name column) the table

3 Benchmark names abbreviated as follows: init (init susbt), seri (serialize), map (map-color), gram
(grammar), brow (browse), derv (deriv), rdtk (rdtok), boyr (boyer), peep (peephole).

T A B L E 1. Goal Independent results

Prop Sharing ASub
Name GI ef GI n Size n GI ef GI n Size n A GI ef GI n Size n A

irfit 0.2 3.3 2 .9 /7 0.9 173.5
seri 0.5 9.1 2 .8 /8 0.7 3.0
map 0.1 1.1 2 .2 /4 1.4 1.9
gram 0.1 0.1 1 .4 /2 0.1 0.1
brow 0.3 2.5 1 .8/3 3.9 14.0
bid 0.2 1.9 1 .7/3 0.5 1.4
derv 0.6 2.1 2 .3 /6 0.8 1.9
rdtk 0.3 1.2 1 .7 /4 0.7 1.5
read 2.3 93.7 3 .1 /26 10.6 206.0
boyr 0.7 6.3 2 .6 /9 3.7 7.5
peep 2.4 15.7 4 .6 /11 33.4 19.4
ann 1.8 69.2 2 .9 /10 418.1 381.8

6 .7 /12
5 .3 /12
5.27
3 .7 /5
5 .2 /12
3 .8 /8
5 .4 /9
4 .8 /8
8 .4 /67
6 .1 /35

10.8/24
11 .0 /60

0 0.2 0.4 2 .7 /6 0
0 0.2 0.2 2 .0 /4 0
0 0.2 0.3 2 .0 /5 0
0 0.0 0.0 0 .7/1 0
0 0.3 1.1 1 .3/4 12
0 0.3 1.0 0 .8 /3 5
0 0.6 2.1 1.7/3 0
0 0.7 1.0 1.3/3 33
4 2.1 9.3 1 .3/9 4
0 0.7 1.1 2.3/11 0
0 1.8 2.9 3 .4 /6 0
6 2.9 11.5 4 .2 /19 3

256 M. CODISH ET AL.

describes the following information:

• Glef: time for the efficient top-down goal independent analysis.

• Gin: time for the naive top-down goal independent analysis.

• Sizen: A measure of the average/maximal sizes of the results given by the
naive goal independent analyses: For Prop, the number of disjuncts in the
resulting disjunctive normal forms; for Sharing, the number of lists of
variables in the lists of lists representations; and for ASub, the number of
pairs of variables in the corresponding abstract substitutions.

• A: the percentage of predicates for which the analysis using GI ef is less
accurate than that obtained by Gin. 4

Tables 2, 3, and 4 present the results of the goal dependent experiments for the
Prop, Sharing, and Asub domains respectively. For each benchmark program the
Name and Query columns describe the program, the arguments of its top-level
predicate and several initial goal patterns (for Prop, a propositional formula on the
variables of the top-level predicate). The results for the goal dependent analyses
(with loop-up and standard) are given under the heading GD and G D standard.

The other columns describe:

• Tin: the time for the respective analyses, for CJD reuse, times exclusive/inclu-
sive the time for the efficient goal independent analysis are given;

• LU: the number of look-ups into the goal independent phase;

4 Only for Sharing and ASub (for Prop both techniques give identical results).

TABLE 2. Prop results

GDreuse GDStandard

Name Query Tm LU Size Tm > 1 > 2

i n i t (X , Y , Z , W) X /x Y 1.1/1.3 58
X 1.2/1.4 66
true 1.2/1.4 66

seri(X,Y) X 5.7/6.2 161
true 6.0/6.5 189

map(X, Y, Z, W) X 1.0/1.1 64
gram(X, Y) true 0.1/0.2 0
brow(X, Y) X A Y 1.8/2.1 123

true 1.0/1.3 93
bid(X, Y, Z) X A Y A Z 0.3/0.5 14
derv(X, Y, Z) X A Y 0.4/1.0 30

X 0.4/1.0 30
rdtk(X, Y) true 1.2/1.5 55
read(X, Y) X 1.7/4.0 57

true 17.0/19.3 241
boyr(X) X 2.5/3.2 92

true 2.6/3.3 89
peep(X, Y) X 2.8/5.2 146

true 10.2/12.6 412
ann(X, Y) true 12.7/14.5 488

6.6/7 1.0 0 0
6.0/7 1.2 3 1
6.0/7 1.2 3 1
6.9/8 13.7 74 32
6.3/8 14.5 88 41
3.0/4 1.5 26 11
0.0/0 0.1 0 0
2.2/3 2.9 49 17
2.1/3 1.9 48 17
2.4/3 O.3 0 0
2.3/6 0.4 0 0
2.3/6 0.4 0 0
2.3/3 2,2 28 12
2.4/5 2.4 15 7

2.7/26 135.7 753 424
2.8/9 4.6 122 72
2.8/9 4.8 120 67
3.1/5 6.0 98 47
3.6/5 24.7 202 104
3.0/6 58.4 217 95

GOAL INDEPENDENCE IN LOGIC PROGRAMS 257

TABLE 3. Sharing results

Name

GD "euse GD stand"'d A

Query Tm LU Size Tm >1 >2 %

init(X,Y,Z,W) [[Z],[W]] 0.2/1.1 9 8.0/10 0.2 0 0 0
[[Y],[ZI,[W]] 0.7/1.6 15 9.5/16 0.9 6 1 0
[[X],[Y],[Z],[W]] 98.1/99.0 21 32.4/70 193.7 21 4 0

seri(X, Y) [[Y]] 2.8/3.5 14 12.4/23 3.0 8 0 1)
[[X],[Y]] 2.9/3.6 14 12.7/23 3.1 8 0 0
[[X],[X,Y],[Y]] 2.9/3.6 14 12.7/23 3.1 8 0 1)

map(X,Y,Z,W) I[Y],[ZI,[W]] 1.5/2.9 5 7.4/I1/ 3.1 8 0 0
gram(X, Y) [[X],[Y]] 0.1/0.2 0 0.0/0 0.1 0 0 0

[[X],Ix, Y],[Yll 0.1/0.2 0 0.0/0 0.1 0 0 0
brow(X, Y) [] 13,6/17.5 18 5.1/10 16.4 9 0 0

[[X],[YI] 0.2/4.1 lO 4.2/7 0.4 8 0 0
[[X],[X,Y],[Y]] 0.2/4.1 9 4.7/7 0.3 6 0 0

bid(X, Y, Z) [] 0.3/0.8 7 3.9/6 0.3 0 0 0
derv(X, Y, Z) [[Z]] 0.9/1.7 35 3.8/7 0.9 0 0 0

[[Y],[Z]] 0.9/1.7 35 4.2/7 0.9 0 0 0
rdtk(X,Y) [[X],[Y]] 1.2/1.9 47 5.1/6 2.0 25 13 0

[[X],[X,Y],[Y]] 1.2/1.9 47 5.1/6 2.0 25 13 1)
read(X, Y) [[Y]] 1.5/12.1 22 8.3/11 1.5 18 11 0

[[X],[Y]] 66.4/77.0 73 11.5/25 257.9 270 115 0
boyer(X) [] 1.7/5.4 15 7.8/14 4.0 45 19 0

[[X]] 1.7/5.4 13 8.5/14 4.0 44 18 (1
peep(X, Y) [[Y]] 4.1/37.5 60 4.7/12 7.3 28 7 0

I[XI, [Y]] 11.1/44.5 63 6,0/12 19.8 36 10 0
ann(X, Y) [[X], [Y]] 22.2/440.3 69 9.3/33 27.8 40 11 2.4

[[X],[X,Y],[Y]] 22.1/440.2 69 9.4/33 27.7 39 10 2.4

• Size: a m e a s u r e o f the a v e r a g e / m a x i m a l sizes of the answers for the looked
up quer ies (gives a rough idea o f the complex i ty o f the abs t rac t unif icat ion
o p e r a t i o n s involved):

• >1 and >2: the n u m b e r of fixed po in t c o m p u t a t i o n s that t ake m o r e than one
and two i tera t ions . These are the non- t r iv ia l compu ta t ions . No te tha t the last
i t e r a t ion usual ly t akes much less t ime than the others . Thus, the >2 compu-
ta t ions a re b o u n d to be m o r e costly than those which involve only two
i tera t ions ;

• A: the % of p r o g r a m points at which the in fo rma t ion in fe r red by the GD reuse
is less than tha t o b t a i n e d by the s t anda rd GD sta'dard approach .

6. DISCUSSION

C o n s i d e r first the two a l te rna t ives for goal i n d e p e n d e n t t op -down analyses. Tab le 1
ind ica tes tha t for Prop and Asub, GI ef is consis tent ly fas ter than G I n. On the
o t h e r hand, for Sharing t he re a re cases where this d i f fe rence is not as large, and a
few in which G I n is faster . To this end we no te that the abs t rac t con junc t ion
funct ions for Prop and Asub are re la t ively s imple . H e n c e while the cost o f the
add i t i ona l con junc t ions i n t roduced by the efficient schema is re la t ively small , the
cost o f analyzing the extra call pa t t e rn s i n t roduced by the naiue schema is avoided .
F o r Sharing, this is not the case. D a t a desc r ip t ions can b e c o m e very large in which

258 M. CODISH ET AL.

T A B L E 4. A s u b results

Name Q u e ~

G O reuse

Tm LU Size

G D standara A

Tm >1 >2 %

init(X,Y,Z,W) [IX, Y],[1) 0.3/0.5
([X],[1) 0.3/0.5
([],[]) 0.3/0.5

seri(X, Y) ([X],[]) 0.1/0.3
([],[]) 0.1/0.3
([],[IX, Y]]) (/.4/0.6

map(X,Y,Z,W) ([X],[]) 0.3/0.5
gram(X,Y) ([],[1) 0.0/0.0

([],[[X, Y]]) 0.1/0.1
brow(X,Y) ([],[]) 0.6/0.9

([], [l) 0 .1 /04
([], [[X, Y]]) 0.6/0.9

bid(X,Y,Z) ([],[]) 0.5/0.8
derv(X,Y,Z) ([X, Y],[]) 3.1/3.7

([X],[l) 3.1/3.7
rdtk(X,Y) ([l,[]) 1.0/1.7

([],[[X, Y]]) 1.0/1.7
read(X, Y) ([X],[]) 4.8/6.9

([1,[1) 3.7/5.8
boyr(X) ([X],[1) 0.8/1,5

([],[]) 0.8/1.5
peep(X, Y) ([x] , []) 1.7/3,5

([],[]) 1.9/3,7
ann(X,Y) ([],[]) 3.9/6.8

([l , [[x, g]]) 5.4/8.3

9 3.9/5
12 3.3/5
9 3.9/5
8 2.5/4
8 2.5/4
9 4.4/7
6 5.0/11
0 0.0/0
0 0.0/0

18 3.1/5
9 0.8/2

13 3.1/5
8 1.9/3

72 2.7/5
72 2.7/5
43 1.8/3
43 1.8/3
61 2.3/3
46 2.3/3
15 2.0/3
15 2.0/3
58 3.3/10
58 3.3/10
79 4.8/16
94 4.7/16

0.4 5 0 0
0.5 8 0 0
0.4 6 0 0
0.2 5 1 12.5
0.2 5 1 12.5
0.4 6 1 12.5
0.3 2 0 0
0.0 0 0 0
0.1 0 0 0
0.5 7 0 71.4
0.2 6 0 0
0.7 9 0 0
0.3 0 0 76.2
0.8 0 0 91.1
0.8 0 0 91.1
1.4 23 12 17.9
1.4 23 12 17.9
1.8 18 11 74.5

10.4 121 50 0
1.4 45 19 0
1.4 45 19 0
2.5 21 3 0
3.0 25 6 0
5.1 37 9 6.5
6.6 40 10 6.5

case the abstract operations can become very time consuming. There are three
reasons why the efficient schema can cause a slow-down. (1) The extra variables
which are introduced can sometimes cause substantially larger data descriptions.
(2) The loss of precision with respect to the naive schema can sometimes cause
substantially larger data descriptions. (3) Computing the result for a more instanti-
ated call pattern first can sometimes reduce the number of iterations needed for
the more general call pattern, giving an overall reduction in the time needed to
analyze the predicate.

Concerning precision, for Prop both techniques give identical results; for Shar-
ing, relatively high precision is maintained by GI el, while for Asub there is some
loss when using GI ef. Given the fact that Asub is a weaker domain GI ef presents a
reasonable precis ion/cost compromise.

To compare the standard goal dependent analysis (GD 'tanaara) with the two
phase approach using GI ef and GD , the accumulated cost of both phases
(GIef+ G D) must be considered. On this comparison, the results are mixed.
While almost consistently favorable for Prop, the results are very erratic for
Sharing and almost consistently worse for the fast Asub analysis. We attribute this
to the fact that a very efficient fixed point is being used in GD standara which, by
keeping track of data dependencies and incorporating several other optimizations,
performs very few fixed point i terat ions--often none. The real advantage of a goal
independent analysis is for cases when we are interested in the analysis for more
than one initial query pattern.

G O A L I N D E P E N D E N C E IN L O G I C P R O G R A M S 259

Having performed already the goal independent phase the cost of GD is
almost consistently faster than GD stanaara, although not as much as one might
expect. The advantage of GD re"~e over GD stanaard is proportional to the number of
fixed points avoided by performing look-up's in GD re"se. A measure of this can be
observed from the " > l " and ">2" columns which indicate the number of "heavy"
fixed point computations in the G D stanaa~a approach. Any time the number in
these columns is high the advantage of performing a two phase analysis is
significant. The exception is for the weakest Asub domain where the loss in
precision in the two phase analysis has its influence also on the cost for several of
the benchmark programs.

As for precision, both techniques give identical results for Prop and almost
identical results for Sharing. This is quite surprising and indicates that in practice
the least upper bound operation does not cause much loss of information in the
Sharing domain. For the read benchmark some information is lost by GI ef however
there is no loss of information with respect to GD ~ta'aa'd after the GD pass.
This is due to the fact that the predicate in which loss of precision occurs are not
used in the goal dependent computation for the given query patterns. Less
surprising is the fact that the weaker Asub domain presents a more relevant loss of
precision.

Overall one can say that the two-phase analysis is beneficial for domains such as
Prop where there is no loss of precision, almost no slow down and often a
substantial speed-up, in particular for programs requiring a rather high analysis
time. As another example in this class, we mention the analysis aiming at detecting
possible aliases between memory cells which is part of the liveness analysis of [22].
A two phase analysis for this domain is described in [3]. Substantial speed-ups are
expected. For domains such as Sharing, the results are mixed. The lack of additivity
sometimes incurs a small loss of precision. More importantly, the goal independent
analysis can sometimes be expensive, due to the much larger data descriptions
which can show up during a goal independent analysis. Finally, the results are
negative for a domain as Asub which also lacks commutativity, there is a substan-
tial loss of precision, while there is also a slow down.

In addition we can mention that the combined two phase analyses described in
this paper are particularly beneficial in situations where the results of a goal
independent phase are reused many times. One such case is when programs reuse
their predicates in several ways and with different call patterns. However, while
this does happen sometimes in typical programs, it is not frequent. A more typical
example is for library modules which may be preanalyzed to obtain goal indepen-
dent information that can be stored with the module. Then, only the GD pass
is needed to specialize that information for the particular goals pattern correspond-
ing to the use of the library performed by the program that calls it.

Because the look-up operation in GD uses a safe approximation of the
success pattern, the analysis computes information which is guaranteed to be a post
fixpoint. It might be interesting to investigate whether narrowing of this post-fixpoint
[13] allows obtaining the same precision as G D ~ta'a'rd.

REFERENCES
1. Barbuti, R., Giacobazzi, R., and Levi, G., A General Framework for Semantics-Based

Bottom-Up Abstract Interpretation of Logic Programs, ACM Transactions on Program-
ming Languages and Systems 15(1):133-181 (1993).

260 M. CODISH ET AL.

2. Bruynooghe, M., A Practical Framework for the Abstract Interpretation of Logic
Programs, Journal of Logic Programming 10(2):91-124 (1991).

3. Bruynooghe, M., Janssens, G., and Kagedal, A., Live-Structure Analysis for Logic
Programming Languages with Declarations, CW Report No. 231, Department of
Computer Science, K. U. Leuven, 1996.

4. Codish, M., Dams, D., and Yardeni, E., Bottom-Up Abstract Interpretation of Logic
Programs, Journal of Theoretical Computer Science 124:93-125 (1994).

5. Codish, M., Garcia de la Banda, M., Bruynooghe, M., and Hermenegildo, M., Goal
Dependent vs Goal Independent Analysis of Logic Programs, in: Proceedings of the
Fifth International Conference on Logic Programming and Automated Reasoning, LNAI
822, 305-320 (1994).

6. Codish, M. and Demoen, B., Analysing Logic Programs Using "Prop"-ositional Logic
Programs and a Magic Wand, Journal of Logic Programming 25(3):249-274 (1995).

7. Codish, M., Mulkers, A., Bruynooghe, M., Garcfa de la Banda, M., and Hermenegildo,
M., Improving Abstract Interpretations by Combining Domains, ACM Transactions on
Programming Languages and Systems 17(1):28-44 (1995).

8. Corsini, M., Musumbu, K., Rauzy, A., and Le Charlier, B., Efficient Bottom-Up
Abstract Interpretation of Prolog by Means of Constraint Solving over Symbolic Finite
Domains, in: Proceedings of the Fifth International Symposium on Programming Language
Implementation and Logic Programming, LNCS, Talin, Aug. 1993, Springer-Verlag.

9. Cortesi, A., Fil6, G., and Winsborough, W., Prop Revisited: Propositional Formula as
Abstract Domain for Groundness Analysis, Proceedings of the Sixth IEEE Symposium
on Logic in Computer Science, IEEE Press, 1991, 322-327.

10. Cortesi, A., Fil~, G., and Winsborough, W., Comparison of Abstract Interpretations, in:
M. Kuich (ed.), Proceedings of the 19th International Colloquium on Automata, Lan-
guages and Programming (ICALP'92), LNCS 623, Wien, Austria, 1992, pp. 521-532.

11. Cortesi, A., Fil6, G., and Winsborough, W., Optimal Groundness Analysis Using
Propositional Logic. Journal of Logic Programming 27(2):137-167 (1996).

12. Cousot, P. and Cousot, R., Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints, Proceedings of the
Fourth ACM Symposium on Principles of Programming Languages, 1977, pp. 238-252.

13. Cousot, P. and Cousot, R., Abstract Interpretation and Application to Logic Programs,
Journal of Logic Programming 13(2/3):103-179 (1992).

14. Falaschi, M., Levi, G., Martelli, M., and Palamidessi, C., Declarative Modeling of the
Operational Behavior of Logic Languages, Theoretical Computer Science 69(3):289-318
(1989).

15. Gallagher, J., Codish, M., and Shapiro, E., Specialisation of Prolog and FCP Programs
Using Abstract Interpretation, New Generation Computing 6:159-186 (1988).

16. Jacobs, D. and Langen, A., Static Analysis of Logic Programs for Independent and
Parallelism, Journal of Logic Programming 13(2/3):291-314 (1992).

17. Janssens, G., Bruynooghe, M., and Dumortier, V., A Blueprint for an Abstract
Machine for Abstract Interpretation of (Constraint) Logic Programs, in: Proceedings of
the 1995 International Symposium on Logic Programming, MIT Press, 1995, pp. 336-350.

18. Le Charlier, B. and Van Hentenryck, P., Groundness Analysis for Prolog: Implementa-
tion and Evaluation of the Domain Prop, Journal of Logic Programming 23(3):237-278
(1995).

19. Le Charlier, B. and Van Hentenryck, P., Experimental Evaluation of a Generic
Abstraction Interpretation Algorithm for Prolog, ACM Transactions on Programming
Languages and Systems 16(1):35-101 (1994).

GOAL INDEPENDENCE IN LOGIC PROGRAMS 261

20. Marriott, K. and S0ndergaard, H., Bottom-Up Abstract Interpretation of Logic Pro-
grams, in: Proceedings of the Fifth International Conference and Symposium on Logic
Programming, Seattle WA, Aug. 1988.

21. Marriott, K. and Scndergaard, H., Precise and Efficient Groundness Analysis for Logic
Programs, A CM Letters on Programming Languages and Systems, 2(1-4):181-196 (1993).

22. Mulkers, A., Winsborough, W., and Bruynooghe, M., Live-Structure Data-Flow Analy-
sis for Prolog, A CM Transactions on Programming Languages and Systems 16(2):205- 258
(1994).

23. Muthukumar, K. and Hermenegildo, M., Compile-Time Derivation of Variable Depen-
dency Using Abstract Interpretation, Journal of Logic Programming 13(2/3):315-347
(1992).

24. Sondergaard, H., An Application of Abstract Interpretation of Logic Programs:
Occur-Check Reduction, Proceedings of ESOP 86, LNCS 213, Springer-Verlag, 1986,
pp. 327-338.

