JOURNAL OF DIFFERENTIAL EQUATIONS 70, 309-324 (1987)

Existence of Logarithmic-Type Solutions to the Kapila–Kassoy Problem in Dimensions 3 through 9

D. EBERLY

Division of Mathematics, Computer Science, and Systems Design, University of Texas San Antonio, Texas 78285

AND

W. C. TROY*

Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

Received December 13, 1985; revised February 2, 1987

1. INTRODUCTION

The ignition model for a high activation energy thermal explosion of a solid fuel in the *n*-dimensional unit sphere is given by

$$u_t - \Delta u = \delta e^u, \qquad (\xi, t) \in \Omega \times (0, \infty), \quad \delta > 0$$
$$u(\xi, 0) = \psi(\xi), \qquad \xi \in \Omega \qquad (1)$$
$$u(\xi, t) = 0, \qquad (\xi, t) \in \partial\Omega \times [0, \infty),$$

where $u(\xi, t)$ is the temperature perturbation of the boundary temperature of Ω and where $\psi(\xi)$ is a radially decreasing function $(\psi(\xi_1) \ge \psi(\xi_2) \ge 0$ for $|\xi_1| \le |\xi_2| \le 1$ and $\Delta \psi + \delta \exp(\psi) \ge 0$ on Ω . This problem has been studied by Kapila [4] and by Kassoy-Poland [5].

Let $\psi(\xi) \equiv 0$. For each $n \ge 1$, there is a critical value δ^* such that if $\delta > \delta^*$, then the solution to (1) is singular at a finite time, *T*. In fact, solutions to (1) are radially symmetric, so $u(\xi, t) = v(r, t)$, where $r = |\xi|$. The equations in (1) can be rewritten as

$$v_{t} = v_{rr} + \frac{n-1}{r} v_{r} + \delta e^{v}, \qquad 0 < r < 1$$

$$v(r, 0) = 0, \qquad 0 \le r \le 1$$

$$v_{r}(r, 0) = 0, \qquad v(1, t) = 0, \qquad 0 \le t \le T,$$
(2)

* Partially supported by NSF Grant MCS83-01085.

where $\delta > \delta^*$. Let $\tau = T - t$, $x = r\tau^{-1/2}$, and $\theta(x, \tau) = v(r, t)$. It is suggested by Kassoy and Poland [5] that the asymptotic representation of θ for each fixed x as $\tau \to 0$ is

$$\theta \sim -\ln(\delta \tau) + y(x) + \sum_{k=1}^{\infty} \tau^k y_k(x).$$
 (3)

Formally evaluating (2) with the above expression and grouping the appropriate terms leads to the equation for y(x) as

$$y'' + \left(\frac{n-1}{x} - \frac{x}{2}\right)y' + e^{y} - 1 = 0, \qquad 0 < x < \infty,$$
(4)

where y'(0) = 0 and matching conditions at the boundary of the hot spot yield the condition $1 + \frac{1}{2}xy'(x) \to 0$ as $x \to \infty$. An integration yields the asymptotic condition $y(x) \sim K - 2 \ln x$ as $x \to \infty$. These boundary conditions are summarized as

$$y'(0) = 0, \qquad \lim_{x \to \infty} \left[1 + \frac{1}{2} x y'(x) \right] = 0.$$
 (5)

The nonexistence of solutions to (4), (5) for n = 1 is answered by Bebernes and Troy [1]. Although 1, 2, and 3 are the only physically relevant values for *n*, treating *n* as a continuous variable, nonexistence of solutions to (4), (5) for $1 \le n \le 2$ is answered by Eberly [2]. Thus, the asymptotic relationship (5) is not valid for dimensions 1 and 2.

Consider equation (4) with the initial values

$$y(0) = \alpha \in \mathbb{R}, \qquad y'(0) = 0. \tag{6}$$

Let solutions to initial value problem (4)–(6) be denoted $y(x, \alpha)$. We prove the following:

THEOREM. For each $n \in (2, 10)$, there is an unbounded sequence of positive numbers $\{\bar{\alpha}_m(n)\}_{m=1}^{\infty}$ such that the solutions $y(x, \bar{\alpha}_m)$ to the initial value problem (4)–(6) satisfy the limit condition in (5).

2. PRELIMINARY RESULTS

We will make use of a Wronskian argument throughout this paper. The argument is given in

LEMMA 1. For x > 0, let p(x) be a continuously differentiable positive function and let q(x) be a nonnegative continuous function. Let L(x) be the

solution to [p(x) L']' + q(x) L = 0, x > 0, $L(x_0) = 0$, $L'(x_0) \neq 0$ for some $x_0 > 0$.

(i) Let N(x) be a function defined on a right (or left) neighborhood I of x_0 such that $N(x_0) = 0$, $N'(x_0) = L'(x_0)$, $N(x) \neq 0$ for $x \in I - \{x_0\}$, and $[p(x) N']' + q(x) N \leq 0$ on I. Then there is a right (or left) neighborhood J of x_0 such that $L(x) \neq 0$, $N(x) \neq 0$, and N(x) < L(x) on $J - \{x_0\}$.

(ii) If N(x) satisfies all the conditions in (i) except that $[p(x) N']' + q(x) N \ge 0$ on I, then there is a right (or left) neighborhood J of x_0 such that $L(x) \ne 0$, $N(x) \ne 0$, and N(x) > L(x) on $J - \{x_0\}$.

Proof. The argument for (i) is given; the proof of (ii) is similar. Let $x \ge x_0$ and suppose that $N'(x_0) = L'(x_0) > 0$. Then L(x) > 0 and N(x) > 0 on a right neighborhood J of x_0 . Define w(x) = L(x) N'(x) - L'(x) N(x). Then $w(x_0) = 0$ and $[p(x) w]' = L[p(x) N']' - q(x) LN \le 0$ since L > 0. Integrating from x_0 to x we obtain $p(x) w(x) \le p(x_0) w(x_0) = 0$. Thus, $w(x) \le 0$ on J and $(N/L)'(x) = w(x)/[L(x)]^2 \le 0$ on J. Integrating again from x_0 to x leads to $N(x)/L(x) \le N'(x_0)/L'(x_0) = 1$. Since L > 0 on J, $N(x) \le L(x)$ on J. Equality is ruled out on $J - \{x_0\}$ by uniqueness to initial value problems.

If $x \le x_0$, then L(x) < 0 and N(x) < 0 on a left neighborhood J of x_0 . For w = LN' - L'N, $w(x_0) = 0$ and $[p(x) w]' = L[p(x) N']' - q(x) LN \ge 0$ since L < 0. Integrating from x to x_0 , we obtain $0 = p(x_0) w(x_0) \le p(x) w(x)$. Thus, $w(x) \ge 0$ on J and $(N/L)'(x) = w(x)/[L(x)]^2 \ge 0$ on J. Integrating again from x to x_0 leads to $N(x)/L(x) \ge N'(x_0)/L'(x_0) = 1$. Since L < 0 on J, $N(x) \le L(x)$ on J. As before, equality is ruled out by uniqueness to initial value problems. A similar argument holds for $L'(x_0) < 0$.

LEMMA 2 (Existence). For each $\alpha \in \mathbb{R}$, the initial value problem (4)–(6) has a solution.

Proof. The case n = 1 follows from standard existence results. Let n > 1 and make the change of variables x = rt, u(t) = y(x). Consider

$$\ddot{u} + \frac{n-1}{t}\dot{u} + \lambda \left(e^{u} - 1 - \frac{1}{2}t\dot{u}\right) = 0, \qquad 0 < t < 1$$
⁽⁷⁾

$$\dot{u}(0) = 0, \quad u(1) = 0$$
 (8)

where $\lambda = r^2$. Let $B = C^1[0, 1]$ with the norm $||u|| = \max_{t \in [0, 1]} |u(t)| + \max_{t \in [0, 1]} |\dot{u}(t)|$. Rewrite (7), (8) in the form

$$u = \lambda L u + F(\lambda, u), \tag{9}$$

where $Lu(t) = \int_0^1 s^{n-1} G(t, s) [u(s) - \frac{1}{2} s\dot{u}(s)] ds$, $F(\lambda, u)(t) = \int_0^1 s^{n-1} G(t, s) \times [e^{u(s)} - u(s) - 1] ds$, and G(t, s) is a Green's function. The function $L: B \to B$ is a linear compact operator and the function $F: \mathbb{R} \times B \to B$ is a continuous compact operator with $F(\lambda, u) = o(||u||)$ as $u \to 0$, uniformly for λ in bounded intervals.

The only eigenvalue of $v = \lambda L v$ is $\lambda_0 = 2n$ and the eigenspace is spanned by $v(t) = 1 - t^2$. Thus, λ_0 is an eigenvalue of odd multiplicity. By the results in Rabinowitz [6], there is a maximal, closed, connected set of solutions, $C(\lambda)$, of (7), (8). Since λ_0 is the only eigenvalue of the linear problem, it must be that $C(\lambda)$ is unbounded in $\mathbb{R} \times B$.

Each pair $(\lambda, u) \in C(\lambda)$ produces a pair $(\lambda, \alpha) \in \mathbb{R}^2$ where $\alpha = u(0) = y(0)$. We claim that the set $P = \{(\lambda, \alpha) \in \mathbb{R}^2 : (\lambda, u) \in C(\lambda)\}$ is unbounded. For $\alpha > 0$, $y(x, \alpha)$ has the property that $y(0) = \alpha$ and $y(\sqrt{\lambda}) = 0$ with y(x) > 0 on $[0, \sqrt{\lambda})$. Let $p(x) = x^{n-1}e^{-(1/4)x^2}$ and q(x) = 1. Let $v(x) = \alpha(1 - x^2/2n)$. Then [p(x)v']' + q(x)v = 0 and $[p(x)y']' + q(x)y \leq 0$ for $x \geq 0$. By Lemma 1, $y(x) \leq v(x)$ while $v(x) \geq 0$. Thus, $\lambda < 2n$ for all $\alpha > 0$.

Since $C(\lambda)$ is unbounded and λ is bounded, either $\alpha = \max\{|u(t)|: t \in [0, 1]\}$ or $\beta = \max\{|\dot{u}(t)|: t \in [0, 1]\}$ is unbounded. By an integration of (4), it can be demonstrated that the boundedness of α implies the boundedness of β . Thus, α cannot be bounded and (4)-(6) has a solution for each $\alpha > 0$.

For $\alpha < 0$, other arguments can be used to show that there are pairs $(\lambda, \alpha) \in P$, but the existence of solutions to (4)–(6) for $\alpha < 0$ is not relevant to the development in the remainder of the paper.

LEMMA 3 (Uniqueness). For each $\alpha \in \mathbb{R}$, the initial value problem (4)–(6) has a unique solution.

Proof. We give an outline of the proof. Suppose that $y_1(x)$ and $y_2(x)$ are two solutions to (4)-(6) for a given α . Define $\Delta(x) = y_1(x) - y_2(x)$. Then Δ satisfies

$$\Delta'' + \left(\frac{n-1}{x} - \frac{x}{2}\right)\Delta' + \left(\frac{e^{y_1} - e^{y_2}}{y_1 - y_2}\right)\Delta = 0, \qquad 0 < x < \infty$$
(10)

$$\Delta(0) = 0, \qquad \Delta' = 0. \tag{11}$$

Consider the equation $L'' + [(n-1)/x - x/2]L' + e^{\alpha}L = 0$ for x > 0, $L(x_0) = 0$, and $L'(x_0) \neq 0$, for x sufficiently small. It can be shown that the solution $L(x) \neq 0$ on $(0, x_0)$.

For $\alpha > 0$, there is a δ sufficiently small such that $y_i(x) > 0$ and $y'_i(x) < 0$ on $(0, \delta)$, i = 1, 2. Consequently, $(e^{y_1} - e^{y_2})/(y_1 - y_2) \le e^{\alpha}$ on $(0, \delta)$. If $\Delta(x_0) = 0$ and $\Delta'(x_0) < 0$ (otherwise rename y_1 and y_2) for some $x_0 \in (0, \delta)$, then while $\Delta > 0$ on a left neighborhood J of x_0 , $[p(x) \Delta']' + p(x) e^{\alpha} \Delta \ge 0$, where $p(x) = x^{n-1}e^{-(1/4)x^2}$. By Lemma 1, $\Delta(x) > L(x) > 0$ on J. Consequently, $J = (0, x_0)$ and $\Delta > 0$ on J.

Equation (10) implies that Δ cannot have a local minimum on $(0, x_0)$. Since $\Delta(0) = 0$ and $\Delta > 0$ on $(0, x_0)$, it must be that $\Delta' > 0$ on $(0, \sigma)$ for some $\sigma \in (0, x_0)$. But then (10) implies that $\Delta'' \leq 0$ on $(0, \sigma)$ and so $\Delta'(x) \leq \Delta'(0) = 0$ on $(0, \sigma)$. This is a contradiction, so $\Delta(x) \equiv 0$. Similar arguments work for $\alpha \leq 0$.

LEMMA 4 (Continuous dependence). Let $y(x, \alpha)$ be the unique solution to the initial value problem (4)-(6). Then $y(x, \alpha)$ and $y'(x, \alpha)$ are continuous on compact subsets of $[0, \infty) \times \mathbb{R}$.

Proof. The results on existence and uniqueness combined with the fact that $C(\lambda)$ is closed and connected immediately imply the continuous dependence of $y(x, \alpha)$ and $y'(x, \alpha)$ on compact subsets of their domain.

3. The Main Results for 2 < n < 10

From the results in [2], if $\alpha < 0$, then the solution $y(x, \alpha)$ to the initial value problem (4)-(6) has the property that $|y'(x, \alpha)| \to \infty$ as $x \to \infty$. Such a solution cannot satisfy the boundary conditions (5). It is sufficient to consider only the values $\alpha > 0$.

Equation (4) has a singular solution $S(x) = \ln[2(n-2)/x^2]$. Define $h(x, \alpha) = y(x, \alpha) - S(x)$. Then h satisfies the differential equation

$$h'' + \left(\frac{n-1}{x} - \frac{x}{2}\right)h' + \frac{2(n-2)}{x^2}(e^h - 1) = 0, \qquad 0 < x < \infty.$$
(12)

For x sufficiently close to 0, a linearized version of Eq. (12) is $L'' + [(n-1)/x] L' + [2(n-2)/x^2] L = 0$. For each $n \in (2, 10)$, this equation has solutions which have zeros that accumulate at x = 0. We use this idea to show that there is an unbounded increasing sequence $\{\alpha_k\}_1^\infty$ such that the number of zeros of h(x) on $(0, \sqrt{2(n-2)})$ increases as $\alpha_k \to \infty$. More precisely, we show that the sets $Z_m = \{\alpha \in [0, \infty): h(x, \alpha)$ has at least 2m + 1 zeros on $(0, \infty)\}$, m = 1, 2, ..., are nonempty and bounded below (by $\alpha = 1$). The values $\bar{\alpha}_m = \inf Z_m$ provide solutions $y(x, \bar{\alpha}_m)$ to (4)–(6) which satisfy condition (5).

Define $g(x) = \frac{1}{2}xy'(x) + 1$ where y is any solution to (4). Then g satisfies the equation

$$g'' + \left(\frac{n-1}{x} - \frac{x}{2}\right)g' + (e^{y} - 1)g = 0, \qquad 0 < x < \infty$$
(13)

LEMMA 5. Let $0 < \alpha < 1$ and let $y(x, \alpha)$ be the solution to (4)-(6). Then g(x) cannot have a zero before y(x) does.

Proof. Let w = gy' - g'y. Then (4) and (13) imply that $[x^{n-1}e^{-(1/4)x^2}w]' = x^{n-1}e^{-(1/4)x^2}g(y-1)(e^y-1)$, w(0) = 0. For $0 < \alpha < 1$, $y(x) \le \alpha < 1$ while y > 0, y' < 0. So $[x^{n-1}e^{-(1/4)x^2}w]' \le 0$ while y > 0 and g > 0. An integration and the standard Wronskian argument yields $y(x) \le \alpha g(x)$ while y > 0 and g > 0. Thus, while y > 0, g(x) cannot have a zero.

LEMMA 6. The function $h(x, \alpha)$ has at most two zeros on the interval $(\sqrt{2(n-2), \infty})$. Moreover, if $h(\bar{x}) = 0$, $h'(\bar{x}) < 0$ at the first zero $\bar{x} > \sqrt{2(n-2)}$, then h has exactly one zero for $x > \sqrt{2(n-2)}$. As a consequence, if $0 < \alpha < 1$, then h(x) cannot have more than two zeros on $(0, \infty)$.

Proof. Define w = Sy' - S'y where S is the singular solution given earlier. Then w satisfies the equation $[x^{n-1}e^{-(1/4)x^2}w]' = x^{n-1}e^{-(1/4)x^2}yS$ [F(S) - F(y)], where $F(u) = (e^u - 1)/u$. Let r_1 be the first zero for y(x).

Suppose $r_1 > \sqrt{2(n-2)}$. If $y(\bar{x}) = S(\bar{x})$ at some first $\bar{x} > r_1$, then $y'(\bar{x}) < S'(\bar{x})$. While 0 > S(x) > y(x), $[x^{n-1}e^{-(1/4)x^2}w]' \ge 0$, $w(\bar{x}) > 0$. By integrating, we have $x^{n-1}e^{-(1/4)x^2}w(x) \ge (\bar{x})^{n-1}e^{-(1/4)\bar{x}^2}w(\bar{x}) = p > 0$, and so $w(x) \ge px^{1-n}e^{(1/4)x^2}$. This implies that $(y/S)'(x) \ge px^{1-n}e^{(1/4)x^2}/[S(x)]^2$ and $(y/S)(x) \ge p\int_{\bar{x}}^{x}t^{1-n}e^{(1/4)t^2}/S^2(t) dt + 1 \ge 1$. So y(x) < S(x) for $x > \bar{x}$ and y has at most one point of intersection with S for $x > \sqrt{2(n-1)}$.

Suppose $r_1 < \sqrt{2(n-2)}$. If $y(\bar{x}) = S(\bar{x})$ at some first $\bar{x} > r_1$, then $y(\bar{x}) < 0$ and $y'(\bar{x}) > S'(\bar{x})$. Thus, y > S to the immediate right of \bar{x} . If y = S at some first $\hat{x} > \bar{x}$, then $y(\hat{x}) < 0$ and $y'(\hat{x}) < S'(\hat{x})$. A repetition of the previous argument shows that y < S for $x > \hat{x}$.

Suppose that $r_1 = \sqrt{2(n-2)}$. Then the arguments used for $r_1 > \sqrt{2(n-2)}$ or $r_1 < \sqrt{2(n-2)}$ are valid depending on whether y' > S' or y' < S', respectively, at $\sqrt{2(n-2)}$.

If $0 < \alpha < 1$, and if $h(x_i) = 0$ for two numbers $x_1, x_2 < \sqrt{2(n-2)}$, then there is a number \bar{x} between x_1 and x_2 where $0 = h'(\bar{x}) = (2/\bar{x}) g(\bar{x})$. This forces g to have a zero before y does, a contradiction to lemma 5. So for this range of α , h can have at most one zero before $\sqrt{2(n-2)}$. By the earlier work in this lemma, one can see that h has at most two zeros on $(0, \infty)$.

These last two lemmas show that the set Z_m , $m \ge 1$, is bounded below by $\alpha = 1$. We need to show that each of these sets is nonempty.

LEMMA 7. Let $n \in (2, 10)$. Let $\sigma \in (0, 1)$ be any number such that $n < 8 + 2\sigma$. If $u(x) \neq 0$ is a solution to the differential equation

$$u'' + \left(\frac{n-1}{x} + \frac{x}{2}\right)u' + \frac{2\sigma(n-2)}{x^2}u = 0, \qquad 0 < x < \infty$$
(14)

then there is a decreasing sequence of zeros of u, say $\{r_k\}_1^\infty$ such that $r_k \to 0$ as $k \to \infty$. Moreover, if $\theta = \exp[2\pi/\sqrt{(n-2)(8+2\sigma-n)}]$ and if $\phi = \exp[\{2\tan^{-1}(\sqrt{8+2\sigma-n}/\sqrt{n-2})\}/\sqrt{(n-2)(8+2\sigma-n)}]$, then $1/\theta < r_{k+1}/r_k < 1/\phi$.

Proof. Let $z(x) = x^{(1/2)(n-2)}e^{-(1/8)x^2}u(x)$. Then z is a solution to the equation $z'' + [\{8\sigma(n-2) - (n-1)(n-3)\}/4x^2 + (4n-x^2)/16]z = 0$. Let $r_{k+1} > 0$ be such that $u(r_{k+1}) = 0$ and $u'(r_{k+1}) > 0$. Let $v(x) = A\sqrt{x}\sin[(\pi/\ln\theta)\ln(x/r_{k+1})]$ where A is chosen so that $v'(r_{k+1}) = u'(r_{k+1})$. Then v(x) satisfies $v'' + [\{8\sigma(n-2) - (n-1)(n-3)\}/4x^2]v = 0$ and $v(\theta r_{k+1}) = 0$, v(x) > 0 on the interval $(r_{k+1}, \theta r_{k+1})$. On a right neighborhood of r_{k+1} , z satisfies $z'' + [\{8\sigma(n-2) - (n-1)(n-3)\}/4x^2]z \le 0$. By Lemma 2, $z(x) \le v(x)$ on this neighborhood. Thus, z(x) must have another zero $r_k \in (r_{k+1}, \theta r_{k+1})$. Similar arguments show that z(x) has a zero $r_{k+2} \in (r_{k+1}/\theta, r_{k+1})$. Repetition of the argument shows the existence of a sequence of zeros converging to zero.

Let $v(x) = Ax^{-(1/2)(n-2)}\sin[(\pi/\ln \theta) \ln(x/r_{k+1})]$ where A is chosen so that $v'(r_{k+1}) = u'(r_{k+1})$. Then $v'' + [(n-1)/x]v' + [2\sigma(n-2)/x^2]v = 0$ and $v'(\phi r_{k+1}) = 0$, v'(x) > 0 on $(r_{k+1}, \phi r_{k+1})$. While u' > 0, (14) implies that $u'' + [(n-1)/x]u' + [2\sigma(n-2)/x^2]u \ge 0$ and Lemma 2 implies that $u(x) \ge v(x)$. Also, $(u'/u)(x) \ge (v'/v)(x)$ and so v' must become zero before u' does. Thus, the second zero of u occurs after ϕr_{k+1} and we have $r_k \in (\phi r_{k+1}, \theta r_{k+1})$.

LEMMA 8. There is an unbounded increasing sequence of values $\{\alpha_k\}_{i=1}^{\infty}$ such that $h(x, \alpha_k)$ has a first zero $x_1(k)$ and $x_1(k) \to 0$ as $k \to \infty$.

Proof. Let $x_1 \in (0, \sqrt{2(n-2)})$. Let $I = [-2/x_1, 0]$ and consider (4) with $y(x_1) = S(x_1)$, $y'(x_1) = \beta \in I$. Denote such solutions as $Y(x, \beta)$. If $Y'(x_1) = 0$, then Y has a local maximum at x_1 . Suppose that Y(x) > 0 on $(0, x_1)$. Then $[x^{n-1}e^{-(1/4)x^2}Y'(x)]' = -x^{n-1}e^{-(1/4)x^2}(e^Y - 1) \leq 0$, and $0 for <math>0 < x \leq$ $T < x_1$. Thus, $Y'(x) \geq px^{1-n}$. An integration leads to Y(T) + $(p/(n-2))T^{2-n} \geq Y(x) + (p/(n-2))x^{2-n} > (p/(n-2))x^{2-n}$ for $0 < x \leq T$. As $x \to 0$, the right-hand side of the inequality tends to ∞ while the left-hand side is constant. This is a contradiction, so there must be a number r > 0 such that Y(r) = 0 and Y'(r) > 0. Let u(x) be the solution to u'' + [(n-1)/x - x/2]u' + u = 0, u(r) = 0, u'(r) = Y'(r). Then u(x) < 0 on (0, r) and $u(x) \to -\infty$ as $x \to 0$. Also, Y'' + [(n-1)/x - x/2]Y' + Y = $-(e^Y - Y - 1) \leq 0$. By Lemma 1, $Y(x) \leq u(x)$ on (0, r). Also, Y'(x) > 0 on this interval. By continuous dependence, there is an interval $I_0 = (\beta_0, 0]$ such that the solutions $Y(x, \beta)$ have a local maximum for some $x_0(\beta) \in (0, x_1)$ and such that $Y(x, \beta) < S(x)$ for $x \in (0, x_1)$. The last property is true since $|Y'(x, 0) - S'(x)| \ge \delta > 0$ for $x \in [\eta, x_1]$ ($\eta > 0$ and small), so by continuous dependence, $|Y'(x, \beta) - S'(x)| \ge \frac{1}{2}\delta$ for β close to 0.

Since $Y(x, -2/x_1) = S(x)$, I_0 is bounded below. Define $\beta_0 = \inf I_0$. In fact, $\beta_0 = (-2+\varepsilon)/x_1$ for some $\varepsilon > 0$ since for β close to $-2/x_1$, the function $\Delta(x) = Y(x) - S(x)$ must have a zero $x_2 < x_1$. That is, on $[\eta, x_1]$ $(\eta > 0$ and small), $Y(x, \beta) \to S(x)$ as $\beta \to -2/x_1$. Thus, $(e^d - 1)/\Delta \ge \sigma$ on $[\eta, x_1]$ for $\sigma \in (0, 1)$ such that $8 + 2\sigma > n$ (and for β close to $-2/x_1$). But Δ is a solution to (12), so $0 \le \Delta'' + [(n-1)/x - x/2] \Delta' + [2\sigma(n-2)/x^2] \Delta$. Let u(x) be the solution to (14) with $u(x_1) = 0$ and $u'(x_1) = \Delta'(x_1)$. By Lemma 7, u(x) has a zero $\bar{x} < x_1$. By Lemma 1, $\Delta(x) \ge u(x)$ on (\bar{x}, x_1) , so $\Delta(x)$ has a zero $x_2 < x_1$. By definition of I_0 , it must be that β_0 is bounded away from $-2/x_1$.

If $\beta \in I_0$, then $Y'(x, \beta) > -2/x$ on $(0, x_1)$, or else there is a number $x_2 < x_1$ such that $\Delta'(x_2) = Y'(x_2) - S'(x_2) = 0$. Since Δ is a solution to (12), this would force Δ to have another zero $\bar{x} < x_2 < x_1$, contrary to the definition of the set I_0 .

Let $g(x, \beta) = \frac{1}{2}xY'(x, \beta) + 1$. Then g satisfies Eq. (13) and for $\beta \in I_0$, $g(x, \beta) > 0$ on $(0, x_1)$. While g(x) < 1, if $g'(\bar{x}) = 0$ for some $\bar{x} < x_1$, then (13) implies that g has a local maximum at \bar{x} . Before g can have a local minimum on a left neighborhood of \bar{x} , g must become 0 first. This cannot happen for $\beta \in I_0$. Thus, g'(x) < 0 while g(x) < 1 on a left neighborhood of x_1 . At $x_0(\beta)$, $Y'(x_0) = 0$ implies that $g(x_0) = 1$. From our earlier arguments, for $x \in (0, x_0)$, Y'(x) > 0 and so g(x) > 1.

Consequently, $xY'(x, \beta) \ge x_1Y'(x_1, \beta) = x_1\beta > x_1\beta_0 > -2 + \varepsilon$ for all $x \in (0, x_1), \beta \in I_0$. Integrating from x to x_1 , we have $Y(x, \beta) \le [Y(x_1, \beta) + (2 - \varepsilon) \ln x_1] - (2 - \varepsilon) \ln x$ for $0 < x \le x_1, \beta \in I_0$. By continuous dependence at $x_1, Y(x_1, \beta)$ is bounded on compact subsets of β . Thus,

$$Y(x,\beta) \le M - (2-\varepsilon) \ln x, \tag{15}$$

where both M and ε depend only on I_0 and where $x \in (0, x_1]$. Integrating Eq. (4) from x_0 to x (where $Y'(x_0) = 0$) yields $Y'(x) = -x^{1-n}e^{-(1/4)x^2} \int_{x_0}^x s^{n-1}e^{-(1/4)s^2} [e^{Y(s)} - 1] ds$ and then integrating from x_0 to x_1 , we have

$$Y(x_0, \beta) = Y(x_1, \beta) + \int_{x_0}^{x_1} t^{1-n} e^{-(1/4)t^2} \int_{x_0}^t s^{n-1} e^{-(1/4)s^2} [e^{Y(s)} - 1] ds dt$$

$$\leq K_1 + \int_{x_0}^{x_1} t^{1-n} e^{-(1/4)t^2} \int_{x_0}^t s^{n-1} e^{-(1/4)s^2} e^{M - (2-\varepsilon)\ln s} ds dt$$

using Eq. (15) and where $K_1 = M + (2 - \varepsilon) \ln x_1$. Thus,

$$Y(x_0, \beta) \leq K_1 + K_2 \int_{x_0}^{x_1} t^{1-n} \int_{x_0}^{t} s^{n-3+\varepsilon} ds dt$$
$$\leq K_1 + K_3 \int_{x_0}^{x_1} t^{-1+\varepsilon} dt$$
$$= K_1 + \frac{1}{\varepsilon} K_3 (x_1^{\varepsilon} - x_0^{\varepsilon})$$
$$\leq K_4,$$

where K_i are independent of β , i = 1, 2, 3, 4.

Therefore, for $\beta \in I_0$, the local maximum values $Y(x_0, \beta)$ are bounded above. We use this to prove that $Y'(x, \beta_0) < 0$ for a right neighborhood of x = 0. First, $Y(x, \beta_0) < S(x)$ on $(0, x_1)$. For if there were a value x_2 such that $Y(x_2, \beta_0) = S(x_2)$, then by continuous dependence, for $\beta \in I_0$ close to β_0 , there would have to be a number $x_2(\beta)$ such that $Y(x_2, \beta) = S(x_2)$, a contradiction to the definition of I_0 . Second, if $Y'(x_0, \beta_0) = 0$ for some $x_0 > 0$, then on $[\eta, x_1]$ (fixed $\eta < x_0$), $|Y'(x, \beta_0) - S'(x)| \ge \delta > 0$ (or else there is a value $x_2 < x_1$ such that $Y'(x_2) = S'(x_2)$ and, as before, there would be a number $\bar{x} < x_2$ such that $Y(\bar{x}) = S(\bar{x})$, a contradiction to the definition of β_0). By continuous dependence, $|Y'(x, \beta) - S(x)| \ge \frac{1}{2}\delta$ for $\beta < \beta_0$ (but close) and there is an $x_0(\beta) > 0$ such that $Y'(x_0, \beta) = 0$ and $Y(x, \beta) < S(x)$ on $(0, x_1)$. This contradicts the definition of β_0 . Thus, $Y'(x, \beta_0) < 0$ on $(0, x_1)$ and $Y(x_0, \beta) \le K_4$ for $\beta \in I_0$ imply that $Y(0, \beta_0)$ is finite.

If $xY'(x, \beta_0) \leq -k < 0$ on $(0, x_1)$, then for x small, an integration from x to x_0 yields $Y(x, \beta_0) \geq Y(x_1, \beta_0) + k \ln x$ which implies Y(0) is not finite, a contradiction. Thus, $\lim_{x \to 0} xY'(x, \beta_0) = 0$. (The limit exists since $g(x, \beta_0) < 1$ —cf. the earlier work in the lemma.) Integrating Eq. (4) yields $Y'(x, \beta_0) = -x^{1-n}e^{(1/4)x^2} \int_0^{x/n-1} e^{-(1/4)t^2} [e^{Y} - 1] dt$. Applying L'Hopital's rule, we have $\lim_{x \to 0} Y'(x, \beta_0) = 0$. Say $Y(0, \beta_0(x_1)) = \alpha(x_1)$.

Thus, for each $x_1 \in (0, \sqrt{2(n-2)})$, there is an $\alpha(x_1) > S(x_1)$ such that $y(x, \alpha)$ is a solution to (4)-(6) and $y(x, \alpha) < S(x)$ on $(0, x_1), y(x_1) = S(x_1)$. By continuous dependence, the function $x_1(\alpha)$ is continuous (but not necessarily one-to-one). Since x_1 can be picked arbitrarily close to 0, there is an unbounded sequence $\{\alpha_k\}_1^{\infty}$ such that $x_1(\alpha_k) =: x_1(k) \downarrow 0$ as $k \to \infty$.

LEMMA 9. Let $\{\alpha_k\}_1^{\infty}$ be the sequence constructed in Lemma 8. Let $\theta = \exp(2\pi/\sqrt{(n-2)(10-n)})$. If k is sufficiently large, then $h(x, \alpha_k)$ has a second zero $x_2(k) \in (x_1, \theta x_1)$.

Proof. The function h satisfies Eq. (12) where $h(x_1) = 0$, $h'(x_1) > 0$. Note that $h'' + [(n-1)/x - x/2]h' + [2(n-2)/x^2]h = -[2(n-2)/x^2]$ $(e^h - h - 1) \le 0$. Let u(x) be the solution to (14) with $u(x_1) = 0$ and $u'(x_1) = h'(x_1)$. By Lemma 7, u has another zero $\bar{x} \in (x_1, \theta x_1)$ as long as x_1 is sufficiently close to 0. But by Lemma 1, $h(x) \le u(x)$ on (x_1, \bar{x}) , so h must also have a second zero $x_2(k) \in (x_1, \theta x_1)$, for k sufficiently large.

LEMMA 10. Let $x_1(k)$ and $x_2(k)$ be the first two zeros for $h(x, \alpha_k)$ where k is sufficiently large to guarantee their existence. Then $x_i^{n-1}h'(x_i) \to 0$ as $k \to \infty$.

Proof. At x_1 , $0 > y'(x_1) > -2/x_1$, so $x_1^{n-1}y'(x_1) \in (-2x_1^{n-2}, 0)$. Consequently, $x_1^{n-1}y'(x_1) \to 0$ as $k \to \infty$ (since n > 2). But $x_1^{n-1}h'(x_1) = x_1^{n-1}y'(x_1) + 2x_1^{n-2}$, so $x_1^{n-1}h'(x_1) \to 0$ as $k \to \infty$.

Integrating Eq. (4) from x_1 to x_2 yields the relationship

$$0 > x_2^{n-1} e^{-(1/4) x_2^2} y'(x_2) = x_1^{n-1} e^{-(1/4) x_1^2} y'(x_1) - \int_{x_1}^{x_2} t^{n-1} e^{-(1/4) t^2} [e^{y(t)} - 1] dt$$

$$\geq x_1^{n-1} y'(x_1) - \frac{1}{n} e^{y(x_1)} (x_2^n - x_1^n)$$

$$\geq x_1^{n-1} y'(x_1) - \frac{2(n-2)}{n} x_2^n / x_1^2$$

$$\geq x_1^{n-1} y'(x_1) - \frac{2(n-2)}{n} \theta^n x_1^{n-2}.$$

We have used the fact that $x_2 \leq \theta x_1$ from Lemma 9. The right-hand side of the inequality tends to 0 as $k \to \infty$, so $x_2^{n-1}y'(x_2) \to 0$ as $k \to \infty$. As before, $x_2^{n-1}h'(x_2) = x_2^{n-1}y'(x_2) + 2x_2^{n-2} \to 0$ as $k \to \infty$.

LEMMA 11. For k sufficiently large, there is a third zero $x_3(k)$ for $h(x, \alpha_k)$.

Proof. It is sufficient to show that there is a number $q(k) > x_2(k)$ such that h'(q) = 0. For if h'(q) = 0 and h(q) < 0, then h''(q) > 0 and h'(x) > 0 in a right neighborhood of q. The function h cannot have a local maximum while h < 0, so either h has a zero $x_3 \le 2$, or h < 0 and h' > 0 for $x > \sqrt{2(n-1)}$. In this last case, it must be that h'' > 0 by Eq. (12), so h must have a third zero $x_3 > \sqrt{2(n-1)}$.

Let $\sigma \in (0, 1)$ be such that $n < 2 + 8\sigma$. Let u(x) be the solution to (14) with $u(x_2) = 0$, $u'(x_2) = h'(x_2) < 0$. Then Lemma 7 states that u has another zero $\bar{x} \in (x_2, \theta x_2)$ for x_2 sufficiently small. If $(e^h - 1)/h \ge \sigma$ on $[x_2, \theta x_2]$, then (12) implies that $h'' + [(n-1)/x - x/2]h' + [2\sigma(n-2)/x^2]h \ge 0$ while

 $h \leq 0$. Lemma 1 implies that $h(x) \geq u(x)$ on $[x_2, \theta x_2]$ and so h must have a third zero in $(x_2, \theta x_2]$.

Otherwise, there is a number $\bar{x} \in (x_2, \theta x_2)$ such that $[e^{h(\bar{x})} - 1]/h(\bar{x}) = \sigma$ and h'(x) < 0 on a right neighborhood of \bar{x} . Let $\delta > 0$ be fixed. For k large, $\theta x_2 < \delta$. Integrating from x_2 to 2δ , we obtain

$$(2\delta)^{n-1} e^{-\delta^2} h'(2\delta) = x_2^{n-1} e^{-(1/4) x_2^2} h'(x_2) + \int_{x_2}^{2\delta} 2(n-2) t^{n-3} e^{-(1/4) t^2} [1 - e^{h(t)}] dt \ge x_2^{n-1} h'(x_2) + \int_{\delta}^{2\delta} 2(n-2) t^{n-3} e^{-(1/4) t^2} [1 - e^{h(t)}] dt \ge x_2^{n-1} h'(x_2) + 2e^{-\delta^2} [(2\delta)^{n-2} - \delta^{n-2}] [1 - e^{h(\bar{x})}].$$

As $k \to \infty$, by Lemma 10, we have $x_2^{n-1}h'(x_2) \to 0$. Since $2e^{-\delta^2}[(2\delta)^{n-2} - \delta^{n-2}][1 - e^{h(\bar{x})}]$ is positive and independent of α_k , it must be that for k large, $(2\delta)^{n-1}e^{-\delta^2}h'(2\delta) > 0$. That is, it cannot be the case that h' < 0 for all $x > x_2$ where k is large. Thus, there exists a number $q(k) > x_2(k)$ such that h'(q) = 0 and the lemma is proved. It follows immediately from this argument that $q(k) \to 0$ as $k \to \infty$ since in the first case, $q \in (x_2, \theta x_2)$, and in the second case, δ can be chosen arbitrarily small.

LEMMA 12. Let k be sufficiently large so that the third zero of $h(x, \alpha_k)$, $x_3(k)$, exists. Then $x_3(k) \to 0$ as $k \to \infty$.

Proof. Let x_1 and x_2 be the first two zeros of h. Let $\hat{x} \in (x_1, x_2)$ be the unique value where $h'(\hat{x}) = 0$ on that interval. On $[x_1, \hat{x}]$, h''(x) < 0, so $h(x) \le h'(x_1)(x - x_1) \le h'(x_1)(x_2 - x_1) \le (\theta - 1) x_1 h'(x_1)$. Since $y'(x_1) < 0$, $x_1 h'(x_1) = x_1 y'(x_1) + 2 < 2$. Thus, $h(x) \le h(\hat{x}) \le 2(\theta - 1) =: \kappa_1$ on $[x_1, x_2]$.

Define $f(x) = h'(x) + \kappa_2/x$ where $\kappa_2 = 3(e^{\kappa_1} - 1)$. Then $f(x_1) = h'(x_1) + \kappa_2/x_1 > 0$. Suppose there is a first $\bar{x} \in (x_1, x_2]$ such that $f(\bar{x}) = 0$. Then $f'(\bar{x}) \leq 0$. However, $f'(\bar{x}) = h''(\bar{x}) - \kappa_2/\bar{x}^2 = -\frac{1}{2}\kappa_2 + ((n-2)/\bar{x}^2)$ $[\kappa_2 + 2(1 - e^{h(\bar{x})}] \geq -\frac{1}{2}\kappa_2 + (n-2)(e^{\kappa_1} - 1)/\bar{x}^2$ since $h(\bar{x}) \leq \kappa_1$. For k large, since $\bar{x} \leq x_2$ and $x_2 \to 0$ as $k \to \infty$, $-\frac{1}{2}\kappa_2 + (n-2)(e^{\kappa_1} - 1)/\bar{x}^2 > 0$. This contradicts $f'(\bar{x}) \leq 0$. So for k large, f(x) > 0 on $[x_1, x_2]$. In particular, $x_2h'(x_2) \geq -\kappa_2$.

For $x \ge x_2$, we have $x^{n-1}e^{-(1/4)x^2}h'(x) \ge x_2^{n-1}e^{-(1/4)x_2^2}h'(x_2)$ while h < 0since $[x^{n-1}e^{-(1/4)x^2}h']' = -[2(n-2)/x^2][e^h - 1] \ge 0$. Thus, while h < 0on $[x_2, \sqrt{2(n-2)}]$, $x^{n-1}h'(x) \ge -\kappa_2 e^{(1/2)(n-2)}x_2^{n-2} = :-\kappa_3 x_2^{n-2}$. Integrating from x_2 to x, we have $h(x) \ge [-\kappa_3/(n-2)][1 - x_2^{n-2}x^{2-n}] \ge -\kappa_3/(n-2) = :-\kappa_4$. In particular, if $q \in (x_2, x_3)$ is the value where h'(q) = 0, then $h(x) \ge -\kappa_4$ where κ_4 is independent of α_k . Suppose there is a $\delta > 0$ such that $x_3(k) \ge \delta$ for all large k. Let $\sigma \in (0, 1)$ be such that $n < 2 + 8\sigma$. If $(e^h - 1)/h \ge \sigma$ on $[\delta/\theta, \delta]$ where θ is the number constructed in Lemma 7, then by Lemma 7, h would have to have another zero in $[\delta/\theta, \delta]$, contradicting h < 0 on (x_2, x_3) . So h must be bounded away from zero on $[q, \delta/\theta]$ for all large k, say $(1 - e^h) 2e^{-(1/4)(\delta/\theta)^2} \ge \kappa_5 > 0$. Then $[x^{n-1}e^{-(1/4)x^2}h']' = 2(n-2)x^{n-3}e^{-(1/4)x^2}(1-e^h) \ge (n-2)\kappa_5x^{n-3}$. Integrating from q to x yields $x^{n-1}h'(x) \ge x^{n-1}e^{-(1/4)x^2}h'(x) \ge$ $\kappa_5[x^{n-2} - q^{n-2}]$. Integrating once more from q to x yields $h(x) \ge$ $h(q) + \kappa_5 \ln(x/q) - [\kappa_5/(n-2)] q^{n-2}[q^{2-n} - x^{2-n}]$. In particular, $h(\delta/\theta) \ge$ $c_1 + c_2 q^{n-2} - c_3 \ln q$ where c_i are independent of α_k , i = 1, 2, 3. The righthand side of this inequality tends to ∞ as $q \to 0$ $(k \to \infty)$, a contradiction to $h(\delta/\theta) < 0$. Thus, $x_3(k)$ cannot be bounded away from 0 for all k.

LEMMA 13. Let k be sufficiently large so that $h(x, \alpha_k)$ has at least 2m-1 zeros on $(0, \sqrt{2(n-2)})$. Then there is a k_0 such that for all $k > k_0$, $h(x, \alpha_k)$ has at least 2m+1 zeros on $(0, \sqrt{2(n-2)})$.

Proof. Since $x_1(k)$ and $x_2(k)$ tend to 0 as $k \to \infty$, there is a value \overline{k} such that for $k > \overline{k}$, $h(x, \alpha_k)$ has at least one zero (m = 1). By Lemmas 11 and 12, for k sufficiently large, $x_3(k)$ exists and tends to 0 as $k \to \infty$. As in Lemma 9, for k large, a linear comparison shows the existence of a fourth zero $x_4(k)$ for h(x). Thus, there is a k_0 such that for all $k > k_0$, $h(x, \alpha_k)$ has at least 3 zeros on $(0, \sqrt{2(n-2)})$. So the result is true for m = 1.

The inductive step depends on Lemma 10 holding for $x_i(k)$ in general. That is, we need to show that $x_i^2 h'(x_i) \to 0$ as $k \to \infty$ for i = 2m - 1, 2m. As in Lemma 10, it is sufficient to show that $x_i^2 y'(x_i) \to 0$ as $k \to \infty$. At x_{2m-1} , $0 > y'(x_{2m-1}) > -2/x_{2m-1}$. Consequently, $(x_{2m-1})^2 y'(x_{2m-1}) > -2x_{2m-1}$ and so $(x_{2m-1})^2 y'(x_{2m-1}) \to 0$ as $k \to \infty$ since $x_{2m-1} \to 0$.

Integrating Eq. (4) from x_{2m-1} to x_{2m} yields

$$0 > x_{2m}^{2} \exp\left(-\frac{1}{4} x_{2m}^{2}\right) y'(x_{2m})$$

$$= x_{2m-1}^{2} \exp\left(-\frac{1}{4} x_{2m-1}^{2}\right) y'(x_{2m-1}) - \int_{x_{2m-1}}^{x_{2m}} t^{n-1} e^{-(1/4)t^{2}} [e^{y} - 1] dt$$

$$\geq x_{2m-1}^{2} y'(x_{2m-1}) - \frac{1}{n} e^{y(x_{2m-1})} [x_{2m}^{n} - x_{2m-1}^{n}]$$

$$= x_{2m-1}^{2} y'(x_{2m-1}) - \frac{2(n-2)}{n} (x_{2m}^{n} / x_{2m-1}^{2}) + \frac{2(n-2)}{n} x_{2m-1}^{n-2}$$

$$\geq x_{2m-1}^{2} y'(x_{2m-1}) - \frac{2(n-2)}{n} \theta^{n} x_{2m-1}^{n-2} + \frac{2(n-2)}{n} x_{2m-1}^{n-2}$$

using the inequality $x_{2m} \leq \theta x_{2m-1}$ which holds whenever the even-subscripted root comes into existence. The right-hand side of the inequality tends to 0 as $k \to \infty$, so $x_{2m}^2 y'(x_{2m}) \to 0$ as $k \to \infty$.

This particular information was used in Lemma 11 in the construction of a number $q(k) \in (x_{2m-1}, x_{2m})$ in the case m = 1. The proof for general m proceeds in exactly the same way. The lemma is proved.

Recall that $Z_m = \{\alpha \in [0, \infty): h(x, \alpha) \text{ has at least } 2m+1 \text{ zeros on } (0, \infty)\}, m = 1, 2, \dots$ For m = 1, lemmas 5 and 6 showed that Z_1 is bounded below by $\alpha = 1$. Of course, then all of the sets $Z_m, m \ge 2$, are bounded below. Lemma 13 shows that Z_m is nonempty for $m \ge 1$. We defined $\bar{\alpha}_m = \inf Z_m$. Also note that h has a finite number of zeros on $(0, \infty)$ by lemma 6. By continuous dependence, if $h(x, \bar{\alpha})$ has a zero on $(\sqrt{2(n-2)}, \infty)$, then so does $h(x, \alpha)$ for $|\alpha - \hat{\alpha}|$ small. So lemma 6 also implies that h cannot pick up more zeros until the 2m-th zero decreases past $\sqrt{2(n-2)}$.

THEOREM. Let $\bar{\alpha}_m = \inf Z_m$. Then the solutions $y(x, \bar{\alpha}_m)$ to (4)–(6) have the property $\lim_{x \to \infty} [1 + \frac{1}{2}xy'(x, \bar{\alpha}_m)] = 0$.

Proof. From the definition of $\bar{\alpha}_m$, $y(x, \bar{\alpha}_m) < S(x)$ for $x > \sqrt{2(n-2)}$. For if $y(\bar{x}, \bar{\alpha}_m) = S(\bar{x})$ for some $\bar{x} > \sqrt{2(n-2)}$, then by continuous dependence, for $|\alpha - \bar{\alpha}_m|$ small, $y(\hat{x}, \alpha) = S(\hat{x})$ for some $\hat{x} > \sqrt{2(n-2)}$ and $y(x, \alpha), y(x, \bar{\alpha}_m)$ have at least 2m + 1 zeros, a contradiction to $\bar{\alpha}_m = \inf Z_m$. Suppose that $y''(\bar{x}, \bar{\alpha}_m) < 0$ for some $\bar{x} > \sqrt{2(n-1)}$. Then $y'''(\bar{x}) =$ $\left[\bar{x}/2 - (n-1)/\bar{x}\right] y''(\bar{x}) + \left[\frac{1}{2} + (n-1)/\bar{x}^2 - e^{y(\bar{x})}\right] y'(\bar{x}) \leq \left[\bar{x}/2 - (n-1)/\bar{x}\right]$ $y''(\bar{x}) + [\frac{1}{2} + (n-1)/\bar{x}^2 - 2(n-2)/\bar{x}^2] y'(\bar{x}) < 0$ since $y(\bar{x}) < S(\bar{x})$ and $\bar{x} > \sqrt{2(n-1)}$. Thus, y''(x) must remain negative for $x > \bar{x}$. By continuous dependence, for $\alpha > \overline{\alpha}_m$ (but close), there must be a value $\overline{x}(\alpha)$ such that $y''(\bar{x}, \alpha) < 0$. Similarly, $y''(x, \alpha) < 0$ for $x > \bar{x}$. On $[\sqrt{2(n-2)}, 2\bar{x}(\bar{\alpha}_m)],$ $|y'(x, \bar{\alpha}_m) - S'(x)| \ge \delta > 0$ (or else y' = S' for some $\hat{x} > \sqrt{2(n-2)}$, and Eq. (12) implies that y must intersect S, a contradiction to the definition of $\bar{\alpha}_m$). By continuous dependence, $|y'(x, \alpha) - S'(x)| \ge \frac{1}{2}\delta$ on this same interval for $\alpha > \overline{\alpha}_m$ (but close). Consequently, $y(x, \alpha)$ does not intersect S(x) for $x > \sqrt{2(n-2)}$, $\alpha \in \mathbb{Z}_m$, a contradiction to the definition of $\overline{\alpha}_m$. Thus, $y''(x, \bar{\alpha}_m) > 0$ for $x > \sqrt{2(n-1)}$.

We have that $y'(x, \bar{\alpha}_m) < 0$ and $y''(x, \bar{\alpha}_m) > 0$ for $x > \sqrt{2(n-1)}$. The limit of $y'(x, \bar{\alpha}_m)$ as $x \to \infty$ must exist and be nonpositive. Suppose that for large $x, y'(x, \bar{\alpha}_m) \leq -\varepsilon < 0$. From Eq. (4) we have that $0 = y'' + [(n-1)/x - x/2] y' + e^y - 1 \geq y'' - \varepsilon[(n-1)/x - x/2] - 1$. So $y'' \leq 1 + \varepsilon(n-1)/x - \varepsilon x/2$. The right-hand side tends to $-\infty$ as $x \to \infty$ which forces y'' < 0 somewhere. But this contradicts $y''(x, \bar{\alpha}_m) > 0$. So $y'(x, \bar{\alpha}_m) \to 0$ as $x \to \infty$.

Consider the function $xy'(x, \bar{\alpha}_m)$. Since $y(x, \bar{\alpha}_m) < S(x)$ and since $y'(\bar{x}, \bar{\alpha}_m) = S'(\bar{x})$ for some $\bar{x} > \sqrt{2(n-2)}$ implies that y = S for some x (contradicting the definition for $\bar{\alpha}_m$), it must be true that $xy'(x, \bar{\alpha}_m) < -2$ for all $x > \sqrt{2(n-2)}$. Suppose that $xy'(x, \bar{\alpha}_m) \leq -2 - \varepsilon < -2$ for all $x > \sqrt{2(n-2)}$. Suppose that $xy'(x, \bar{\alpha}_m) \leq -2 - \varepsilon < -2$ for all $x > \sqrt{2(n-2)}$. Suppose that $y'(x, \bar{\alpha}_m) \leq -2 - \varepsilon < -2$ for all $x > \sqrt{2(n-2)}$. Suppose that $y'(x, \bar{\alpha}_m) \leq -2 - \varepsilon < -2$ for all $x > \sqrt{2(n-2)}$. This forces y'' < 0 which was ruled out earlier. We have shown that $\lim_{x\to\infty} xy'(x, \bar{\alpha}_m) = -2$. Suppose that there is a sequence $\{t_k\}_1^\infty$ such that $ty'(t_k) \leq -2 - \varepsilon < -2$ and (without loss of generality) $t_k y''(t_k) + y'(t_k) = 0$. Using Eq. (4), we have $0 = y''(t_k) + [(n-1)/t_k - t_k/2] y'(t_k) + e^{y(t_k)} - 1 = -y'(t_k)/t_k + [(n-1)/t_k - t_k/2] y'(t_k) + e^{y(t_k)} - 1$. Thus, $\frac{1}{2}t_k y'(t_k) = y'(t_k)/t_k + e^{y(t_k)} - 1$, and letting $t_k \to \infty$, we have that $-2 - \varepsilon \geq \lim_{k\to\infty} t_k y'(t_k) = -2$, a contradiction. We have shown that $\lim_{x\to\infty} xy'(x, \bar{\alpha}_m) = -2$. Thus, $\lim_{x\to\infty} [1 + \frac{1}{2}xy'(x, \bar{\alpha}_m)] = 0$ and the theorem is proved.

4. OBSERVATIONS AND CONCLUSIONS

The nonexistence of solutions to (4), (5) in dimensions 1 and 2 clearly shows that the asymptotic representation (3) is not valid. However, for dimension 3, this representation may be accurate.

For $n \ge 10$, solutions to the linearized problem $L'' + [(n-1)/(x-x/2)]L' + [2(n-2)/x^2]L = 0$ do not have more than one zero. We conjecture that because of this, (4), (5) does not have a solution.

The techniques discussed in this paper appear to be more general. In fact, a result by Joseph and Lundgren [3] is obtained by the procedures here. Their equation is

$$\ddot{u} + \frac{n-1}{t}\dot{u} + \lambda e^{u} = 0, \qquad 0 < t < 1$$
(16)

$$\dot{u}(0) = 0, \quad u(1) = 0.$$
 (17)

There is a closed connected set $C(\lambda)$ contained in $[0, \infty) \times B$ where B is the Banach space $C^1[0, 1]$ with the C¹-norm. The set $C(\lambda)$ has boundary point (0, 0) and represent solutions (λ, u) to (16), (17). Since e^u is unbounded, there is a number $\lambda^* \in (0, \infty)$ such that $\lambda \leq \lambda^*$ is necessary for solutions to exist.

Letting x = rt, $r^2 = \lambda$, u(t) = y(x), we have the corresponding initial value problem

$$y'' + \frac{n-1}{x}y' + e^y = 0, \qquad 0 < x < \infty$$
 (18)

$$y(0) = \alpha > 0, \qquad y'(0) = 0.$$
 (19)

This equation has the singular solution $S(x) = \ln[2(n-2)/x^2]$ and h(x) = y - S satisfies

$$h'' + \frac{n-1}{x}h' + \frac{2(n-2)}{x^2}(e^h - 1) = 0, \qquad 0 < x < \infty.$$
 (20)

Define g(x) = xy'(x) + 2. Then g satisfies

$$g'' + \frac{n-1}{x}g' + e^{y}g = 0, \qquad 0 < x < \infty.$$
(21)

Lemma 5 is valid for this function g(x). Consequently, h(x) can have at most one zero in $(0, \sqrt{2(n-2)})$ for $0 < \alpha < 1$. However, Lemma 6 does not follow. It appears that the absence of the term $-\frac{1}{2}xh'$ may allow h(x) to have many zeros for x large since the linearized solutions to (20) have zero which accumulate at ∞ (unlike that for Eq. (14)).

The sets $Z_m = \{\alpha \in [0, \infty): h(x, \alpha)$ has at least 2m-1 zeros on $(0, \sqrt{2(n-2)})\}$, $m \ge 1$, are bounded below by $\alpha = 1$. To show they are nonempty, we need to show the existence of a first zero $x_1(\alpha_k)$ for some unbounded increasing sequence $\{\alpha_k\}_1^\infty$. Lemma 8 can be modified for (18), (19) with only minor changes. In fact, for each $x_1 \in (0, \infty)$, there is an $\alpha \in \mathbb{R}$ such that $h(x_1, \alpha(x_1)) = 0$. The remaining results may be slightly modified for e^y (instead of $e^y - 1$) and x^{n-1} (instead of $x^{n-1}e^{-(1/4)x^2}$). Consequently, all sets Z_m are nonempty and bounded below. The bifurcation diagrams in (α, λ) must look like those in Fig. 1 (where 2 < n < 10). It is known that for $n \ge 10$, the bifurcation diagrams for (16), (17) look like that given in Fig. 2. We have indicated the conjectured diagram for (4)–(6).

FIG. 1. (a) $\ddot{u} + ((n-1)/t) \dot{u} + \lambda e^{u} = 0$, (b) $\ddot{u} + ((n-1)/t) \dot{u} + \lambda (e^{u} - 1 - \frac{1}{2}t\dot{u}) = 0$

EBERLY AND TROY

FIGURE 2

References

- 1. J. BEBERNES AND W. C. TROY, Nonexistence for the Kassoy problem, SIAM J. Math. Anal. 18 (1987), 1157-1162.
- 2. D. EBERLY, Nonexistence for the Kassoy problem in dimensions 1 and 2, J. Math. Anal. Appl., in press.
- 3. D. JOSEPH AND T. LUNDGREN, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 49 (1973), 241-269.
- A. KAPILA, Reactive-diffusive system with Arrhenius kinetics: Dynamics of ignition, SIAM J. Appl. Math. 39 (1980), 21-36.
- 5. D. R. KASSOY AND J. POLAND, The thermal explosion confined by a constant temperature boundary. I. The induction period solution, *SIAM J. Appl. Math.* **39** (1980), 412–430.
- 6. P. H. RABINOWITZ, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487-513.