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EXPLOITING GOAL INDEPENDENCE IN THE ANALYSIS 
OF LOGIC PROGRAMS 

M I C H A E L  CODISH,  MAURICE BRUYNO OGHE ,  

MARIA GARCIA DE LA BANDA, AND MANUEL H E R M E N E G I L D O  

I> This paper illustrates the use of a top-down framework to obtain goal 
independent analyses of logic programs, a task which is usually associated 
with the bottom-up approach. While it is well known that the bottom-up 
approach can be used, through the magic set transformation, for goal 
dependent analysis, it is less known that the top-down approach can be 
used for goal independent analysis. The paper describes two ways of doing 
the latter. We show how the results of a goal independent analysis can be 
used to speed up subsequent goal dependent analyses. However this 
speed-up may result in a loss of precision. The influence of domain 
characteristics on this precision is discussed and an experimental evalua- 
tion using a generic top-down analyzer is described. Our results provide 
intuition regarding the cases where a two phase analysis might be worth- 
while. © Elsevier Science Inc., 1997 <1 

1. INTRODUCTION 

The framework of abstract interpretation [12] provides the basis for a semantic 
approach to data-flow analysis. A program analysis is viewed as a nonstandard 
semantics defined over a domain of data descriptions where the syntactic con- 
structs in the program are given corresponding nonstandard interpretations. For a 
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given language, different choices of a semantic basis for abstract interpretation 
may lead to different approaches to analysis of programs in that language. For 
logic programs we distinguish between two main approaches which have been 
termed: "bottom-up analysis" and "top-down analysis" [20]. Bottom-up analyses 
are typically based on abstractions of bottom-up semantics such as the classic Tp 
semantics, while top-down analyses are typically based on abstractions of top-down 
semantics such as the SLD semantics. In addition, we distinguish between "goal 
dependent" and "goal independent" analyses. Intuitively, a goal dependent analysis 
provides information about the possible behaviors of a specified set of initial goals 
and a given logic program. In contrast, a goal independent analysis considers the 
program in isolation. 

Traditionally, the standard meaning of a logic program P is given as the set of 
ground atoms in P' s  vocabulary which are implied by P. The development of 
top-down analysis frameworks was originally driven by the need to abstract not 
only the declarative meaning of program, but also their behavior. To this end it is 
straightforward to enrich the operational SLD semantics into a collecting seman- 
tics which captures call patterns (i.e., how particular predicates are activated while 
searching for refutations), and success patterns (i.e., how call patterns are instanti- 
ated by the refutation of the involved predicate). Consequently, it is quite natural 
to apply a top-down approach to derive goal dependent analyses. 

Falaschi et al. [14] introduce the s-semantics which bridges the gap between the 
declarative bottom-up semantics and the operational top-down semantics for logic 
programs. This semantics basically consists of a nonground version of the bottom-up 
T e operator. The meaning of a program is a set of possibly nonground atoms which 
can later be applied to determine the answers for arbitrary initial goals. This 
semantics is the basis for a number of frameworks for the bottom-up analysis of 
logic programs [1, 4]. An analysis based on the abstraction of this semantics is 
naturally viewed as goal independent. It computes an abstraction of the answers to 
most general queries which in turn can be used to determine abstract answers to 
arbitrary queries. 

Bottom-up computations have also been used for query evaluation in the 
context of deductive databases where "magic sets" and related transformation 
techniques are applied to make the evaluation process goal dependent. These same 
techniques have also been applied to enable bottom-up frameworks of abstract 
interpretation to support goal dependent analysis (see [4] for a list of references). 
In contrast, the practical application of top-down frameworks for goal independent 
analysis has received little attention. 

This paper describes the application of a top-down framework of abstract 
interpretation to the goal independent analysis of logic programs. An immediate 
benefit is to make goal independent analyses readily available using existing 
top-down frameworks. 

2. TOP-DOWN GOAL INDEPENDENT ANALYSIS 

Falaschi et al. [14] illustrate that the computed answers for an arbitrary initial goal 
G with a program P can be obtained by solving G in the s-semantics of P. Various 
bottom-up frameworks of abstract interpretation for logic programs (e.g., [1, 4]) 
take advantage of this fact to provide for the goal independent bottom-up analysis 
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of logic programs. It is straightforward to apply also a top-down framework to 
provide for such goal independent analyses. This follows from the observation [14] 
that the s-semantics, [[P]] of a program P is determined by: 

p( f f )0  p / n  ~ pred( P) and 0 is a 
[[ P]] = computed answerforp( Yc) ' 

where ~ is an n-tuple of distinct variables and pred(P) is the set of predicate 
symbols defined in P. An approximation of the s semantics of a program can be 
obtained in a top-down framework by analyzing the set of "most general" initial 
goal descriptions (p(~); K~> where p / n  is a predicate in P and K, is the (most 
precise) description of the empty substitution, for the abstract domain at hand. The 
same result can be obtained with a single application of the top-down framework 
by adding to P the set of clauses 

{analyze ~ p( $ ) [ p / n  ~ pred( P ) } , 

where ana~yze/O fEpred(P). In this way, starting the analysis with the initial call 
pattern (analyze; K,) there is a call pattern (p($); K,) for every p / n  ~pred(P). We 
will refer to this transformation as the naive transformation and the corresponding 
analysis as the naive analysis. 

The experimental results described in this paper are obtained using the top-down 
framework, PLAI, described in [23]. However, the proposed techniques are general 
and typically described in terms of source level transformations. Consequently, it is 
straightforward to provide similar functionalities using other top-down frameworks 
based on [2] such as for example those described in [19] (GAIA) and in [17] 
(AMAI). 

The experiments described in this paper are based on three well known abstract 
domains: Prop [8, 9, 11, 18], Sharing [16, 23] and ASub [24]. For sharing analysis, 
data descriptions are represented as lists of lists of variables which appear as 
comments in the text of the program. The information describes properties of 
possible substitutions when execution reaches different points in the clause. The 
information given after the clause head describes properties of variables after 
performing head unification. The information given after each subgoal describes 
properties of variables after executing the clause body up to and including that 
subgoal. 

Example 2.1. Consider the following simple program P: 

length(Y,N) :- length (Y, O, N) . 

length([ ] ,N,N) . 

length( [XIXs] ,NI,N) :-N2 is NI+I, length(Xs,N2,N) . 

The naive transformation adds the following clauses to P: 

analyze : - length (X, Y) . 

analyze : - length (X, Y, Z) . 
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A top-down Sharing analysis of the transformed program with the initial call 
pattern (analyze;[ ]) gives the following annotations: 

(i) analyze:- %[ IX] , [Y] ] 

length(X,Y) . %[[X]] 

(2) analyze:- %[ [X] , [Y] , [Z]] 

length(X,Y,Z) . %[[X], [Y,Z]] 

(3) length(Y,N) :- %[ [Y] , [N]] 

length(Y,O,N) . %[[Y] ] 

(4) length( [ ] ,N,N) . %[ [N] ] 

(5) length( [XIXs],NI, N ) :- %[ [NI],[N],[X],[X,Xs],[Xs],[N2] ] 

N2 is NI+I, %[[N], [X], [X,Xs], [Xs]] 

length(Xs,N2,N) . %[[X] , [X,Xs] , [Xs]] . 

Intuitively, each list [v~ . . . . .  u n] in an annotation represents a set of clause 
variables and specifies that there may be a runtime environment in which these are 
exactly the variables which are bound to terms containing a common variable x. If 
a variable tJ does not occur in any list, then there is no variable that may occur in 
the terms to which v is bound and thus those terms are definitely ground. If a 
variable v appears only in a singleton list, then the terms to which it is bound may 
contain only variables which do not appear in any other term. For example, after 
executing the recursive call in clause (5) the variables N, N1 and N2 are ground 
while X and Xs possibly share. 

The analysis provides also the following information indicating the set of call 
and success patterns: 

Atom Call Pattern Success Pattern 

analyze [ ] [ ] 
length(A,B,C) [[A], [B], [C]] [[A], [B,C]] 
length(A,B) [[h], [B]] [[A]] 
length(A,O,B) [[i], [B]] [[h]] 
length(A,B,C) [[A], [C]] [[i]] 

The first three rows in this table provide the goal independent information as 
obtained in a bottom-up analysis. The other two rows correspond to information 
inferred for additional call patterns which arise in the course of the analysis. For a 
more detailed description of the Sharing domain see [16] and [23]. 

Observe that the analysis described in Example 2.1 is inefficient in that it 
provides information concerning call patterns which are not required in a goal 
independent analysis. A more efficient goal independent analysis is obtained by 
transforming the program so that all of the calls in the body of a clause are "flat" 
and involve only fresh variables. As a consequence, any call encountered in the 
top-down analysis is in its most general form and corresponds to the most general 
call patterns required by a goal independent analysis. In the sequel this transfor- 
mation is referred to as the efficient transformation and involves replacing each 
call of the form q(D in a clause body by q(~), ff = } l where ~ are fresh variables. 
The corresponding analysis is called the efficient analysis. 

1 Note however that, due to the transformation, the abstraction of built-ins such as is/2 has to be 
adapted. See the discussion at the end of Section 4. 
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Example 2.2. Applying the efficient transformation to the program in Example 2.1 
gives 

analyze : - length (X, Y) . 

analyze: - length (X, Y, Z) . 

length (Y, N) :- 

length (Ya, Ma, Na) , 

<Y, O, N ) -  (Ya,  Ma, Na) .  

length( [ ] ,N,N) . 

length( [xlxs] ,NI ,N) :- 
N2 is NI+I, 

length(Xsa,N2a,Na) , 

<Xsa, N2a, Na> : <Xs,N2, N>. 

A goal independent analysis of this program eliminates the last two rows in the 
table of Example 2.1. 

This paper illustrates that the "efficient" transformation often provides a 
substantial speed-up over the "naive" approach. However, for some types of 
domains, there can be a loss of precision which can exceptionally also increase the 
cost of the analysis. This is discussed in Section 4. Applying a top-down analysis on 
the transformed program gives an analysis which is closely related to the work of 
Jacobs and Langen [16]. 

Finally, we would like to point out the strong similarities between the efficient 
analysis described above, and a bottom-up analysis which traverses the clause 
bodies from left to right. Consider the analysis of a call p(}) in some clause body 
under a data description K i. The bottom-up analyzer solves the atom p 0 )  against 
the abstraction of the s-semantics of the atom p / n  (by analyzing an equality $ = t) 
and uses the result to update Ki into a data description Kj. The top-down efficient 
analysis solves p($) ,  ~ = t under a data description K i, which differs from K i in 
expressing that ~ are fresh variables. In doing this, it first analyses p($)  by 
computing an abstraction of the s-semantics of p / n  (or looks it up if it has been 
computed before) and using this result to update the description of 2 in K~,. Then, 
it performs the analysis of ~ --- t which has the effect of solving the call p ( t )  against 
the abstracted s-semantics of p / n  and of updating the data description into a Kj,. 
Assuming that the same abstraction of the s-semantics of p / n  is used, one can 
expect that Kj,, after projecting out the variables $, is the same as Kj. 

3. REFUSING GOAL INDEPENDENT INFORMATION 

In this section we illustrate how the results of a goal independent analysis can be 
used (and reused) to derive goal dependent  information. There are two issues 
involved: (1) using the result of the analysis to obtain abstract answers for an 
abstract call; and (2) using the result of the analysis to obtain an approximation of 
the set of call patterns which arise in the computation of a given initial call pattern, 
The first issue is extensively discussed in the literature, both for top-down frame- 
works as proposed by [16] and in the context of bottom-up frameworks as described 
in [1] and [4]. Basically, the abstract answers for a given call pattern are obtained by 
"solving" the call using the results of the goal independent phase. Also the second 
issue is considered in the literature. The basic concept, underlying the Magic-set 
transformation, is a recursive specification of the set of activated calls, for example 
as described in [1] and as formalized in [15]: (1) if a I . . . . .  a i , . . . ,  a m is an initial goal 
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then aiO is a call if 0 is an answer for a~ . . . . .  a i -  1 (in particular a 1 is a call); and (2) 
if h ~ bl , . . . ,  bi, . . . ,  b, is a (renamed) program clause, a is a call, mgu(a, h)= 0 
and q~ is an answer of (b~ . . . .  , bi ~)0 then biOq~ is a call. 

Our contribution is to perform this collection of activated call patterns effi- 
ciently from within a top-down analysis framework. Given the results of a goal 
independent analysis for P and an initial call pattern G, the call patterns for P and 
G are collected in a single pass over the program without performing any form of 
fixpoint iteration. 

We illustrate the approach with an example. 

Example 3.1. Consider a Sharing analysis of the following simple Prolog program. 

q(0,_,_,_,_,Y,V,V) . 

q(s(A) ,X,Y,Z,W,U,V) :-q(A,Z,W,U,V,X,Y) . 

The result of the goal independent analysis is: 

Atom 

q(A,X, Y, Z,W,U,V) 

Call Pattern 

[ [A] , [X] , [Y] , [Z] , [W] , [U] , ~] ] 

SuccessPattern 

[[X], [X,X], [Y], [Z], [Z,W], [W], [U], [U,V], IV]] 

This result is obtained after three iterations, for both the naive and the efficient 
analysis. In the first iteration, the analysis of the base clause yields sharing groups 
[x ] ,  [Y], [ z ] ,  [w], and [u,  v ] .  During the analysis of the recursive clause, it is 
observed that the recursive call q (A, z ,  W, U, V, x ,  Y) has the same call pattern as 
the original query. Thus, in order not to go into an infinite loop, the success pattern 
obtained so far (from the base clause) is used to estimate its success pattern. This 
yields the additional sharing groups [u ] ,  [v] and IX, Y]. The second iteration 
reanalyzes the second clause, now using the success pattern of the firm iteration to 
handle the recursive call and finds the additional share group [z ,  w]. After the 
third iteration no new sharing groups are found and, therefore, a fixpoint is 
reached. 

Now consider a goal dependent  analysis for a query q (A, X, Y, z ,  W, U, V) with 
the call pattern [ [ x ] ,  [Y],  [ z ] ,  [w],  [ u ] ,  [v] ] (i.e., A is ground). A standard 
top-down analysis will exhibit the same behavior illustrated above, i.e., it will 
require three iterations deriving as success patterns the sharing groups 
[x] , [Y] , [z]  , [w] and [ u , v ]  for the base case, plus [ u ] ,  [v] and [x ,Y]  for 
the first iteration, and [ z ,  w] for the second iteration. However, if the results of a 
goal independent analysis are available, the goal dependent  analysis can be 
sped-up as follows. The analysis of the base case proceeds as usual, obtaining the 
sharing groups [ x ] ,  [Y ] ,  [ 7. ] ,  [w] and [u,  v ] .  During the analysis of the recur- 
sive clause it is observed that the recursive call has the same call pattern as the 
original query. Hence, rather than using the success pattern of the base case to 
proceed, the analysis can use the goal independent analysis to derive the final 
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result by performing an abstract conjunction of the goal independent information 
([ [X], [X,Y], [Y], [Z],  [Z,W], [W], [U], [U,V ], [V] ] )2  with the call pattern 
([ [×],  [Y], [ z ] ,  [w], [u] ,  [v] 9. The result of the abstraction conjunction 
([ [x] ,  IX,Y], [Y], [ z ] ,  [ z ,w ] ,  [w], [u] ,  [ u , v ] ,  [v] ]) is known to be a safe 
data description for the program point following the recursive call. This informa- 
tion is propagated to the query and no iteration is required. 

This does not imply that each predicate is analyzed only once. Consider the 
same query, but with call pattern [ IX,Y] ,  [ z ] ,  [w], [u] ,  [ v i i .  During the 
analysis of the recursive clause, the goal dependent analysis (both the standard as 
well as our "reuse" version) creates a new call pattern [ [x] ,  [Y], [ z ] ,  [w], [u, 
v] ]. Applying the predicate for this pattern yields yet another call pattern, namely 
[ IX], [Y], [ z ,w ] ,  [u] ,  [v] ].This analysis of the recursive clause for this third 
pattern creates for the recursive call the same pattern as the initial call. At this 
point the traditional goal dependent analysis would use the result for the base 
clause and start iterations for each of the nested calls created during the analysis. 
(A quite complex process as the calls are nested, but which a system as PLAI 
performs in a clever way to minimize the overall work.) However, if goal indepen- 
dent information is available, the analysis can reuse such information yielding a 
safe data description that will be propagated to the rest of the calls without the 
need for any iteration. 

4. DOMAIN D E P E N D E N T  ISSUES 

There are several domain-dependent issues which significantly affect the precision 
of a program analysis. The following example illustrates that a naive top-down 
analysis can provide a more precise analysis for some programs. 

Example 4.1. Consider the following program: 

naive : - efficient : - 

Y=f(X,-) , Z=f(X,-), Y=f(X,-) , Z=f(X,_), 

q(Y,Z) . q(U,V), (U,V):(Y,Z) 

q(A,B) :-A:f (a,a) . 
q(A,B) :-B:f(a,a) . 

where the predicates naive/0 and efficient/0 correspond to our two differ- 
ent approaches for goal independent analysis. 

A top-down analysis based on the Sharing domain infers the groundness of x in 
n a i v e / 0  but not in e f f i c i e n t / 0 .  The reason is that q(Y,Z) is called with 
pattern [[Y],[Z],[X,Y,Z]]. After the analysis of q(Y,Z), although the Sharing 
domain cannot express that either Y or Z are ground, it definitely knows that they 

2 The result of  the goal- independent  analysis is stored as a pair call pattern-success pattern, e.g., for 
a binary predicate p/2, a pair could be [ [Xl]  IX2] ] [ [Xl]  [ X l , X 2 ]  ] . F o r  a normalized call, e.g., 
p(A, B), the success pattern is simply renamed into [ [A] [A, B] ]. For an unnormalized call, addition- 
ally an abstract unification has to be performed,  e.g., for P(f(A), B) the success pattern is renamed into 
[ [ x l ]  [ x 1 , 1 3 ] ]  and ,  addi t ional ly ,  the  uni f ica t ion  X1  = f(A) is ab s t r ac t ed  yie lding 
[ [XI,A] , [XI,A,B] ]. 
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cannot share, and thus X must be ground. On the other hand q(U,V) is called 
with pattern [[U], [V], [Y], [Z], [X, Y, Z]]. If the groundness of either U or V could 
be inferred after q(U, V), then the groundness of X could have been inferred due 
to (U,V)= (Y,Z) .  Unfortunately, the fact that U and V do not share after 
q(U, V) does not imply the groundness of X, and therefore this information is lost. 

The above example illustrates that the precision of an analysis is highly depen- 
dent on the ability of the underlying abstract domain to capture information which 
enables a good propagation of the property being analyzed. 

Jacobs and Langen [16] prove that analyzing p(t) and analyzing p(~), ~ = t are 
guaranteed to be equally precise when they involve an abstract unification function 
which is idempotent, commutative and additive. Consequently, under these condi- 
tions, the naive and efficient goal independent analysis are equally precise as well 
as the standard one phase and our two phase goal dependent analysis. Idempo- 
tence implies that repeating abstract unification does not change the result. 
Commutativity allows abstract unification to be performed in any order. Finally, 
additivity guarantees that precision is not lost when performing least upper bounds. 
These conditions impose a restriction on the abstract domain which must support 
an abstract unification algorithm satisfying these properties. Marriott and 
S0ndergaard refine the terminology introducing the notion of a condensing domain 
[21]. It is interesting to note that most of the domains used in practice are not 
additive, and many not even commutative or idempotent. Consequently, the answer 
to the question can we benefit from goal independent analyses (top-down or bottom-up) 
remains an issue for practical experimentation. 

In the remainder of the paper we describe an experimental investigation 
involving the three well known abstract domains, Prop, Sharing and ASub. Note 
that Prop comes equipped with an abstract unification operation which is idempo- 
tent, commutative and additive; Sharing with an operation which is idempotent and 
commutative; and ASub with an operation which is additive. Our choice of 
domains is intended to illustrate the influence of domain properties on its ability to 
support precise and efficient goal independent analysis. For a comparison of these 
three domains see [10]. 

It is interesting to note that domain properties such as idempotence, commuta- 
tivity and additivity have more influence on goal independent than on goal 
dependent analyses. This is because, operations in a goal independent analysis 
involve "more general" substitutions as there is no propagation of inputs from an 
initial goal. Consequently, accuracy can be lost in weaker domains and may also 
slow down analyses in domains where loss of accuracy, incurs larger representa- 
tions. As an example, in ASub, when groundness information propagates from an 
initial goal, the inability of the domain to capture groundness dependencies has 
less effect on accuracy than in a goal independent analysis. In fact we observe in [7] 
that the groundness information obtained with ASub is essentially the same as that 
obtained with Sharing in a goal dependent setting (for a rich set of benchmarks). 
We reason that most real Prolog programs tend to propagate groundness in a 
top-down manner. However, the absence of such properties becomes more relevant 
in goal-independent analyses, although less important in naive top-down analyses 
than in bottom-up or efficient top-down analyses. 

Another important issue concerns the analysis of Prolog built-ins. In standard 
top-down analysis, the data descriptions in a program point describe the substitu- 
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tions which are possible at that point during the actual execution of the program. 
This can be exploited in defining the abstraction of built-ins. Consider for example 
an abstract domain which captures definite freeness information. In a standard 
top-down analysis if we know that the clause p (x, Y) : - g r o u n d  ( x ) ,  Y=a is 
called with X a free variable then we may assume that the clause fails. This is no 
longer the case when performing a goal independent analysis (whether naive or 
efficient). Here one has to abstract the built-ins under the assumption that the 
substitutions which occur during the execution are not only those described by the 
data descriptions, but also their instances. As a free variable can have ground 
instances, failure cannot be assumed in the above example. However, it remains 
valid to claim that X is ground after executing the built-in. So, when doing a goal 
independent analysis, all abstractions of built-ins have to be reconsidered. 

5. OBJECTIVES, EXPERIMENTS AND RESULTS 

Our objective is to illustrate the relative impact of the issues discussed in the 
previous sections on efficiency and accuracy of goal independent analyses. We 
compare the standard top-down, goal dependent analysis with the alternative two 
phase analysis which first infers goal independent information and then reuses it to 
obtain goal dependent information for given initial goals. For goal independent 
analyses we compare the naive and efficient approaches described in Section 2. The 
experiments focus on the domains ASub, Sharing, and Prop. For Prop the analyzer 
is run on an abstract version of the program as described in [6]. The benchmark 
programs are the same as those used in [7] 3 and they range in size from two clauses 
with five variables (occurrences) to 227 clauses with 869 variables. All analyses are 
obtained using SICStus 2.1 (native code) on a SPARC10. All times are in seconds. 

Table 1 presents the results of the goal independent experiments for the three 
domains considered. For each benchmark program (in the Name column) the table 

3 Benchmark names abbreviated as follows: init (init susbt), seri (serialize), map (map-color), gram 
(grammar), brow (browse), derv (deriv), rdtk (rdtok), boyr (boyer), peep (peephole). 

T A B L E  1. Goal Independent results  

Prop Sharing ASub 
Name GI ef GI n Size n GI ef GI n Size n A GI ef GI n Size n A 

irfit 0.2 3.3 2 .9 /7  0.9 173.5 
seri 0.5 9.1 2 .8 /8  0.7 3.0 
map 0.1 1.1 2 .2 /4  1.4 1.9 
gram 0.1 0.1 1 .4 /2  0.1 0.1 
brow 0.3 2.5 1 .8/3  3.9 14.0 
bid 0.2 1.9 1 .7/3  0.5 1.4 
derv 0.6 2.1 2 .3 /6  0.8 1.9 
rdtk 0.3 1.2 1 .7 /4  0.7 1.5 
read 2.3 93.7 3 .1 /26  10.6 206.0 
boyr 0.7 6.3 2 .6 /9  3.7 7.5 
peep 2.4 15.7 4 .6 /11 33.4 19.4 
ann 1.8 69.2 2 .9 /10  418.1 381.8 

6 .7 /12 
5 .3 /12  
5.27 
3 .7 /5  
5 .2 /12  
3 .8 /8  
5 .4 /9  
4 .8 /8  
8 .4 /67 
6 .1 /35 

10.8/24 
11 .0 /60  

0 0.2 0.4 2 .7 /6  0 
0 0.2 0.2 2 .0 /4  0 
0 0.2 0.3 2 .0 /5  0 
0 0.0 0.0 0 .7/1  0 
0 0.3 1.1 1 .3/4  12 
0 0.3 1.0 0 .8 /3  5 
0 0.6 2.1 1.7/3 0 
0 0.7 1.0 1.3/3 33 
4 2.1 9.3 1 .3/9  4 
0 0.7 1.1 2.3/11 0 
0 1.8 2.9 3 .4 /6  0 
6 2.9 11.5 4 .2 /19  3 
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describes the following information: 

• Glef: time for the efficient top-down goal independent analysis. 

• Gin: time for the naive top-down goal independent analysis. 

• Sizen: A measure of the average/maximal sizes of the results given by the 
naive goal independent analyses: For Prop, the number of disjuncts in the 
resulting disjunctive normal forms; for Sharing, the number of lists of 
variables in the lists of lists representations; and for ASub, the number of 
pairs of variables in the corresponding abstract substitutions. 

• A: the percentage of predicates for which the analysis using GI ef is less 
accurate than that obtained by Gin. 4 

Tables 2, 3, and 4 present the results of the goal dependent experiments for the 
Prop, Sharing, and Asub domains respectively. For each benchmark program the 
Name and Query columns describe the program, the arguments of its top-level 
predicate and several initial goal patterns (for Prop, a propositional formula on the 
variables of the top-level predicate). The results for the goal dependent analyses 
(with loop-up and standard) are given under the heading GD . . . . .  and G D  standard. 

The other columns describe: 

• Tin: the time for the respective analyses, for CJD reuse, times exclusive/inclu- 
sive the time for the efficient goal independent analysis are given; 

• LU: the number of look-ups into the goal independent phase; 

4 Only for Sharing and ASub (for Prop both techniques give identical results). 

TABLE 2. Prop results 

GDreuse GDStandard 

Name Query Tm LU Size Tm > 1 > 2 

i n i t ( X , Y , Z , W )  X /x Y 1.1/1.3 58 
X 1.2/1.4 66 
true 1.2/1.4 66 

seri(X,Y) X 5.7/6.2 161 
true 6.0/6.5 189 

map(X, Y, Z, W) X 1.0/1.1 64 
gram(X, Y ) true 0.1/0.2 0 
brow(X, Y) X A Y 1.8/2.1 123 

true 1.0/1.3 93 
bid(X, Y, Z)  X A Y A Z 0.3/0.5 14 
derv(X, Y, Z)  X A Y 0.4/1.0 30 

X 0.4/1.0 30 
rdtk(X, Y) true 1.2/1.5 55 
read(X, Y) X 1.7/4.0 57 

true 17.0/19.3 241 
boyr(X) X 2.5/3.2 92 

true 2.6/3.3 89 
peep(X, Y) X 2.8/5.2 146 

true 10.2/12.6 412 
ann(X, Y) true 12.7/14.5 488 

6.6/7 1.0 0 0 
6.0/7 1.2 3 1 
6.0/7 1.2 3 1 
6.9/8 13.7 74 32 
6.3/8 14.5 88 41 
3.0/4 1.5 26 11 
0.0/0 0.1 0 0 
2.2/3 2.9 49 17 
2.1/3 1.9 48 17 
2.4/3 O.3 0 0 
2.3/6 0.4 0 0 
2.3/6 0.4 0 0 
2.3/3 2,2 28 12 
2.4/5 2.4 15 7 

2.7/26 135.7 753 424 
2.8/9 4.6 122 72 
2.8/9 4.8 120 67 
3.1/5 6.0 98 47 
3.6/5 24.7 202 104 
3.0/6 58.4 217 95 
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TABLE 3. Sharing results 

Name 

GD "euse GD stand"'d A 

Query Tm LU Size Tm >1 >2 % 

init(X,Y,Z,W) [[Z],[W]] 0.2/1.1 9 8.0/10 0.2 0 0 0 
[[Y],[ZI,[W]] 0.7/1.6 15 9.5/16 0.9 6 1 0 
[[X],[Y],[Z],[W]] 98.1/99.0 21 32.4/70 193.7 21 4 0 

seri(X, Y) [[Y]] 2.8/3.5 14 12.4/23 3.0 8 0 1) 
[[X],[Y]] 2.9/3.6 14 12.7/23 3.1 8 0 0 
[[X],[X,Y],[Y]] 2.9/3.6 14 12.7/23 3.1 8 0 1) 

map(X,Y,Z,W) I[Y],[ZI,[W]] 1.5/2.9 5 7.4/I1/ 3.1 8 0 0 
gram(X, Y) [[X],[Y]] 0.1/0.2 0 0.0/0 0.1 0 0 0 

[[X],Ix, Y],[Yll 0.1/0.2 0 0.0/0 0.1 0 0 0 
brow(X, Y) [ ] 13,6/17.5 18 5.1/10 16.4 9 0 0 

[[X],[YI] 0.2/4.1 lO 4.2/7 0.4 8 0 0 
[[X],[X,Y],[Y]] 0.2/4.1 9 4.7/7 0.3 6 0 0 

bid(X, Y, Z) [ ] 0.3/0.8 7 3.9/6 0.3 0 0 0 
derv(X, Y, Z) [[Z]] 0.9/1.7 35 3.8/7 0.9 0 0 0 

[[Y],[Z]] 0.9/1.7 35 4.2/7 0.9 0 0 0 
rdtk(X,Y) [[X],[Y]] 1.2/1.9 47 5.1/6 2.0 25 13 0 

[[X],[X,Y],[Y]] 1.2/1.9 47 5.1/6 2.0 25 13 1) 
read(X, Y) [[Y]] 1.5/12.1 22 8.3/11 1.5 18 11 0 

[[X],[Y]] 66.4/77.0 73 11.5/25 257.9 270 115 0 
boyer(X) [ ] 1.7/5.4 15 7.8/14 4.0 45 19 0 

[[X]] 1.7/5.4 13 8.5/14 4.0 44 18 (1 
peep(X, Y) [[Y]] 4.1/37.5 60 4.7/12 7.3 28 7 0 

I[XI, [Y]] 11.1/44.5 63 6,0/12 19.8 36 10 0 
ann(X, Y) [[X], [Y]] 22.2/440.3 69 9.3/33 27.8 40 11 2.4 

[[X],[X,Y],[Y]] 22.1/440.2 69 9.4/33 27.7 39 10 2.4 

• Size: a m e a s u r e  o f  the  a v e r a g e / m a x i m a l  sizes of  the  answers  for  the  looked  
up  quer ies  (gives a rough  idea  o f  the  complex i ty  o f  the  abs t rac t  unif icat ion 
o p e r a t i o n s  involved):  

• >1 and  >2: the  n u m b e r  of  fixed po in t  c o m p u t a t i o n s  that  t ake  m o r e  than  one 
and  two i tera t ions .  These  are  the  non- t r iv ia l  compu ta t ions .  No te  tha t  the  last 
i t e r a t ion  usual ly  t akes  much  less t ime than  the others .  Thus,  the  >2 compu-  
ta t ions  a re  b o u n d  to be  m o r e  costly than  those  which involve only two 
i tera t ions ;  

• A: the  % of  p r o g r a m  points at which the in fo rma t ion  in fe r red  by the GD reuse 
is less than  tha t  o b t a i n e d  by the s t anda rd  GD sta'dard approach .  

6. DISCUSSION 

C o n s i d e r  first the  two a l te rna t ives  for  goal  i n d e p e n d e n t  t op -down  analyses.  Tab le  1 
ind ica tes  tha t  for  Prop and  Asub, GI ef is consis tent ly  fas ter  than  G I  n. On  the 
o t h e r  hand,  for  Sharing t he re  a re  cases  where  this d i f fe rence  is not  as large,  and  a 
few in which G I  n is faster .  To  this end  we no te  that  the  abs t rac t  con junc t ion  
funct ions  for  Prop and  Asub are  re la t ively  s imple .  H e n c e  while  the  cost  o f  the  
add i t i ona l  con junc t ions  i n t roduced  by the  efficient schema is re la t ively  small ,  the  
cost  o f  analyzing the  extra  call  pa t t e rn s  i n t roduced  by the naiue schema is avoided .  
F o r  Sharing, this  is not  the  case. D a t a  desc r ip t ions  can b e c o m e  very large in which 
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T A B L E  4. A s u b  results 

Name Q u e ~  

G O  reuse 

Tm LU Size 

G D  standara A 

Tm >1 >2 % 

init(X,Y,Z,W) [IX, Y],[ 1) 0.3/0.5 
([X],[ 1) 0.3/0.5 
([ ],[ ]) 0.3/0.5 

seri(X, Y) ([X],[ ]) 0.1/0.3 
([ ],[ ]) 0.1/0.3 
([ ],[IX, Y]]) (/.4/0.6 

map(X,Y,Z,W) ([X],[ ]) 0.3/0.5 
gram(X,Y) ([ ],[ 1) 0.0/0.0 

([ ],[[X, Y]]) 0.1/0.1 
brow(X,Y) ([ ],[ ]) 0.6/0.9 

([ ], [ l) 0 .1 /04  
([ ], [[X, Y]]) 0.6/0.9 

bid(X,Y,Z) ([ ],[ ]) 0.5/0.8 
derv(X,Y,Z) ([X, Y],[ ]) 3.1/3.7 

([X],[ l) 3.1/3.7 
rdtk(X,Y) ([ l,[ ]) 1.0/1.7 

([ ],[[X, Y]]) 1.0/1.7 
read(X, Y) ([X],[ ]) 4.8/6.9 

([ 1,[ 1) 3.7/5.8 
boyr(X) ([X],[ 1) 0.8/1,5 

([ ],[ ]) 0.8/1.5 
peep(X, Y) ([x] , [  ]) 1.7/3,5 

([ ],[ ]) 1.9/3,7 
ann(X,Y) ([ ],[ ]) 3.9/6.8 

([ l , [[x,  g]]) 5.4/8.3 

9 3.9/5 
12 3.3/5 
9 3.9/5 
8 2.5/4 
8 2.5/4 
9 4.4/7 
6 5.0/11 
0 0.0/0 
0 0.0/0 

18 3.1/5 
9 0.8/2 

13 3.1/5 
8 1.9/3 

72 2.7/5 
72 2.7/5 
43 1.8/3 
43 1.8/3 
61 2.3/3 
46 2.3/3 
15 2.0/3 
15 2.0/3 
58 3.3/10 
58 3.3/10 
79 4.8/16 
94 4.7/16 

0.4 5 0 0 
0.5 8 0 0 
0.4 6 0 0 
0.2 5 1 12.5 
0.2 5 1 12.5 
0.4 6 1 12.5 
0.3 2 0 0 
0.0 0 0 0 
0.1 0 0 0 
0.5 7 0 71.4 
0.2 6 0 0 
0.7 9 0 0 
0.3 0 0 76.2 
0.8 0 0 91.1 
0.8 0 0 91.1 
1.4 23 12 17.9 
1.4 23 12 17.9 
1.8 18 11 74.5 

10.4 121 50 0 
1.4 45 19 0 
1.4 45 19 0 
2.5 21 3 0 
3.0 25 6 0 
5.1 37 9 6.5 
6.6 40 10 6.5 

case the abstract operations can become very time consuming. There are three 
reasons why the efficient schema can cause a slow-down. (1) The extra variables 
which are introduced can sometimes cause substantially larger data descriptions. 
(2) The loss of precision with respect to the naive schema can sometimes cause 
substantially larger data descriptions. (3) Computing the result for a more instanti- 
ated call pattern first can sometimes reduce the number of iterations needed for 
the more general call pattern, giving an overall reduction in the time needed to 
analyze the predicate. 

Concerning precision, for Prop both techniques give identical results; for Shar- 
ing, relatively high precision is maintained by GI el, while for Asub there is some 
loss when using GI ef. Given the fact that Asub is a weaker domain GI ef presents a 
reasonable precis ion/cost  compromise. 

To compare the standard goal dependent analysis (GD 'tanaara) with the two 
phase approach using GI ef and GD . . . . .  , the accumulated cost of both phases 
(GIef+  G D . . . . .  ) must be considered. On this comparison, the results are mixed. 
While almost consistently favorable for Prop, the results are very erratic for 
Sharing and almost consistently worse for the fast Asub analysis. We attribute this 
to the fact that a very efficient fixed point is being used in GD standara which, by 
keeping track of data dependencies and incorporating several other optimizations, 
performs very few fixed point i terat ions--often none. The real advantage of a goal 
independent analysis is for cases when we are interested in the analysis for more 
than one initial query pattern. 
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Having performed already the goal independent phase the cost of GD . . . . . .  is 
almost consistently faster than GD stanaara, although not as much as one might 
expect. The advantage of GD re"~e over GD stanaard is proportional to the number of 
fixed points avoided by performing look-up's in GD re"se. A measure of this can be 
observed from the " > l "  and ">2" columns which indicate the number of "heavy" 
fixed point computations in the G D  stanaa~a approach. Any time the number in 
these columns is high the advantage of performing a two phase analysis is 
significant. The exception is for the weakest Asub domain where the loss in 
precision in the two phase analysis has its influence also on the cost for several of 
the benchmark programs. 

As for precision, both techniques give identical results for Prop and almost 
identical results for Sharing. This is quite surprising and indicates that in practice 
the least upper bound operation does not cause much loss of information in the 
Sharing domain. For the read benchmark some information is lost by GI ef however 
there is no loss of information with respect to GD ~ta'aa'd after the GD . . . . .  pass. 
This is due to the fact that the predicate in which loss of precision occurs are not 
used in the goal dependent computation for the given query patterns. Less 
surprising is the fact that the weaker Asub domain presents a more relevant loss of 
precision. 

Overall one can say that the two-phase analysis is beneficial for domains such as 
Prop where there is no loss of precision, almost no slow down and often a 
substantial speed-up, in particular for programs requiring a rather high analysis 
time. As another example in this class, we mention the analysis aiming at detecting 
possible aliases between memory cells which is part of the liveness analysis of [22]. 
A two phase analysis for this domain is described in [3]. Substantial speed-ups are 
expected. For domains such as Sharing, the results are mixed. The lack of additivity 
sometimes incurs a small loss of precision. More importantly, the goal independent 
analysis can sometimes be expensive, due to the much larger data descriptions 
which can show up during a goal independent analysis. Finally, the results are 
negative for a domain as Asub which also lacks commutativity, there is a substan- 
tial loss of precision, while there is also a slow down. 

In addition we can mention that the combined two phase analyses described in 
this paper are particularly beneficial in situations where the results of a goal 
independent phase are reused many times. One such case is when programs reuse 
their predicates in several ways and with different call patterns. However, while 
this does happen sometimes in typical programs, it is not frequent. A more typical 
example is for library modules which may be preanalyzed to obtain goal indepen- 
dent information that can be stored with the module. Then, only the GD .. . . .  pass 
is needed to specialize that information for the particular goals pattern correspond- 
ing to the use of the library performed by the program that calls it. 

Because the look-up operation in GD . . . . .  uses a safe approximation of the 
success pattern, the analysis computes information which is guaranteed to be a post 
fixpoint. It might be interesting to investigate whether narrowing of this post-fixpoint 
[13] allows obtaining the same precision as G D  ~ta'a'rd. 
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