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1. INTRODUCTION

The ignition model for a high activation energy thermal explosion of a
solid fuel in the n-dimensional unit sphere is given by

u,— Au= de", (&, 1)eR2x(0,0), 6>0

u(g, 0)=y(), e (1)
u(g, 1)=0, (& 1)edR2x[0, o),

where u(, t) is the temperature perturbation of the boundary temperature
of € and where (&) is a radially decreasing function (Y(&,) = y(&,) =0 for
[&,] <1, < 1) and Ay + 8 exp(¥) =0 on Q. This problem has been studied
by Kapila [4] and by Kassoy—Poland [5].

Let (£)=0. For each n>1, there is a critical value 6* such that if
0> 6*, then the solution to (1) is singular at a finite time, T. In fact,
solutions to (1) are radially symmetric, so u(&, t)=u(r, t), where r=|&|.
The equations in (1) can be rewritten as

n—1
v,=v,, +——v,+ de’, O<r<«i
r

v(r,0)=0, 0<r<1 (2)
v,(r,0)=0, v(l,1)=0, 01T,
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where 6 >6* Let t=T—1, x=rt~ "2 and 0(x, t)=v(r, t). It is suggested
by Kassoy and Poland [5] that the asymptotic representation of 8 for each
fixed x as 1 =20 is

0~ —In(dt) + y(x) + i ™y (x). (3)
k=1

Formally evaluating (2) with the above expression and grouping the
appropriate terms leads to the equation for y(x) as

-1
y”+(nx —;)y’«i—e’—l:o, 0<x< o, (4)

where 3'(0) =0 and matching conditions at the boundary of the hot spot
yield the condition 1+ 1xy’(x) >0 as x — co. An integration yields the
asymptotic condition y(x)~K—2 Inx as x — co. These boundary con-
ditions are summarized as

y'(0)=0, lim [1+3xy'(x)]=0. (5)

The nonexistence of solutions to (4), (5) for n=1 is answered by Beber-
nes and Troy [1]. Although 1,2, and 3 are the only physically relevant
values for », treating n as a continuous variable, nonexistence of solutions
to (4), (5) for 1 <n<2 is answered by Eberly [2]. Thus, the asymptotic
relationship (5) is not valid for dimensions 1 and 2.

Consider equation (4) with the initial values

y0)=aeR,  y'(0)=0. (6)

Let solutions to initial value problem (4)-(6) be denoted y(x, a). We prove
the following:

THEOREM. For each ne (2, 10), there is an unbounded sequence of positive
numbers {d,,(n)}e_, such that the solutions y(x,&,) to the initial value
problem (4)-(6) satisfy the limit condition in (5).

2. PRELIMINARY RESULTS

We will make use of a Wronskian argument throughout this paper. The
argument is given in

LemMAa 1. For x>0, let p(x) be a continuously differentiable positive
function and let q(x) be a nonnegative continuous function. Let L(x) be the



THE KAPILA-KASSOY PROBLEM 311

solution to [p{x)L'] +q(x)L=0, x>0, L(x,)=0, L'(x4)#0 for some
xo>0.

(i) Let N(x) be a function defined on a right (or left) neighborhood [
of xo such that N(xq)=0, N'(xo)=L'(x,), N(x)#0 for xeI—{x,}, and
[p(x)N') +q(x)N<O on I Then there is a right (or left) neighborhood J
of xo such that L(x)#0, N(x)#0, and N(x)< L(x) on J— {x,}.

(ii) If N(x) satisfies all the conditions in (i) except that [ p(x) N'] +
q(x) N=0 on I, then there is a right (or left) neighborhood J of x, such that
L(x)#0, N(x)#0, and N(x)> L(x) on J— {x,}.

Proof. The argument for (i) is given; the proof of (ii) is similar. Let
X2 x, and suppose that N'(x,)=L'(x4)>0. Then L(x)>0 and N(x)>0
on a right neighborhood J of x,. Define w(x)=L{x) N'(x)— L'(x)} N(x).
Then w(xy)=0 and [p(x)w] =L[p(x) N'] —q(x) LNKO since L>0.
Integrating from x, to x we obtain p(x)w(x) < p(xg) w(xy)=0. Thus,
w(x)<0 on J and (N/LY(x)=w(x)/[L(x)]*><0 on J. Integrating again
from x, to x leads to N(x)/L(x)< N'(xq)/L'(xo)=1. Since L>0 on J,
N(x)< L(x) on J. Equality is ruled out on J— {x,} by uniqueness to initial
value problems.

If x € xq, then L(x) <0 and N(x) <0 on a left neighborhood J of x,. For
w=LN — L'N, w(xg)=0and [ p(x) w]' =L[p(x) N’} —q(x) LN =0 since
L <0. Integrating from x to x,, we obtain 0= p(x,) w(x,) < p(x) w(x).
Thus, w(x)>0 on J and (N/L)(x)=w(x)/[L(x)]*>0 on J. Integrating
again from x to x, leads to N(x)/L{x) = N'(xq)/L'(xs)=1. Since L <0 on
J, N(x)< L(x) on J. As before, equality is ruled out by uniqueness to initial
value problems. A similar argument holds for L'(x,) <0. |

Lemma 2 (Existence). For each a € R, the initial value problem (4)-(6)
has a solution.

Proof. The case n=1 follows from standard existence results. Let n> 1
and make the change of variables x = rt, u(t) = y(x). Consider

. N
u+

a+i(e“—l—%ta)=0, O<t<l (7)
#(0)=0,  u(1)=0 (8)

where 1=r% Let B=C'[0,1] with the norm |u| =max,. o, 7 lu(?)| +
max, . ro, 17 [#(¢)|. Rewrite (7), (8) in the form

u=ALu+ F(4, u), 9
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where Lu(t)= [} 5" 'G(1, s)[u(s) — 3si(s)] ds, F(%, u)(t)=[4s"~'G(t, s)x
[e“®) —u(s)— 1] ds, and G(t, s) is a Green’s function. The function L: B— B
is a linear compact operator and the function F: R x B — B is a continuous
compact operator with F(4, u) = o(|lu||) as ¥ — 0, uniformly for 1 in boun-
ded intervals.

The only eigenvalue of v=ALv is 4,=2n and the eigenspace is spanned
by v(t)=1— ¢ Thus, A, is an eigenvalue of odd multiplicity. By the results
in Rabinowitz [6], there is a maximal, closed, connected set of solutions,
C(4), of (7), (8). Since 2, is the only eigenvalue of the linear problem, it
must be that C(4) is unbounded in R x B.

Each pair (4, u) € C(4) produces a pair (4, a) € R? where a = u(0) = y(0).
We claim that the set P= {(4, a)eR?* (4, u)e C(4)} is unbounded. For
>0, y(x, a) has the property that y(0)=oa and y(ﬂ)=0 with y(x)}>0
on [0, \/—A_). Let p(x)=x""le~ W and g(x)=1. Let v(x)=a(l — x*/2n).
Then [p(x)v'] +¢q(x)v=0 and [p(x)y'] +q(x) y<0 for x=0. By
Lemma 1, y(x)<v(x) while v(x)>=0. Thus, A <2r for all «>0.

Since C(4) is unbounded and A1 is bounded, either a=
max{|u(t)|: 1€ [0, 1]} or f=max{|u(s)|: 1€ [0, 1]} is unbounded. By an
integration of (4), it can be demonstrated that the boundedness of « implies
the boundedness of f. Thus, « cannot be bounded and (4)-(6) has a
solution for each o> 0.

For o <0, other arguments can be used to show that there are pairs
(4, o) € P, but the existence of solutions to (4)—(6) for a <0 is not relevant
to the development in the remainder of the paper. |

LEMMA 3 (Uniqueness). For each ocR, the initial value problem
(4)-(6) has a unique solution.

Proof. We give an outline of the proof. Suppose that y,(x) and y,(x)
are two solutions to (4)-(6) for a given a. Define 4(x)= y,(x)— y,(x).
Then 4 satisfies

_ VI __ o¥1
A"+<” 1_f>4'+<e e >A=0, O<x<owo  (10)
X 2 Y1— Y2

4(0)=0, 4'=0. (11)

Consider the equation L"+[(n—1)/x—x/2]L'+e*L=0 for x>0,
L(x) =0, and L'(x,) #0, for x sufficiently small. It can be shown that the
solution L{x)+#0 on (0, x,).

For a >0, there is a J sufficiently small such that y(x)>0 and y;(x) <0
on (0,6), i=1,2. Consequently, (e’'—e”?)/(y,— y,)<e* on (0,8). If
A(xo) =0 and 4’(x,) <0 (otherwise rename y, and y,) for some x,€ (0, 6),
then while 4 > 0 on a left neighborhood J of x4, [p(x) 4'Y + p(x)e* 4 =0,
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where p(x)=x""'e~ 9~ By Lemmal, 4(x)>L(x)>0 on J. Conse-
quently, J= (0, x,) and 4>0 on J.

Equation (10) implies that 4 cannot have a local minimum on (0, x,).
Since 4(0)=0 and 4>0 on (0, x,), it must be that 4'>0 on (0, o) for
some o€ (0, x,). But then (10) implies that 4”"<0 on (0,6) and so
A'(x)<4'(0)=0 on (0,0). This is a contradiction, so 4(x)=0. Similar
arguments work for a <0. |

LeEmMa 4 (Continuous dependence). Let y(x, a) be the unique solution
to the initial value problem (4)-(6). Then y(x, o) and y'(x, o) are continuous
on compact subsets of [0, co) x R.

Proof. The results on existence and uniqueness combined with the fact
that C(1) is closed and connected immediately imply the continuous depen-
dence of y(x, «) and y'(x, @) on compact subsets of their domain. ||

3. THE MAIN RESULTS FOR 2 <n< 10

From the results in [2], if a <0, then the solution y(x, a) to the initial
value problem (4)—(6) has the property that |y’(x, a)] = oo as x -» co. Such
a solution cannot satisfy the boundary conditions (5). It is sufficient to con-
sider only the values o> 0.

Equation (4) has a singular solution S(x)=In[2(n—2)/x*]. Define
h(x, o) = y(x, a) — S(x). Then h satisfies the differential equation

h”+<n_l—f>h’+2—(£—2——2)(e"—l)=0, 0<x<oo. (12)
x 2 X

For x sufficiently close to 0, a linearized version of Eq.(12) is
L'+[(n—=1)/x]L +[2(n—2)/x*]L=0. For each ne(2, 10), this
equatien has solutions which have zeros that accumulate at x =0. We use
this idea to show that there is an unbounded increasing sequence {o,}{°
such that the number of zeros of A(x) on (0,./2(n—2)) increases as
o, — 0. More precisely, we show that the sets Z,,= {ae [0, o0): A(x, a)
has at least 2m + 1 zeros on (0, c0)}, m=1, 2, ..., are nonempty and boun-
ded below (by a=1). The values 4,, = inf Z,, provide solutions y(x, &,,) to
(4)-(6) which satisfy condition (5).

Define g(x)=4xy'(x)+ 1 where y is any solution to (4). Then g satisfies
the equation

-1
g"+(nx —§>g'+(ey~1)g=o, 0<x<o0 (13)
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LeMMA 5. Let O0<a< 1 and let y(x, o) be the solution to (4)-(6). Then
g(x) cannot have a zero before y(x) does.

Proof. Let w=gy'—g’y. Then (4) and (13) imply that
[x"~le= W] = xn = 1= (M 2g(y,_1)(e” — 1), w(0)=0. For O<a<1,
y(x)Sa<1 while y>0, y'<0. So [x" ‘e~ ] <0 while y>0 and
g>0. An integration and the standard Wronskian argument yields
y(x) L ag(x) while y >0 and g>0. Thus, while y >0, g(x) cannot have a
Zero.

LEMMA 6. The function h(x,a) has at most two zeros on the interval
(/2(n—2), ). Moreover, if h(x)=0, h(x)<O0 at the first zero
X>./2(n—2), then h has exactly one zero for x>./2(n—2). As a con-
sequence, if 0 <a < 1, then h(x) cannot have more than two zeros on (0, o).

Proof. Define w=Sy'— S’y where S is the singular solution given
earlier. Then w satisfies the equation [x"~le~ (/9 *p] = x"~le~ (/D x)g
[F(S)— F(y)], where F(u)= (e — 1)/u. Let r be the first zero for y(x).

Suppose r,>./2(n-2). If y(¥)=S(%) at some first x>r , then
V(%)< S'(X). While 0> S(x)> p(x), [x" " le " *¥w]" 20, w(x)>0. By
integrating, we have x" e~ w(x) 2 (X)" e VO w(%)= p>0, and
s0 w(x)2 px' "= This implies that (y/S)(x)= px' =" /[ S(x)]?
and (y/S)(x)=p [% e ISy di+ 12 1. So y(x)<S(x) for x> %
and y has at most one point of intersection with S for x> ./2(n—1).

Suppose r, <./2(n—2). If y(X¥)=S(x) at some first X >r,, then y(x) <0
and y’(x)> S'(x). Thus, y > S to the immediate right of x. If y=§ at some
first £> %, then y(X)<0 and y'(£)< S'(X). A repetition of the previous
argument shows that y < .S for x > x.

Suppose that r;=./2(n—2). Then the arguments used for
ry>./2(n—2)orr; <./2(n—2) are valid depending on whether y’' > S’ or
y' < §, respectively, at /2(n—2).

If 0<a<1, and if A(x,)=0 for two numbers x,, x,<./2(n—2), then
there is a number x between x, and x, where 0 =A'(x)=(2/%) g(x). This
forces g to have a zero before y does, a contradiction to lemma 5. So for
this range of &, # can have at most one zero before ./2(n—2). By the
earlier work in this lemma, one can see that 4 has at most two zeros on

(0, ). 1

These last two lemmas show that the set Z,,, m 2 1, is bounded below by
o= 1. We need to show that each of these sets is nonempty.

LemMMA 7. Let ne(2,10). Let 6€(0,1) be any number such that
n<8+20. If u(x) # 0 is a solution to the differential equation
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—1 26(n—2
u~+(” +f)u'+"(#_)u=o, 0<x< o0 (14)
x 2 x

then there is a decreasing sequence of zeros of u, say {r,} such that
r.—0 as k— co. Moreover, if 0=exp[21r/\/(n—2)(8+20—n)] and if

¢=exp[{2 tan"'(/8+20—n/\/n—2)}//(n—2)(8+26—n)], then 1/0<
rk+l/rk< 1/¢

Proof. Let z(x)=x1/"=2e~ U8 =y(x) Then z is a solution to the
equation z"+ [{8a(n—2)— (n—1)(n—3)}/4x*+ (4n—x*)/16] z=0. Let
ree1>0 be such that wu(r,,,)=0 and u'(r,,,)>0. Let v(x)=
A\/xsin[(n/]n 0)In(x/r,,,)] where A is chosen so that v'(r,,,)=
u'(ry, ). Then v(x) satisfies v” + [{8a(n—2)—(n—1)(n—3)}/4x*]v=0
and v(fr,,,)=0, v(x)>0 on the interval (r,,,,0r.,.,). On a right
neighborhood of r.,,, z satisfies z"+[{8o(n—2)—(n—1)(n—3)}/
4x?]z£0. By Lemma 2, z(x) < v(x) on this neighborhood. Thus, z(x) must
have another zero r, e (r, Br. . ). Similar arcuments show that 7(Y\ has

GQUOLRCT LU0 T S\ ke +is Y4 1 220040 SIgUlllC0 SHOW iatl & 224s

a zero ry, o€ (re /0, ry . o). Repetition of the argument shows the existence
of a sequence of zeros converging to zero.

| PO —12Mn—2) i M Mam DN Venf o fee YT srhpwa P
LEt U\A)———AJ& Sifl | 7T/10l U}lu\./(,/lk+l)J where A is chosen s

that v'(ry,,)=u'(ri;,) Then v"+ [(n—1)/x]v + [20(n—2)/x*Tv=0
and v'(¢r..1)=0, v'(x)>0 on (re,,, #re,,) While &' >0, (14) implies
that 4"+ [(n—1)/x] ' + [26(n—2)/x*Ju=0 and Lemma 2 implies that
u(x) = v(x). Also, (u'/u)(x)= (v'/v)(x) and so v’ must become zero before u’
does. Thus, the second zero of u occurs after ¢r,,, and we have

re€(Priy s Org i)

LEMMA 8. There is an unbounded increasing sequence of values {0}
such that h(x, a;) has a first zero x,(k) and x,(k) -0 as k - o0.

Proof. Let x,e(0,./2(n—2)). Let I=[—-2/x,;,0] and consider (4)
with y(x,)=S(x,), y'(x,)=pel Denote such solutions as Y(x, ). If
Y'(x,)=0, then Y has a local maximum at x,. Suppose that Y{x)>0 on
(0, x;). Then [x"~le M¥Yy(x)] = —x""le- MY _1)<0, and
O<p=T""'le VITY(T)<x" e DY (x)<x""'Y'(x) for 0<xZ
T<x,. Thus, Y(x)Zpx'"". An integration leads to Y(T)+
(p/(n=2)) T>""2 Y(x)+(p/(n—2)) x>~ "> (p/(n=2)) x> "for O<x<T.
As x — 0, the right-hand side of the inequality tends to oo while the
left-hand side is constant. This is a contradiction, so there must be a num-
ber r>0 such that Y(r)=0 and Y'(r)>0. Let u(x) be the solution to
u+[(n—1)x—x2]uw +u=0, u(r)=0, u'(r)=Y'(r). Then u(x)<0 on
(0,r) and u(x)— —oo as x—-0. Also, Y"+[(n—1)/x—x/2]Y + Y=
—(e¥—Y—1)<0. By Lemma 1, Y(x)<u(x) on (0, r). Also, Y'(x)>0 on
this interval.
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By continuous dependence, there is an interval Iy = (f8,, 0] such that the
solutions Y(x, f) have a local maximum for some xy(f) € (0, x,) and such
that Y(x, f)<S(x) for xe(0,x,). The last property is true since
1Y'(x,0)—S'(x}| =d>0for xe [n, x;] (n >0 and small), so by continuous
dependence, |Y'(x, B)— S'(x)| = 16 for B close to 0.

Since Y(x, —2/x,)=S(x), I, is bounded below. Define f,=infl,. In
fact, fo=(—2+¢)/x, for some ¢>0 since for B close to —2/x,, the
function 4(x)= Y(x)— S(x) must have a zero x, <x,;. That is, on [n, x,]
(n>0 and small), Y(x, )= S(x) as B —2/x,. Thus, (¢?—1)/420¢ on
[n, x,] for 6 € (0, 1) such that 8 + 20 > n (and for f§ close to —2/x,). But 4
is a solution to (12), so 04"+ [(n—1)/x —x/2] 4" + [26(n—2)/x*] 4.
Let u(x) be the solution to (14) with u(x,)=0 and u'(x,)=4'(x,). By
Lemma 7, u(x) has a zero ¥ < x;. By Lemma 1, 4(x) = u(x) on (X, x,), so
A(x) has a zero x, < x,. By definition of I, it must be that f, is bounded
away from —2/x,.

If Bel,, then Y'(x, f)> —2/x on (0, x,;), or else there is a number
x, < x; such that 4'(x,)= Y'(x,) — S’(x,) =0. Since 4 is a solution to (12),
this would force 4 to have another zero x¥<x,<x,, contrary to the
definition of the set 1.

Let g(x, B)=1xY'(x, B)+ 1. Then g satisfies Eq.(13) and for fel,,
g(x, B)>0on (0, x,). While g(x) < 1, if g'(x¥) =0 for some X < x, then (13)
implies that g has a local maximum at x. Before g can have a local
minimum on a left neighborhood of %, g must become 0 first. This cannot
happen for Be I,. Thus, g'(x) <0 while g(x) <1 on a left neighborhood of
x;. At xo(B), Y'(x,) =0 implies that g(x,) = 1. From our earlier arguments,
for xe (0, x4), Y'(x)>0 and so g(x)> 1.

Consequently, xY'(x,8)=x,Y(x,,B8)=x>x,> —-2+¢ for all
xe(0, x,), Bel,. Integrating from x to x,, we have Y(x, f)=
[Y(x,8)+(2—¢)lnx;]—(2—¢)Inx for 0 <x < x,, fel,. By continuous
dependence at x;, ¥(x,, ) is bounded on compact subsets of f. Thus,

Y(x, ) SM—-(2—¢)lnx, (15)

where both M and ¢ depend only on [, and where x € (0, xl] Integrau xg
Eq. (4) from Xy t0 x (where Y'(x,)=0) yields Y'(x)= —ng—{1/4)
x 1= le=UMsoY() _ 1] ds and then integrating from x, to x,, we have

X0

Y(xo, B)__ Y(xl’ﬁ)"l'J 1 ne —(1/4) 2 f Sn—le—(1/4)s2[e}’(s)_1] ds dt

X0

X1 t
§K1+J- tl‘"e"“/“)’zj g lg— (/) M — (2 —e}Insgo

xq X0
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using Eq. (15) and where K; =M+ (2—¢)1n x,. Thus,

X1 t
Y(xo, K + Ky | 077 [ s 3 dsds
x0 xp
X1
<Ko+K [ it

xg
1 £ 3
=K1+EK3(X1—XO)
§K4a

where K; are independent of 8, i=1, 2, 3, 4.

Therefore, for fe,, the local maximum values ¥(x,, f) are bounded
above. We use this to prove that Y'(x, ,) <O for a right neighborhood of
x=0. First, Y(x, By)<S(x) on (0, x,). For if there were a value x, such
that Y(x,, f,) = S(x,), then by continuous dependence, for f € I, close to
By, there would have to be a number x,(f) such that Y(x,, )= S(x,), a
contradiction to the definition of I,. Second, if Y'(x,, f,)=0 for some
x>0, then on [, x,] (fixed n<xy), |Y'(x, Bo)—S'(x)|=6>0 (or else
there is a value x,<x, such that Y'(x,)=S'(x,) and, as before, there
would be a number x < x, such that Y(x)= S(X), a contradiction to the
definition of ;). By continuous dependence, |Y'(x, 8)— S(x)} =15 for
B < By (but close) and there is an xy(f)>0 such that Y'(x4, f)=0 and
Y(x, B) < S(x) on (0, x,). This contradicts the definition of B,. Thus,
Y'(x, By) <0 on (0, x,) and Y(x,, B)< K, for fel, imply that Y(0, f,) is
finite.

If xY'(x, By) < —k <0 on (0, x,), then for x small, an integration from x
to x, yields Y(x, fy) = Y(x,, Bo) + k In x which implies Y(0) is not finite, a
contradiction. Thus, lim,_,xY'(x, Bo)=0. (The Ilimit exists since
g(x, Bo) < 1—f. the earlier work in the lemma.) Integrating Eq. (4) yields
Y'(x, Bo)= —x' neW* frn—1 o= P[,Y _1]ds Applying L'Hopital’s
rule, we have lim, _,, Y'(x, B,) =0. Say Y(0, Bo(x,)) =a(x,).

Thus, for each x,€(0, \/2(n—2)), there is an a(x,)> S(x,) such that
¥(x, 2) is a solution to (4)}-(6) and y(x, a) <S(x) on (0, x;), y(x,) = S(x,).
By continuous dependence, the function x,(x) is continuous (but not
necessarily one-to-one). Since x, can be picked arbitrarily close to 0, there
is an unbounded sequence {a,} such that x,(x,)=: x,(k)] 0 as k — co.

LEMMA 9. Let {a,}{ be the sequence constructed in Lemma8. Let

0 =exp(2n/\/(n— 210 —n)). If k is sufficiently large, then h(x, o) has a

second zero x,(k)e(x,, 0x,).



318 EBERLY AND TROY

Proof. The function & satisfies Eq.(12) where A(x,)=0, A'(x,)>0.
Note that A"+ [(n—1)/x—x/21h +[2(n—2)/x*Jh= —[2(n—2)/x*]
(e"—~h—1)<0. Let u(x) be the solution to (14) with u(x,;)=0 and
u'(x,)=h'(x,). By Lemma 7, u has another zero xe(x,, 6x,) as long as x,
is sufficiently close to 0. But by Lemma 1, A(x) £ u(x) on (x;, X), so & must
also have a second zero x,(k)e (x,, 0x,), for k sufficiently large.

LeMMA 10. Let x (k) and x,(k) be the first two zeros for h(x, ;) where
k is sufficoently large to guarantee their existence. Then x?~'h'(x,) >0 as
k — 0.

Proof. At x;, 0>y'(x;)> —2/x, so x7 'y (x;)e(—2x7"20). Con-
sequently, x7-! ’(x )—»0 as k—oo (since n>2). But x7 h'(x)=
xPly'(xy)+2x772, s0 x7'h'(x,) =0 as k — 0.

Integratmg Eq. (4) from x, to x, yields the relationship

2 _ 2 2 o1,y 2
O>x§*1e‘“/4”‘2)"(xz)=x'1'_1€ (1/4)x1yr(xl)_J 1= le= (M P er0 _ 17 dr

X1

>xn 1 ’(x )_lev(xn(xn_xn)

nl'( - 2(}1

2/

2(n—2)
n

2y (x) - 6y,

We have used the fact that x, < 8x, from Lemma 9. The right-hand side of
the inequality tends to 0 as k — o0, so x%~!y'(x,) — 0 as k — o0. As before,
X5 (x,)=x57 'y (x,) +2x5 2 > 0 as k > .

LemMa 11. For k sufficiently large, there is a third zero x,;(k) for
h(x, o).

Proof. 1t is sufficient to show that there is a number g(k) > x,(k) such
that #'(¢)=0. For if 4'(¢) =0 and A(gq) <0, then A"(g) >0 and #'(x) >0 in
a right neighborhood of ¢g. The function k& cannot have a local maximum
while £<0, so either & has a zero x;<2, or h<0 and A" >0 for

x>./2(n—1). In this last case, it must be that 4" >0 by Eq. (12), so A
must have a third zero x; > /2(n—1).

Let 6€(0, 1) be such that n<2+80. Let u(x) be the solution to (14)
with u(x,) =0, u'(x,) =H'(x,) < 0. Then Lemma 7 states that u has another
zero ‘X € (x,, Ox,) for x, sufficiently small. If (¢ —1)/h=0 on [x,, 0x,],
then (12) implies that A" + [(n — 1)/x — x/2] b’ + [20(n~ 2)/x*] h 2 0 while
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h<0. Lemma 1 implies that A(x) = u(x) on [x,, 0x,] and so 4 must have a
third zero in (x,, 0x,].

Otherwise, there is a number X € (x,, 0x,) such that [e"® —1]/h(X)=0
and A'(x) <0 on a right neighborhood of x. Let é > 0 be fixed. For k large,
0x, < 4. Integrating from x, to 24, we obtain

(26)"~" e~ H(26) = x2~ e~ 1 33h (x,)
2

+f26 2n—2) 1" e VN[ — HO] gy
x2
28 3
> xi- lh'(x2)+j 2An—2) 1" e~ V[~ MO gy
I

2 x5 (xy) + 20 F[(26)" 72 = 6" 2] [1 — "],

As k—oo, by LemmalO, we have x5 'A'(x,)—0. Since
2e F[(26)"~2—8""2][1 — "] is positive and independent of a,, it must
be that for k large, (26)"~' e~ %'#’(26)>0. That is, it cannot be the case
that #' <0 for all x> x, where k is large. Thus, there exists a number
q(k)> x,(k) such that h'(g)=0 and the lemma is proved. It follows
immediately from this argument that g(k) - 0 as k — oo since in the first
case, g € (x,, 0x,), and in the second case, d can be chosen arbitrarily small.

LeMMA 12. Let k be sufficiently large so that the third zero of h(x, a;),
x;(k), exists. Then x4(k)— 0 as k - .

Proof. Let x, and x, be the first two zeros of 4. Let e (x;, x,) be the
unique value where A'(£)=0 on that interval. On [x,, ], 4"(x) <0, so
h(x) S B (x1)(x —x ) SH (x ) (x;—x,) S (0—1) x, h'(x,). Since y'(x,) <0,
xh'(x)=x;y(x;)+2<2 Thus, h(x) SAX)<2(0—1)=:k, on [x, X;].

Define f(x)=h'(x)+Kx,/x where k,=3(e"—1). Then f(x,)=
W (x,)+i,/x;>0. Suppose there is a first x e (x;, x,] such that f(x)=0.
Then f'(x)<0. However, f'(X)=h"(X)—kK,y/%*= —1ik,+ ((n—2)/%?)
[k, 4 2(1 — "] = — i, + (n—2)(e* — 1)/%? since h(X) S k. For k large,
since X<x, and x,—>0 as k— 00, —ix,+ (n—2)(e" —1)/x*>0. This
contradicts f'(x)<£0. So for k large, f(x)>0 on [x,, x,}. In particular,
xh'(x3) 2 —K;,. ) .

For x> x,, we have x" Lo~ WM P (x) > xn—1e~ W 22k (x,) while h<0
since [x" le MY = —[2(n—2)/x*][e"—1]=0. Thus, while h<0
on [x,,/2(n=2)], x" " 'W(x)= —K,eVP=Dxn-2=: _y,x772 Inte-
grating from x, to x, we have A(x)=[ —k3/(n—2)J[1 —x53"x*""]2
—K3/(n—2)=: —k,. In particular, if ge(x,,x;) is the value where
h'(q) =0, then h(x)= —x, where k, is independent of a,.
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Suppose there is a § > 0 such that x,(k) =6 for all large k. Let a€(0, 1)
be such that n <2+ 8¢. If (" — 1)/h = ¢ on [§/6, ] where 0 is the number
constructed in Lemma 7, then by Lemma 7, 4 would have to have another
zero in [/6, 8], contradicting A< 0 on (x,, x;). So # must be bounded
away from zero on [g, §/6] for all large k, say (1 — e”) 2e~(V/906/07 > ;0.
Then [x"le~ W% p') =2(n—2) x"le~ (1 —e") > (n—2) ksx" .
Integrating from ¢ to x yields x" '"W(x)=x""le-WNZp(x)2
ks[x"~2—g¢"~?]. Integrating once more from g to x yields A(x)2
h(q) + ksln(x/q) — [ks/(n—2)] ¢" " *[¢> " — x*~"]. In particular, h(5/0) >
¢1+¢2q" "% —c3ln g where ¢, are independent of a,, i=1, 2, 3. The right-
hand side of this inequality tends to oo as ¢ -0 (k — o), a contradiction
to h(3/0) <0. Thus, x;(k) cannot be bounded away from 0 for all k.

LeMMA 13. _Let k be sufficiently large so that h(x, a,) has at least 2m — 1
zeros on (0, /2(n—2)). Then there is a k, such that for all k >k, h(x, a;)

has at least 2m + 1 zeros on (0, \/2(n—2)).

Proof. Since x,(k) and x,(k) tend to 0 as k — oo, there is a value k such
that for k >k, h(x, a,) has at least one zero (m = 1). By Lemmas 11 and 12,
for k sufficiently large, x;(k) exists and tends to 0 as k— 0. As in
Lemma 9, for k large, a linear comparison shows the existence of a fourth
zero x,(k) for h(x). Thus, there is a k, such that for all k > k,, A(x, ;) has

at least 3 zeros on (0, \/2(n—2)). So the result is true for m=1.

The inductive step depends on Lemma 10 holding for x,(k) in general.
That is, we need to show that x2A’(x;) » 0 as k - oo for i=2m—1, 2m. As
in Lemma 10, it is sufficient to show that x2y'(x;) - 0 as k - . At x,,, _,,
0> y'(Xom—_1)> —2/Xs,_,. Consequently, (X5,_)* ¥'(Xzm—1)> —2X2_,
and so (X5, _1)* V' (X2, 1) = 0 as k > oo since x,,_; =0.

Integrating Eq. (4) from x,,,_, to x,,, yields

1
O > x%m exp < —Z x%m) y’(x2m)

X2m—1

1 X
e~ ) Yl [ e e 1

1
Z X3, y,(xzm‘l)_',;ey(xzmﬂ)[x'zlm‘“xgm—lj

2(n—2 2(n—2
O (g g+ 22

2An—2) 2An—2)
n n

=X5 1 Y (Xom—1)— x3.2,

nyn—2
"xi-2 +

-2
2m—1

gx§m~ly,(x2m—l)— X
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using the inequality x,,, < 0x,,,_, which holds whenever the even-subscrip-
ted root comes into existence. The right-hand side of the inequality tends to
0 as k- 00, s0 x2,, y'(x3,) =0 as k — o0.

This particular information was used in Lemma 11 in the construction of
a number g(k) € (x5,,_ 1, Xa,) In the case m= 1. The proof for general m
proceeds in exactly the same way. The lemma is proved. |

Recall that Z,, = {a€[0, 00): h(x,a) has at least 2m+1 zeros on
(0, )}, m=1,2,... For m=1, lemmas 5 and 6 showed that Z, is bounded
below by a=1. Of course, then all of the sets Z,,, m=2, are bounded
below. Lemma 13 shows that Z, is nonempty for m>1. We defined
a,=inf Z,. Also note that 4 has a finite number of zeros on (0, w0) by
lemma 6. By continuous dependence, if A(x,&) has a zero on
(v/2(n—2), ©), then so does A(x, «) for |« —&| small. So lemma 6 also
implies that h cannot pick up more zeros until the 2m-th zero decreases
past /2(n—2).

THEOREM. Let &, =inf Z,,. Then the solutions y(x, &,,) to (4)~(6) have
the property lim, _, , [1+ ixy'(x, 4,,)]1=0.

Proof. From the definition of &,, y(x, &,)<S(x) for x>./2(n—2).
For if y(x, &,,) = S(x) for some ¥ >,/2(n—2), then by continuous depen-
dence, for |a—d,| small, y(%, a)=S(x) for some %>./2(n—2) and
y(x, a), y(x, &,,) have at least 2m + 1 zeros, a contradiction to &,,=inf Z,,,.

Suppose that y"(x,&,)<0 for some x>./2(n—1). Then y”(x)=
[X/2—(n—1)/%] y"(x) + [3+ (n— 1)/x* = D] y'(x) £ [%2—(n—1)/x]
Y'(X)+ [+ (n—1)/7=2(n—2)/x*] y'(X¥)<0 since p(X)<S(x) and
X>./2(n—1). Thus, y”(x) must remain negative for x > x. By continuous
dependence, for a>a, (but close), there must be a value x(a) such that

y"(%,0)<O0. Similarly, y"(x,a)<0 for x>x% On [./2(n—2),2%(&,)],
[y'(x, &,)—S'(x)| 26>0 (or else y'=S" for some £>./2(n—2), and
Eq. (12) implies that y must intersect S, a contradiction to the definition of
d,). By continuous dependence, | y'(x, «) — §'(x)| = 46 on this same interval
for «>a,, (but close). Consequently, y(x, a) does not intersect S(x) for

x>./2(n—2), aeZ,, a contradiction to the definition of &,. Thus,
y'(x,a,)>0for x>./2(n—1).

We have that y'(x.4,)<0 and y"(x,&,)>0 for x>./2(n—1). The
limit of y'(x, &,,) as x — oo must exist and be nonpositive. Suppose that
for large x, y'(x,&,)< —e<0. From Eq.(4) we have that 0= "+
[(r—1)/x—=x2] y'+e’—12y"—e[(n—1)/x—x/2]—1. So y"<1+
g(n—1)/x —ex/2. The right-hand side tends to —oo as x — co which forces
y” <0 somewhere. But this contradicts y"(x, ,,) >0. So y'(x, a,)—0 as
X — 00,
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Consider the function xy'(x, &,). Since y(x,&,)<S(x) and since
y'(%, &,)=S8(x) for some x>./2(n—2) implies that y=S for some x
(contradicting the definition for &,), it must be true that xy'(x, &,,) < —2
for all x> ./2(n—2). Suppose that xy'(x,&,)< —2—¢e< —2 for all x
large. Then (4) implies that 0>y”" —(2+¢)[(n—1)/x*~4]—1 and so
y" £(2+¢)(n—1)/x*— 4. This forces y” <0 which was ruled out earlier.
We have shown that Iim, ,  xy'(x, &,)= —2. Suppose that there is a
sequence {f,}° such that ty'(#,)< —2—¢< —2 and (without loss of
generality) 1, y"(t,) +y'(t,)=0. Using Eq.(4), we have O=yp"(t,)+
[in—1)/t,— /2] ' (1) + W =1 = —p'(t)/te+ [(n— 1)/t — 1,/2]
Y(t)+e™ — 1. Thus, 3, y'(t,) =y (t)/ti + € — 1, and letting 1, — oo,
we have that —2—g2=lim,_ 1, ¥'(t,)= —2, a contradiction. We have
shown that lim, . xy'(x, &,)= —2. Thus, lim,_, ,[1+4xy'(x, ,)]=0
and the theorem is proved.

4. OBSERVATIONS AND CONCLUSIONS

The nonexistence of solutions to (4), (5) in dimensions 1 and 2 clearly
shows that the asymptotic representation (3) is not valid. However, for
dimension 3, this representation may be accurate.

For n=10, solutions to the linearized problem L"+ [(n—1)/
x—x/2]1 L' 4+ [2(n—2)/x*] L=0 do not have more than one zero. We
conjecture that because of this, (4), (5) does not have a solution.

The techniques discussed in this paper appear to be more general. In
fact, a result by Joseph and Lundgren [3] is obtained by the procedures
here. Their equation is

. n—1
U+

u+ie* =0, 0<t<1 (16)

#(0)=0,  u(1)=0. (17)

There is a closed connected set C(1) contained in [0, c0) x B where B is the
Banach space C![0, 1] with the C'-norm. The set C(4) has boundary point
(0, 0) and represent solutions (4, u) to (16), (17). Since e* is unbounded,
there is a number A* € (0, c0) such that 1 < A* is necessary for solutions to
exist.

Letting x=rt, r>= 4, u(t)= y(x), we have the corresponding initial
value problem

—1
y"+.__n y’+ey=0, O<x< o (18)
X

y(0)=a>0,  y(0)=0. (19)
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This equation has the singular solution S(x)=In[2(n—2)/x>] and
h(x) =y — S satisfies

h"+""1h'+2(nx;2)(e”—l)=0, 0<x<oo. (20)
X

Define g(x)=xy'(x)+ 2. Then g satisfies

-1
¢+ g +e’g=0, O<x<o. (21)
X

Lemma 5 is valid for_this function g(x). Consequently, A(x) can have at
most one zero in (0, ./2(n—2)) for 0 <a < 1. However, Lemma 6 does not
follow. It appears that the absence of the term — ixA’ may allow A(x) to
have many zeros for x large since the linearized solutions to (20) have zero
which accumulate at co (unlike that for Eq. (14)).

The sets Z,,={ae[0, o) hA(x,a) has at least 2m—1 zeros on
(0,/2(n—2))}, mz1, are bounded below by a=1. To show they are
nonempty, we need to show the existence of a first zero x,(a,) for some
unbounded increasing sequence {a,}. Lemma8 can be modified for
(18), (19) with only minor changes. In fact, for each x, € (0, oo}, there is an
e R such that A(x;, a(x,))=0. The remaining results may be slightly
modified for ¢” (instead of e’ — 1) and x"~! (instead of x"~le~ /4*"). Con-
sequently, all sets Z,, are nonempty and bounded below. The bifurcation
diagrams in (a, 4) must look like those in Fig. 1 (where 2<n<10). It is
known that for n > 10, the bifurcation diagrams for (16), (17) look like that
given in Fig. 2. We have indicated the conjectured diagram for (4)-(6).

1 i A
2(n-2) 2

|
"2tn-2)
(a) (b)

FIG. 1. (a) it + ((n—1)/2) é+ ie* =0, (b) ii+ ((n~ 1)/) dr+ Ae* ~ 1 — }tir) =0

505/70/3-3
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A
(n=~2) 2(n=~2) 2n
(a {b)
FIGURE 2
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