Existence of Logarithmic-Type Solutions to the Kapila-Kassoy Problem in Dimensions 3 through 9

D. Eberly
Division of Mathematics, Computer Science, and Systems Design, University of Texas San Antonio, Texas 78285
AND
W. C. Troy*
Department of Mathemutics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
Received December 13, 1985; revised February 2, 1987

1. Introduction

The ignition model for a high activation energy thermal explosion of a solid fuel in the n-dimensional unit sphere is given by

$$
\begin{array}{rlrl}
u_{t}-\Delta u & =\delta e^{u}, & (\xi, t) \in \Omega \times(0, \infty), & \delta>0 \\
u(\xi, 0) & =\psi(\xi), & \xi \in \Omega \tag{1}\\
u(\xi, t) & =0, \quad(\xi, t) \in \partial \Omega \times[0, \infty), &
\end{array}
$$

where $u(\xi, t)$ is the temperature perturbation of the boundary temperature of Ω and where $\psi(\xi)$ is a radially decreasing function $\left(\psi\left(\xi_{1}\right) \geqslant \psi\left(\xi_{2}\right) \geqslant 0\right.$ for $\left.\left|\xi_{1}\right| \leqslant\left|\xi_{2}\right| \leqslant 1\right)$ and $\Delta \psi+\delta \exp (\psi) \geqslant 0$ on Ω. This problem has been studied by Kapila [4] and by Kassoy-Poland [5].

Let $\psi(\xi) \equiv 0$. For each $n \geqslant 1$, there is a critical value δ^{*} such that if $\delta>\delta^{*}$, then the solution to (1) is singular at a finite time, T. In fact, solutions to (1) are radially symmetric, so $u(\xi, t)=v(r, t)$, where $r=|\xi|$. The equations in (1) can be rewritten as

$$
\begin{align*}
v_{t} & =v_{r r}+\frac{n-1}{r} v_{r}+\delta e^{v}, \quad 0<r<1 \\
v(r, 0) & =0, \quad 0 \leqslant r \leqslant 1 \tag{2}\\
v_{r}(r, 0) & =0, \quad v(1, t)=0, \quad 0 \leqslant t \leqslant T
\end{align*}
$$

[^0]where $\delta>\delta^{*}$. Let $\tau=T-t, x=r \tau^{-1 / 2}$, and $\theta(x, \tau)=v(r, t)$. It is suggested by Kassoy and Poland [5] that the asymptotic representation of θ for each fixed x as $\tau \rightarrow 0$ is
\[

$$
\begin{equation*}
\theta \sim-\ln (\delta \tau)+y(x)+\sum_{k=1}^{\infty} \tau^{k} y_{k}(x) . \tag{3}
\end{equation*}
$$

\]

Formally evaluating (2) with the above expression and grouping the appropriate terms leads to the equation for $y(x)$ as

$$
\begin{equation*}
y^{\prime \prime}+\left(\frac{n-1}{x}-\frac{x}{2}\right) y^{\prime}+e^{y}-1=0, \quad 0<x<\infty, \tag{4}
\end{equation*}
$$

where $y^{\prime}(0)=0$ and matching conditions at the boundary of the hot spot yield the condition $1+\frac{1}{2} x y^{\prime}(x) \rightarrow 0$ as $x \rightarrow \infty$. An integration yields the asymptotic condition $y(x) \sim K-2 \ln x$ as $x \rightarrow \infty$. These boundary conditions are summarized as

$$
\begin{equation*}
y^{\prime}(0)=0, \quad \lim _{x \rightarrow \infty}\left[1+\frac{1}{2} x y^{\prime}(x)\right]=0 . \tag{5}
\end{equation*}
$$

The nonexistence of solutions to (4), (5) for $n=1$ is answered by Bebernes and Troy [1]. Although 1,2, and 3 are the only physically relevant values for n, treating n as a continuous variable, nonexistence of solutions to (4), (5) for $1 \leqslant n \leqslant 2$ is answered by Eberly [2]. Thus, the asymptotic relationship (5) is not valid for dimensions 1 and 2.

Consider equation (4) with the initial values

$$
\begin{equation*}
y(0)=\alpha \in \mathbb{R}, \quad y^{\prime}(0)=0 . \tag{6}
\end{equation*}
$$

Let solutions to initial value problem (4)-(6) be denoted $y(x, \alpha)$. We prove the following:

Theorem. For each $n \in(2,10)$, there is an unbounded sequence of positive numbers $\left\{\bar{\alpha}_{m}(n)\right\}_{m=1}^{\infty}$ such that the solutions $y\left(x, \bar{\alpha}_{m}\right)$ to the initial value problem (4)-(6) satisfy the limit condition in (5).

2. Preliminary Results

We will make use of a Wronskian argument throughout this paper. The argument is given in

Lemma 1. For $x>0$, let $p(x)$ be a continuously differentiable positive function and let $q(x)$ be a nonnegative continuous function. Let $L(x)$ be the
solution to $\left[p(x) L^{\prime}\right]^{\prime}+q(x) L=0, x>0, L\left(x_{0}\right)=0, L^{\prime}\left(x_{0}\right) \neq 0$ for some $x_{0}>0$.
(i) Let $N(x)$ be a function defined on a right (or left) neighborhood I of x_{0} such that $N\left(x_{0}\right)=0, N^{\prime}\left(x_{0}\right)=L^{\prime}\left(x_{0}\right), N(x) \neq 0$ for $x \in I-\left\{x_{0}\right\}$, and $\left[p(x) N^{\prime}\right]^{\prime}+q(x) N \leqslant 0$ on I. Then there is a right (or left) neighborhood J of x_{0} such that $L(x) \neq 0, N(x) \neq 0$, and $N(x)<L(x)$ on $J-\left\{x_{0}\right\}$.
(ii) If $N(x)$ satisfies all the conditions in (i) except that $\left[p(x) N^{\prime}\right]^{\prime}+$ $q(x) N \geqslant 0$ on I, then there is a right (or left) neighborhood J of x_{0} such that $L(x) \neq 0, N(x) \neq 0$, and $N(x)>L(x)$ on $J-\left\{x_{0}\right\}$.

Proof. The argument for (i) is given; the proof of (ii) is similar. Let $x \geqslant x_{0}$ and suppose that $N^{\prime}\left(x_{0}\right)=L^{\prime}\left(x_{0}\right)>0$. Then $L(x)>0$ and $N(x)>0$ on a right neighborhood J of x_{0}. Define $w(x)=L(x) N^{\prime}(x)-L^{\prime}(x) N(x)$. Then $w\left(x_{0}\right)=0$ and $[p(x) w]^{\prime}=L\left[p(x) N^{\prime}\right]^{\prime}-q(x) L N \leqslant 0$ since $L>0$. Integrating from x_{0} to x we obtain $p(x) w(x) \leqslant p\left(x_{0}\right) w\left(x_{0}\right)=0$. Thus, $w(x) \leqslant 0$ on J and $(N / L)^{\prime}(x)=w(x) /[L(x)]^{2} \leqslant 0$ on J. Integrating again from x_{0} to x leads to $N(x) / L(x) \leqslant N^{\prime}\left(x_{0}\right) / L^{\prime}\left(x_{0}\right)=1$. Since $L>0$ on J, $N(x) \leqslant L(x)$ on J. Equality is ruled out on $J-\left\{x_{0}\right\}$ by uniqueness to initial value problems.
If $x \leqslant x_{0}$, then $L(x)<0$ and $N(x)<0$ on a left neighborhood J of x_{0}. For $w=L N^{\prime}-L^{\prime} N, w\left(x_{0}\right)=0$ and $[p(x) w]^{\prime}=L\left[p(x) N^{\prime}\right]^{\prime}-q(x) L N \geqslant 0$ since $L<0$. Integrating from x to x_{0}, we obtain $0=p\left(x_{0}\right) w\left(x_{0}\right) \leqslant p(x) w(x)$. Thus, $w(x) \geqslant 0$ on J and $(N / L)^{\prime}(x)=w(x) /[L(x)]^{2} \geqslant 0$ on J. Integrating again from x to x_{0} leads to $N(x) / L(x) \geqslant N^{\prime}\left(x_{0}\right) / L^{\prime}\left(x_{0}\right)=1$. Since $L<0$ on $J, N(x) \leqslant L(x)$ on J. As before, equality is ruled out by uniqueness to initial value problems. A similar argument holds for $L^{\prime}\left(x_{0}\right)<0$.

Lemma 2 (Existence). For each $\alpha \in \mathbb{R}$, the initial value problem (4)-(6) has a solution.

Proof. The case $n=1$ follows from standard existence results. Let $n>1$ and make the change of variables $x=r t, u(t)=y(x)$. Consider

$$
\begin{align*}
\ddot{u}+\frac{n-1}{t} \dot{u}+\lambda\left(e^{u}-1-\frac{1}{2} t \dot{u}\right) & =0, \quad 0<t<1 \tag{7}\\
\dot{u}(0)=0, \quad u(1) & =0 \tag{8}
\end{align*}
$$

where $\lambda=r^{2}$. Let $B=C^{1}[0,1]$ with the norm $\|u\|=\max _{t \in[0,1]}|u(t)|+$ $\max _{t \in[0,1]}|\dot{u}(t)|$. Rewrite (7), (8) in the form

$$
\begin{equation*}
u=\lambda L u+F(\lambda, u), \tag{9}
\end{equation*}
$$

where $L u(t)=\int_{0}^{1} s^{n-1} G(t, s)\left[u(s)-\frac{1}{2} s \dot{u}(s)\right] d s, \quad F(\lambda, u)(t)=\int_{0}^{1} s^{n-1} G(t, s) \times$ $\left[e^{u(s)}-u(s)-1\right] d s$, and $G(t, s)$ is a Green's function. The function $L: B \rightarrow B$ is a linear compact operator and the function $F: \mathbb{R} \times B \rightarrow B$ is a continuous compact operator with $F(\lambda, u)=o(\|u\|)$ as $u \rightarrow 0$, uniformly for λ in bounded intervals.

The only eigenvalue of $v=\lambda L v$ is $\lambda_{0}=2 n$ and the eigenspace is spanned by $v(t)=1-t^{2}$. Thus, λ_{0} is an eigenvalue of odd multiplicity. By the results in Rabinowitz [6], there is a maximal, closed, connected set of solutions, $C(\lambda)$, of (7), (8). Since λ_{0} is the only eigenvalue of the linear problem, it must be that $C(\lambda)$ is unbounded in $\mathbb{R} \times B$.

Each pair $(\lambda, u) \in C(\lambda)$ produces a pair $(\lambda, \alpha) \in \mathbb{R}^{2}$ where $\alpha=u(0)=y(0)$. We claim that the set $P=\left\{(\lambda, \alpha) \in \mathbb{R}^{2}:(\lambda, u) \in C(\lambda)\right\}$ is unbounded. For $\alpha>0, y(x, \alpha)$ has the property that $y(0)=\alpha$ and $y(\sqrt{\lambda})=0$ with $y(x)>0$ on $[0, \sqrt{\lambda})$. Let $p(x)=x^{n-1} e^{-(1 / 4) x^{2}}$ and $q(x)=1$. Let $v(x)=\alpha\left(1-x^{2} / 2 n\right)$. Then $\left[p(x) v^{\prime}\right]^{\prime}+q(x) v=0$ and $\left[p(x) y^{\prime}\right]^{\prime}+q(x) y \leqslant 0$ for $x \geqslant 0$. By Lemma $1, y(x) \leqslant v(x)$ while $v(x) \geqslant 0$. Thus, $\lambda<2 n$ for all $\alpha>0$.

Since $C(\lambda)$ is unbounded and λ is bounded, either $\alpha=$ $\max \{|u(t)|: t \in[0,1]\}$ or $\beta=\max \{|\dot{u}(t)|: t \in[0,1]\}$ is unbounded. By an integration of (4), it can be demonstrated that the boundedness of α implies the boundedness of β. Thus, α cannot be bounded and (4)-(6) has a solution for each $\alpha>0$.

For $\alpha<0$, other arguments can be used to show that there are pairs $(\lambda, \alpha) \in P$, but the existence of solutions to (4)-(6) for $\alpha<0$ is not relevant to the development in the remainder of the paper.

Lemma 3 (Uniqueness). For each $\alpha \in \mathbb{R}$, the initial value problem (4)-(6) has a unique solution.

Proof. We give an outline of the proof. Suppose that $y_{1}(x)$ and $y_{2}(x)$ are two solutions to (4)-(6) for a given α. Define $\Delta(x)=y_{1}(x)-y_{2}(x)$. Then Δ satisfies

$$
\begin{gather*}
\Delta^{\prime \prime}+\left(\frac{n-1}{x}-\frac{x}{2}\right) \Delta^{\prime}+\left(\frac{e^{y_{1}}-e^{y_{2}}}{y_{1}-y_{2}}\right) \Delta=0, \quad 0<x<\infty \tag{10}\\
\Delta(0)=0, \quad \Delta^{\prime}=0 . \tag{11}
\end{gather*}
$$

Consider the equation $L^{\prime \prime}+[(n-1) / x-x / 2] L^{\prime}+e^{\alpha} L=0$ for $x>0$, $L\left(x_{0}\right)=0$, and $L^{\prime}\left(x_{0}\right) \neq 0$, for x sufficiently small. It can be shown that the solution $L(x) \neq 0$ on $\left(0, x_{0}\right)$.

For $\alpha>0$, there is a δ sufficiently small such that $y_{i}(x)>0$ and $y_{i}^{\prime}(x)<0$ on $(0, \delta), i=1,2$. Consequently, $\left(e^{y_{1}}-e^{y_{2}}\right) /\left(y_{1}-y_{2}\right) \leqslant e^{\alpha}$ on $(0, \delta)$. If $\Delta\left(x_{0}\right)=0$ and $\Delta^{\prime}\left(x_{0}\right)<0$ (otherwise rename y_{1} and $\left.y_{2}\right)$ for some $x_{0} \in(0, \delta)$, then while $\Delta>0$ on a left neighborhood J of $x_{0},\left[p(x) \Delta^{\prime}\right]^{\prime}+p(x) e^{\alpha} \Delta \geqslant 0$,
where $p(x)=x^{n-1} e^{-(1 / 4) x^{2}}$. By Lemma $1, \Delta(x)>L(x)>0$ on J. Consequently, $J=\left(0, x_{0}\right)$ and $\Delta>0$ on J.

Equation (10) implies that Δ cannot have a local minimum on $\left(0, x_{0}\right)$. Since $\Delta(0)=0$ and $\Delta>0$ on $\left(0, x_{0}\right)$, it must be that $\Delta^{\prime}>0$ on $(0, \sigma)$ for some $\sigma \in\left(0, x_{0}\right)$. But then (10) implies that $\Delta^{\prime \prime} \leqslant 0$ on $(0, \sigma)$ and so $\Delta^{\prime}(x) \leqslant \Delta^{\prime}(0)=0$ on $(0, \sigma)$. This is a contradiction, so $\Delta(x) \equiv 0$. Similar arguments work for $\alpha \leqslant 0$.

Lemma 4 (Continuous dependence). Let $y(x, \alpha)$ be the unique solution to the initial value problem (4)-(6). Then $y(x, \alpha)$ and $y^{\prime}(x, \alpha)$ are continuous on compact subsets of $[0, \infty) \times \mathbb{R}$.

Proof. The results on existence and uniqueness combined with the fact that $C(\lambda)$ is closed and connected immediately imply the continuous dependence of $y(x, \alpha)$ and $y^{\prime}(x, \alpha)$ on compact subsets of their domain.

3. The Main Results for $2<n<10$

From the results in [2], if $\alpha<0$, then the solution $y(x, \alpha)$ to the initial value problem (4)-(6) has the property that $\left|y^{\prime}(x, \alpha)\right| \rightarrow \infty$ as $x \rightarrow \infty$. Such a solution cannot satisfy the boundary conditions (5). It is sufficient to consider only the values $\alpha>0$.

Equation (4) has a singular solution $S(x)=\ln \left[2(n-2) / x^{2}\right]$. Define $h(x, \alpha)=y(x, \alpha)-S(x)$. Then h satisfies the differential equation

$$
\begin{equation*}
h^{\prime \prime}+\left(\frac{n-1}{x}-\frac{x}{2}\right) h^{\prime}+\frac{2(n-2)}{x^{2}}\left(e^{h}-1\right)=0, \quad 0<x<\infty . \tag{12}
\end{equation*}
$$

For x sufficiently close to 0 , a linearized version of Eq. (12) is $L^{\prime \prime}+[(n-1) / x] L^{\prime}+\left[2(n-2) / x^{2}\right] L=0$. For each $n \in(2,10)$, this equation has solutions which have zeros that accumulate at $x=0$. We use this idea to show that there is an unbounded increasing sequence $\left\{\alpha_{k}\right\}_{1}^{\infty}$ such that the number of zeros of $h(x)$ on ($0, \sqrt{2(n-2)}$) increases as $\alpha_{k} \rightarrow \infty$. More precisely, we show that the sets $Z_{m}=\{\alpha \in[0, \infty): h(x, \alpha)$ has at least $2 m+1$ zeros on $(0, \infty)\}, m=1,2, \ldots$, are nonempty and bounded below (by $\alpha=1$). The values $\bar{\alpha}_{m}=\inf Z_{m}$ provide solutions $y\left(x, \bar{\alpha}_{m}\right)$ to (4)-(6) which satisfy condition (5).

Define $g(x)=\frac{1}{2} x y^{\prime}(x)+1$ where y is any solution to (4). Then g satisfies the equation

$$
\begin{equation*}
g^{\prime \prime}+\left(\frac{n-1}{x}-\frac{x}{2}\right) g^{\prime}+\left(e^{y}-1\right) g=0, \quad 0<x<\infty \tag{13}
\end{equation*}
$$

Lemma 5. Let $0<\alpha<1$ and let $y(x, \alpha)$ be the solution to (4)-(6). Then $g(x)$ cannot have a zero before $y(x)$ does.

Proof. Let $w=g y^{\prime}-g^{\prime} y$. Then (4) and (13) imply that $\left[x^{n-1} e^{-(1 / 4) x^{2}} w\right]^{\prime}=x^{n-1} e^{-(1 / 4) x^{2}} g(y-1)\left(e^{y}-1\right), w(0)=0$. For $0<\alpha<1$, $y(x) \leqq \alpha<1$ while $y>0, y^{\prime}<0$. So $\left[x^{n-1} e^{-(1 / 4)} x^{2} w\right]^{\prime} \leqq 0$ while $y>0$ and $g>0$. An integration and the standard Wronskian argument yields $y(x) \leqq \alpha g(x)$ while $y>0$ and $g>0$. Thus, while $y>0, g(x)$ cannot have a zero.

Lemma 6. The function $h(x, \alpha)$ has at most two zeros on the interval $(\sqrt{2(n-2), \infty})$. Moreover, if $h(\bar{x})=0, h^{\prime}(\bar{x})<0$ at the first zero $\bar{x}>\sqrt{2(n-2)}$, then h has exactly one zero for $x>\sqrt{2(n-2)}$. As a consequence, if $0<\alpha<1$, then $h(x)$ cannot have more than two zeros on $(0, \infty)$.

Proof. Define $w=S y^{\prime}-S^{\prime} y$ where S is the singular solution given earlier. Then w satisfies the equation $\left[x^{n-1} e^{-(1 / 4) x^{2}} w\right]^{\prime}=x^{n-1} e^{-(1 / 4) x^{2}} y S$ $[F(S)-F(y)]$, where $F(u)=\left(e^{u}-1\right) / u$. Let r_{1} be the first zero for $y(x)$.
Suppose $r_{1}>\sqrt{2(n-2)}$. If $y(\bar{x})=S(\bar{x})$ at some first $\bar{x}>r_{1}$, then $y^{\prime}(\bar{x})<S^{\prime}(\bar{x})$. While $0>S(x)>y(x), \quad\left[x^{n-1} e^{-(1 / 4) x^{2}} w\right]^{\prime} \geqq 0, w(\bar{x})>0$. By integrating, we have $x^{n-1} e^{-(1 / 4) x^{2}} w(x) \geqq(\bar{x})^{n-1} e^{-(1 / 4) \bar{x}^{2}} w(\bar{x})=p>0$, and so $w(x) \geqq p x^{1-n} e^{(1 / 4)} x^{2}$. This implies that $(y / S)^{\prime}(x) \geqq p x^{1-n} e^{(1 / 4)} x^{2} /[S(x)]^{2}$ and $(y / S)(x) \geqq p \int_{\bar{x}}^{x} t^{1-n} e^{(1 / 4)} t^{2} / S^{2}(t) d t+1 \geqslant 1$. So $y(x)<S(x)$ for $x>\bar{x}$ and y has at most one point of intersection with S for $x>\sqrt{2(n-1)}$.

Suppose $r_{1}<\sqrt{2(n-2)}$. If $y(\bar{x})=S(\bar{x})$ at some first $\bar{x}>r_{1}$, then $y(\bar{x})<0$ and $y^{\prime}(\bar{x})>S^{\prime}(\bar{x})$. Thus, $y>S$ to the immediate right of \bar{x}. If $y=S$ at some first $\hat{x}>\bar{x}$, then $y(\hat{x})<0$ and $y^{\prime}(\hat{x})<S^{\prime}(\hat{x})$. A repetition of the previous argument shows that $y<S$ for $x>\hat{x}$.

Suppose that $r_{1}=\sqrt{2(n-2)}$. Then the arguments used for $r_{1}>\sqrt{2(n-2)}$ or $r_{1}<\sqrt{2(n-2)}$ are valid depending on whether $y^{\prime}>S^{\prime}$ or $y^{\prime}<S^{\prime}$, respectively, at $\sqrt{2(n-2)}$.

If $0<\alpha<1$, and if $h\left(x_{i}\right)=0$ for two numbers $x_{1}, x_{2}<\sqrt{2(n-2)}$, then there is a number \bar{x} between x_{1} and x_{2} where $0=h^{\prime}(\bar{x})=(2 / \bar{x}) g(\bar{x})$. This forces g to have a zero before y does, a contradiction to lemma 5 . So for this range of α, h can have at most one zero before $\sqrt{2(n-2)}$. By the earlier work in this lemma, one can see that h has at most two zeros on ($0, \infty$).

These last two lemmas show that the set $Z_{m}, m \geqq 1$, is bounded below by $\alpha=1$. We need to show that each of these sets is nonemply.

Lemma 7. Let $n \in(2,10)$. Let $\sigma \in(0,1)$ be any number such that $n<8+2 \sigma$. If $u(x) \equiv 0$ is a solution to the differential equation

$$
\begin{equation*}
u^{\prime \prime}+\left(\frac{n-1}{x}+\frac{x}{2}\right) u^{\prime}+\frac{2 \sigma(n-2)}{x^{2}} u=0, \quad 0<x<\infty \tag{14}
\end{equation*}
$$

then there is a decreasing sequence of zeros of u, say $\left\{r_{k}\right\}_{1}^{\infty}$ such that $r_{k} \rightarrow 0$ as $k \rightarrow \infty$. Moreover, if $\theta=\exp [2 \pi / \sqrt{(n-2)(8+2 \sigma-n)}]$ and if $\phi=\exp \left[\left\{2 \tan ^{-1}(\sqrt{8+2 \sigma-n} / \sqrt{n-2})\right\} / \sqrt{(n-2)(8+2 \sigma-n)}\right]$, then $1 / \theta<$ $r_{k+1} / r_{k}<1 / \phi$.

Proof. Let $z(x)=x^{(1 / 2)(n-2)} e^{-(1 / 8) x^{2}} u(x)$. Then z is a solution to the equation $z^{\prime \prime}+\left[\{8 \sigma(n-2)-(n-1)(n-3)\} / 4 x^{2}+\left(4 n-x^{2}\right) / 16\right] z=0$. Let $r_{k+1} \geq 0$ be such that $u\left(r_{k+1}\right)=0$ and $u^{\prime}\left(r_{k+1}\right)>0$. Let $v(x)=$ $A \sqrt{x} \sin \left[(\pi / \ln \theta) \ln \left(x / r_{k+1}\right)\right]$ where A is chosen so that $v^{\prime}\left(r_{k+1}\right)=$ $u^{\prime}\left(r_{k+1}\right)$. Then $v(x)$ satisfies $v^{\prime \prime}+\left[\{8 \sigma(n-2)-(n-1)(n-3)\} / 4 x^{2}\right] v=0$ and $v\left(\theta r_{k+1}\right)=0, v(x)>0$ on the interval $\left(r_{k+1}, \theta r_{k+1}\right)$. On a right neighborhood of $r_{k+1}, \quad z$ satisfies $z^{\prime \prime}+[\{8 \sigma(n-2)-(n-1)(n-3)\} /$ $\left.4 x^{2}\right] z \leqq 0$. By Lemma $2, z(x) \leqq v(x)$ on this neighborhood. Thus, $z(x)$ must have another zero $r_{k} \in\left(r_{k+1}, \theta r_{k+1}\right)$. Similar arguments show that $z(x)$ has a zero $r_{k+2} \in\left(r_{k+1} / \theta, r_{k+1}\right)$. Repetition of the argument shows the existence of a sequence of zeros converging to zero.

Let $v(x)=A x^{-(1 / 2)(n-2)} \sin \left[(\pi / \ln 0) \ln \left(x / r_{k+1}\right)\right]$ where A is chosen so that $v^{\prime}\left(r_{k+1}\right)=u^{\prime}\left(r_{k+1}\right)$. Then $v^{\prime \prime}+[(n-1) / x] v^{\prime}+\left[2 \sigma(n-2) / x^{2}\right] v=0$ and $v^{\prime}\left(\phi r_{k+1}\right)=0, v^{\prime}(x)>0$ on $\left(r_{k+1}, \phi r_{k+1}\right)$. While $u^{\prime}>0$, (14) implies that $u^{\prime \prime}+[(n-1) / x] u^{\prime}+\left[2 \sigma(n-2) / x^{2}\right] u \geqq 0$ and Lemma 2 implies that $u(x) \geqq v(x)$. Also, $\left(u^{\prime} / u\right)(x) \geqq\left(v^{\prime} / v\right)(x)$ and so v^{\prime} must become zero before u^{\prime} does. Thus, the second zero of u occurs after ϕr_{k+1} and we have $r_{k} \in\left(\phi r_{k+1}, \theta r_{k+1}\right)$.

Lemma 8. There is an unbounded increasing sequence of values $\left\{\alpha_{k}\right\}_{1}^{\infty}$ such that $h\left(x, \alpha_{k}\right)$ has a first zero $x_{1}(k)$ and $x_{1}(k) \rightarrow 0$ as $k \rightarrow \infty$.

Proof. Let $x_{1} \in(0, \sqrt{2(n-2)})$. Let $I=\left[-2 / x_{1}, 0\right]$ and consider (4) with $y\left(x_{1}\right)=S\left(x_{1}\right), y^{\prime}\left(x_{1}\right)=\beta \in I$. Denote such solutions as $Y(x, \beta)$. If $Y^{\prime}\left(x_{1}\right)=0$, then Y has a local maximum at x_{1}. Suppose that $Y(x)>0$ on $\left(0, x_{1}\right)$. Then $\left[x^{n-1} e^{-(1 / 4) x^{2}} Y^{\prime}(x)\right]^{\prime}=-x^{n-1} e^{-(1 / 4) x^{2}}\left(e^{Y}-1\right) \leqq 0, \quad$ and $0<p=T^{n-1} e^{-(1 / 4) T^{2}} Y^{\prime}(T) \leqq x^{n-1} e^{-(1 / 4) x^{2}} Y^{\prime}(x) \leqq x^{n-1} Y^{\prime}(x)$ for $0<x \leqq$ $T<x_{1}$. Thus, $\quad Y^{\prime}(x) \geqq p x^{1-n}$. An integration leads to $Y(T)+$ $(p /(n-2)) T^{2-n} \geqq Y(x)+(p /(n-2)) x^{2-n}>(p /(n-2)) x^{2-n}$ for $0<x \leqq T$. As $x \rightarrow 0$, the right-hand side of the inequality tends to ∞ while the left-hand side is constant. This is a contradiction, so there must be a number $r>0$ such that $Y(r)=0$ and $Y^{\prime}(r)>0$. Let $u(x)$ be the solution to $u^{\prime \prime}+[(n-1) / x-x / 2] u^{\prime}+u=0, u(r)=0, u^{\prime}(r)=Y^{\prime}(r)$. Then $u(x)<0$ on $(0, r)$ and $u(x) \rightarrow-\infty$ as $x \rightarrow 0$. Also, $Y^{\prime \prime}+[(n-1) / x-x / 2] Y^{\prime}+Y=$ $-\left(e^{Y}-Y-1\right) \leqq 0$. By Lemma $1, Y(x) \leqq u(x)$ on ($0, r$). Also, $Y^{\prime}(x)>0$ on this interval.

By continuous dependence, there is an interval $I_{0}=\left(\beta_{0}, 0\right]$ such that the solutions $Y(x, \beta)$ have a local maximum for some $x_{0}(\beta) \in\left(0, x_{1}\right)$ and such that $Y(x, \beta)<S(x)$ for $x \in\left(0, x_{1}\right)$. The last property is true since $\left|Y^{\prime}(x, 0)-S^{\prime}(x)\right| \geqq \delta>0$ for $x \in\left[\eta, x_{1}\right]$ ($\eta>0$ and small), so by continuous dependence, $\left|Y^{\prime}(x, \beta)-S^{\prime}(x)\right| \geqq \frac{1}{2} \delta$ for β close to 0 .

Since $Y\left(x,-2 / x_{1}\right)=S(x), I_{0}$ is bounded below. Define $\beta_{0}=\inf I_{0}$. In fact, $\beta_{0}=(-2+\varepsilon) / x_{1}$ for some $\varepsilon>0$ since for β close to $-2 / x_{1}$, the function $\Delta(x)=Y(x)-S(x)$ must have a zero $x_{2}<x_{1}$. That is, on $\left[\eta, x_{1}\right]$ $\left(\eta>0\right.$ and small), $Y(x, \beta) \rightarrow S(x)$ as $\beta \rightarrow-2 / x_{1}$. Thus, $\left(e^{4}-1\right) / \Delta \geqq \sigma$ on [η, x_{1}] for $\sigma \in(0,1)$ such that $8+2 \sigma>n$ (and for β close to $-2 / x_{1}$). But Δ is a solution to (12), so $0 \leqq \Delta^{\prime \prime}+[(n-1) / x-x / 2] \Delta^{\prime}+\left[2 \sigma(n-2) / x^{2}\right] \Delta$. Let $u(x)$ be the solution to (14) with $u\left(x_{1}\right)=0$ and $u^{\prime}\left(x_{1}\right)=\Delta^{\prime}\left(x_{1}\right)$. By Lemma $7, u(x)$ has a zero $\bar{x}<x_{1}$. By Lemma $1, \Delta(x) \geqq u(x)$ on $\left(\bar{x}, x_{1}\right)$, so $\Delta(x)$ has a zero $x_{2}<x_{1}$. By definition of I_{0}, it must be that β_{0} is bounded away from $-2 / x_{1}$.

If $\beta \in I_{0}$, then $Y^{\prime}(x, \beta)>-2 / x$ on $\left(0, x_{1}\right)$, or else there is a number $x_{2}<x_{1}$ such that $\Delta^{\prime}\left(x_{2}\right)=Y^{\prime}\left(x_{2}\right)-S^{\prime}\left(x_{2}\right)=0$. Since Δ is a solution to (12), this would force Δ to have another zero $\bar{x}<x_{2}<x_{1}$, contrary to the definition of the set I_{0}.

Let $g(x, \beta)=\frac{1}{2} x Y^{\prime}(x, \beta)+1$. Then g satisfies Eq. (13) and for $\beta \in I_{0}$, $g(x, \beta)>0$ on $\left(0, x_{1}\right)$. While $g(x)<1$, if $g^{\prime}(\bar{x})=0$ for some $\bar{x}<x_{1}$, then (13) implies that g has a local maximum at \bar{x}. Before g can have a local minimum on a left neighborhood of \bar{x}, g must become 0 first. This cannot happen for $\beta \in I_{0}$. Thus, $g^{\prime}(x)<0$ while $g(x)<1$ on a left neighborhood of x_{1}. At $x_{0}(\beta), Y^{\prime}\left(x_{0}\right)=0$ implies that $g\left(x_{0}\right)=1$. From our earlier arguments, for $x \in\left(0, x_{0}\right), Y^{\prime}(x)>0$ and so $g(x)>1$.

Consequently, $\quad x Y^{\prime}(x, \beta) \geqq x_{1} Y^{\prime}\left(x_{1}, \beta\right)=x_{1} \beta>x_{1} \beta_{0}>-2+\varepsilon$ for all $x \in\left(0, x_{1}\right), \quad \beta \in I_{0}$. Integrating from x to x_{1}, we have $Y(x, \beta) \leqq$ $\left[Y\left(x_{1}, \beta\right)+(2-\varepsilon) \ln x_{1}\right]-(2-\varepsilon) \ln x$ for $0<x \leqq x_{1}, \beta \in I_{0}$. By continuous dependence at $x_{1}, Y\left(x_{1}, \beta\right)$ is bounded on compact subsets of β. Thus,

$$
\begin{equation*}
Y(x, \beta) \leqq M-(2-\varepsilon) \ln x, \tag{15}
\end{equation*}
$$

where both M and ε depend only on I_{0} and where $x \in\left(0, x_{1}\right]$. Integrating Eq. (4) from x_{0} to x (where $Y^{\prime}\left(x_{0}\right)=0$) yields $Y^{\prime}(x)=-x^{1-n} e^{-(1 / 4) x^{2}}$ $\int_{x_{0}}^{x} s^{n-1} e^{-(1 / 4) s^{2}}\left[e^{Y(s)}-1\right] d s$ and then integrating from x_{0} to x_{1}, we have

$$
\begin{aligned}
& Y\left(x_{0}, \beta\right)=Y\left(x_{1}, \beta\right)+\int_{x_{0}}^{x_{1}} t^{1-n} e^{-(1 / 4) t^{2}} \int_{x_{0}}^{t} s^{n-1} e^{-(1 / 4) s^{2}}\left[e^{Y(s)}-1\right] d s d t \\
& \leqq K_{1}+\int_{x_{0}}^{x_{1}} t^{1-n} e^{-(1 / 4) s^{2}} \int_{x_{0}}^{t} s^{n}{ }^{1} e^{(1 / 4) s^{2}} e^{M} \quad(2-\varepsilon) \ln s \\
& d s d t
\end{aligned}
$$

using Eq. (15) and where $K_{1}=M+(2-\varepsilon) \ln x_{1}$. Thus,

$$
\begin{aligned}
Y\left(x_{0}, \beta\right) & \leqq K_{1}+K_{2} \int_{x_{0}}^{x_{1}} t^{1-n} \int_{x_{0}}^{t} s^{n-3+\varepsilon} d s d t \\
& \leqq K_{1}+K_{3} \int_{x_{0}}^{x_{1}} t^{-1+\varepsilon} d t \\
& =K_{1}+\frac{1}{\varepsilon} K_{3}\left(x_{1}^{\varepsilon}-x_{0}^{\varepsilon}\right) \\
& \leqq K_{4}
\end{aligned}
$$

where K_{i} are independent of $\beta, i=1,2,3,4$.
Therefore, for $\beta \in I_{0}$, the local maximum values $Y\left(x_{0}, \beta\right)$ are bounded above. We use this to prove that $Y^{\prime}\left(x, \beta_{0}\right)<0$ for a right neighborhood of $x=0$. First, $Y\left(x, \beta_{0}\right)<S(x)$ on $\left(0, x_{1}\right)$. For if there were a value x_{2} such that $Y\left(x_{2}, \beta_{0}\right)=S\left(x_{2}\right)$, then by continuous dependence, for $\beta \in I_{0}$ close to β_{0}, there would have to be a number $x_{2}(\beta)$ such that $Y\left(x_{2}, \beta\right)=S\left(x_{2}\right)$, a contradiction to the definition of I_{0}. Second, if $Y^{\prime}\left(x_{0}, \beta_{0}\right)=0$ for some $x_{0}>0$, then on $\left[\eta, x_{1}\right]$ (fixed $\left.\eta<x_{0}\right),\left|Y^{\prime}\left(x, \beta_{0}\right)-S^{\prime}(x)\right| \geqq \delta>0$ (or else there is a value $x_{2}<x_{1}$ such that $Y^{\prime}\left(x_{2}\right)=S^{\prime}\left(x_{2}\right)$ and, as before, there would be a number $\bar{x}<x_{2}$ such that $Y(\bar{x})=S(\bar{x})$, a contradiction to the definition of β_{0}). By continuous dependence, $\left|Y^{\prime}(x, \beta)-S(x)\right| \geqq \frac{1}{2} \delta$ for $\beta<\beta_{0}$ (but close) and there is an $x_{0}(\beta)>0$ such that $Y^{\prime}\left(x_{0}, \beta\right)=0$ and $Y(x, \beta)<S(x)$ on $\left(0, x_{1}\right)$. This contradicts the definition of β_{0}. Thus, $Y^{\prime}\left(x, \beta_{0}\right)<0$ on $\left(0, x_{1}\right)$ and $Y\left(x_{0}, \beta\right) \leqq K_{4}$ for $\beta \in I_{0}$ imply that $Y\left(0, \beta_{0}\right)$ is finite.

If $x Y^{\prime}\left(x, \beta_{0}\right) \leqq-k<0$ on $\left(0, x_{1}\right)$, then for x small, an integration from x to x_{0} yields $Y\left(x, \beta_{0}\right) \geqq Y\left(x_{1}, \beta_{0}\right)+k \ln x$ which implies $Y(0)$ is not finite, a contradiction. Thus, $\lim _{x \rightarrow 0} x Y^{\prime}\left(x, \beta_{0}\right)=0$. (The limit exists since $g\left(x, \beta_{0}\right)<1-\mathrm{cf}$. the earlier work in the lemma.) Integrating Eq. (4) yields $Y^{\prime}\left(x, \beta_{0}\right)=-x^{1-n} e^{(1 / 4) x^{2}} \int_{0}^{x_{t} n-1} e^{-(1 / 4) r^{2}}\left[e^{Y}-1\right] d t$. Applying L'Hopital's rule, we have $\lim _{x \rightarrow 0} Y^{\prime}\left(x, \beta_{0}\right)=0$. Say $Y\left(0, \beta_{0}\left(x_{1}\right)\right)=\alpha\left(x_{1}\right)$.

Thus, for each $x_{1} \in(0, \sqrt{2(n-2)})$, there is an $\alpha\left(x_{1}\right)>S\left(x_{1}\right)$ such that $y(x, \alpha)$ is a solution to (4)-(6) and $y(x, \alpha)<S(x)$ on $\left(0, x_{1}\right), y\left(x_{1}\right)=S\left(x_{1}\right)$. By continuous dependence, the function $x_{1}(\alpha)$ is continuous (but not necessarily one-to-one). Since x_{1} can be picked arbitrarily close to 0 , there is an unbounded sequence $\left\{\alpha_{k}\right\}_{1}^{\infty}$ such that $x_{1}\left(\alpha_{k}\right)=: x_{1}(k) \downarrow 0$ as $k \rightarrow \infty$.

Lemma 9. Let $\left\{\alpha_{k}\right\}_{1}^{\infty}$ be the sequence constructed in Lemma 8. Let $\theta=\exp (2 \pi / \sqrt{(n-2)(10-n)})$. If k is sufficiently large, then $h\left(x, \alpha_{k}\right)$ has a second zero $x_{2}(k) \in\left(x_{1}, \theta x_{1}\right)$.

Proof. The function h satisfies Eq. (12) where $h\left(x_{1}\right)=0, h^{\prime}\left(x_{1}\right)>0$. Note that $h^{\prime \prime}+[(n-1) / x-x / 2] h^{\prime}+\left[2(n-2) / x^{2}\right] h=-\left[2(n-2) / x^{2}\right]$ $\left(e^{h}-h-1\right) \leqq 0$. Let $u(x)$ be the solution to (14) with $u\left(x_{1}\right)=0$ and $u^{\prime}\left(x_{1}\right)=h^{\prime}\left(x_{1}\right)$. By Lemma $7, u$ has another zero $\bar{x} \in\left(x_{1}, \theta x_{1}\right)$ as long as x_{1} is sufficiently close to 0 . But by Lemma $1, h(x) \leqq u(x)$ on (x_{1}, \bar{x}), so h must also have a second zero $x_{2}(k) \in\left(x_{1}, \theta x_{1}\right)$, for k sufficiently large.

Lemma 10. Let $x_{1}(k)$ and $x_{2}(k)$ be the first two zeros for $h\left(x, \alpha_{k}\right)$ where k is sufficoently large to guarantee their existence. Then $x_{i}^{n-1} h^{\prime}\left(x_{i}\right) \rightarrow 0$ as $k \rightarrow \infty$.

Proof. At $x_{1}, 0>y^{\prime}\left(x_{1}\right)>-2 / x_{1}$, so $x_{1}^{n-1} y^{\prime}\left(x_{1}\right) \in\left(-2 x_{1}^{n-2}, 0\right)$. Consequently, $x_{1}^{n-1} y^{\prime}\left(x_{1}\right) \rightarrow 0$ as $k \rightarrow \infty$ (since $n>2$). But $x_{1}^{n-1} h^{\prime}\left(x_{1}\right)=$ $x_{1}^{n-1} y^{\prime}\left(x_{1}\right)+2 x_{1}^{n-2}$, so $x_{1}^{n-1} h^{\prime}\left(x_{1}\right) \rightarrow 0$ as $k \rightarrow \infty$.

Integrating Eq. (4) from x_{1} to x_{2} yields the relationship

$$
\begin{aligned}
0>x_{2}^{n-1} e^{-(1 / 4) x_{2}^{2} y^{\prime}\left(x_{2}\right)} & =x_{1}^{n-1} e^{-(1 / 4) x_{1}^{2}} y^{\prime}\left(x_{1}\right)-\int_{x_{1}}^{x_{2}} t^{n-1} e^{-(1 / 4) t^{2}}\left[e^{y(t)}-1\right] d t \\
& \geqq x_{1}^{n-1} y^{\prime}\left(x_{1}\right)-\frac{1}{n} e^{y\left(x_{1}\right)}\left(x_{2}^{n}-x_{1}^{n}\right) \\
& \geqq x_{1}^{n-1} y^{\prime}\left(x_{1}\right)-\frac{2(n-2)}{n} x_{2}^{n} / x_{1}^{2} \\
& \geqq x_{1}^{n-1} y^{\prime}\left(x_{1}\right)-\frac{2(n-2)}{n} \theta^{n} x_{1}^{n-2}
\end{aligned}
$$

We have used the fact that $x_{2} \leqq \theta x_{1}$ from Lemma 9. The right-hand side of the inequality tends to 0 as $k \rightarrow \infty$, so $x_{2}^{n-1} y^{\prime}\left(x_{2}\right) \rightarrow 0$ as $k \rightarrow \infty$. As before, $x_{2}^{n-1} h^{\prime}\left(x_{2}\right)=x_{2}^{n-1} y^{\prime}\left(x_{2}\right)+2 x_{2}^{n-2} \rightarrow 0$ as $k \rightarrow \infty$.

Lemma 11. For k sufficiently large, there is a third zero $x_{3}(k)$ for $h\left(x, \alpha_{k}\right)$.

Proof. It is sufficient to show that there is a number $q(k)>x_{2}(k)$ such that $h^{\prime}(q)=0$. For if $h^{\prime}(q)=0$ and $h(q)<0$, then $h^{\prime \prime}(q)>0$ and $h^{\prime}(x)>0$ in a right neighborhood of q. The function h cannot have a local maximum while $h<0$, so either h has a zero $x_{3} \leqq 2$, or $h<0$ and, $h^{\prime}>0$ for $x>\sqrt{2(n-1)}$. In this last case, it must be that $h^{\prime \prime}>0$ by Eq. (12), so h must have a third zero $x_{3}>\sqrt{2(n-1)}$.

Let $\sigma \in(0,1)$ be such that $n<2+8 \sigma$. Let $u(x)$ be the solution to (14) with $u\left(x_{2}\right)=0, u^{\prime}\left(x_{2}\right)=h^{\prime}\left(x_{2}\right)<0$. Then Lemma 7 states that u has another zero $\bar{x} \in\left(x_{2}, \theta x_{2}\right)$ for x_{2} sufficiently small. If $\left(e^{h}-1\right) / h \geqq \sigma$ on $\left[x_{2}, \theta x_{2}\right]$, then (12) implies that $h^{\prime \prime}+[(n-1) / x-x / 2] h^{\prime}+\left[2 \sigma(n-2) / x^{2}\right] h \geqq 0$ while
$h \leqq 0$. Lemma 1 implies that $h(x) \geqq u(x)$ on $\left[x_{2}, \theta x_{2}\right]$ and so h must have a third zero in $\left(x_{2}, \theta x_{2}\right]$.
Otherwise, there is a number $\bar{x} \in\left(x_{2}, \theta x_{2}\right)$ such that $\left[e^{h(x)}-1\right] / h(\bar{x})=\sigma$ and $h^{\prime}(x)<0$ on a right neighborhood of \bar{x}. Let $\delta>0$ be fixed. For k large, $\theta x_{2}<\delta$. Integrating from x_{2} to 2δ, we obtain

$$
\begin{aligned}
(2 \delta)^{n-1} e^{-\delta^{2}} h^{\prime}(2 \delta)= & x_{2}^{n-1} e^{-(1 / 4) x_{2}^{2}} h^{\prime}\left(x_{2}\right) \\
& +\int_{x_{2}}^{2 \delta} 2(n-2) t^{n-3} e^{-(1 / 4) t^{2}}\left[1-e^{h(t)}\right] d t \\
\geqq & x_{2}^{n-1} h^{\prime}\left(x_{2}\right)+\int_{\delta}^{2 \delta} 2(n-2) t^{n-3} e^{-(1 / 4) t^{2}}\left[1-e^{h(t)}\right] d t \\
\geqq & x_{2}^{n} h^{1}\left(x_{2}\right)+2 e^{-\delta^{2}}\left[(2 \delta)^{n-2}-\delta^{n-2}\right]\left[1-e^{h(x)}\right] .
\end{aligned}
$$

As $k \rightarrow \infty$, by Lemma 10 , we have $x_{2}^{n-1} h^{\prime}\left(x_{2}\right) \rightarrow 0$. Since $2 e^{-\delta^{2}}\left[(2 \delta)^{n-2}-\delta^{n-2}\right]\left[1-e^{h(\bar{x})}\right]$ is positive and independent of α_{k}, it must be that for k large, $(2 \delta)^{n-1} e^{-\delta^{2}} h^{\prime}(2 \delta)>0$. That is, it cannot be the case that $h^{\prime}<0$ for all $x>x_{2}$ where k is large. Thus, there exists a number $q(k)>x_{2}(k)$ such that $h^{\prime}(q)=0$ and the lemma is proved. It follows immediately from this argument that $q(k) \rightarrow 0$ as $k \rightarrow \infty$ since in the first case, $q \in\left(x_{2}, \theta x_{2}\right)$, and in the second case, δ can be chosen arbitrarily small.

Lemma 12. Let k be sufficiently large so that the third zero of $h\left(x, \alpha_{k}\right)$, $x_{3}(k)$, exists. Then $x_{3}(k) \rightarrow 0$ as $k \rightarrow \infty$.

Proof. Let x_{1} and x_{2} be the first two zeros of h. Let $\hat{x} \in\left(x_{1}, x_{2}\right)$ be the unique value where $h^{\prime}(\hat{x})=0$ on that interval. On $\left[x_{1}, \hat{x}\right], h^{\prime \prime}(x)<0$, so $h(x) \leqq h^{\prime}\left(x_{1}\right)\left(x-x_{1}\right) \leqq h^{\prime}\left(x_{1}\right)\left(x_{2}-x_{1}\right) \leqq(\theta-1) x_{1} h^{\prime}\left(x_{1}\right)$. Since $y^{\prime}\left(x_{1}\right)<0$, $x_{1} h^{\prime}\left(x_{1}\right)=x_{1} y^{\prime}\left(x_{1}\right)+2<2$. Thus, $h(x) \leqq h(\hat{x}) \leqq 2(\theta-1)=: \kappa_{1}$ on $\left[x_{1}, x_{2}\right]$.

Define $f(x)=h^{\prime}(x)+\kappa_{2} / x$ where $\kappa_{2}=3\left(e^{\kappa_{1}}-1\right)$. Then $f\left(x_{1}\right)=$ $h^{\prime}\left(x_{1}\right)+\kappa_{2} / x_{1}>0$. Suppose there is a first $\bar{x} \in\left(x_{1}, x_{2}\right]$ such that $f(\bar{x})=0$. Then $f^{\prime}(\bar{x}) \leq 0$. However, $f^{\prime}(\bar{x})=h^{\prime \prime}(\bar{x})-\kappa_{2} / \bar{x}^{2}=-\frac{1}{2} \kappa_{2}+\left((n-2) / \bar{x}^{2}\right)$ $\left[\kappa_{2}+2\left(1-e^{h(x)}\right] \geqq-\frac{1}{2} \kappa_{2}+(n-2)\left(e^{\kappa_{1}}-1\right) / \tilde{x}^{2}\right.$ since $h(\bar{x}) \leqq \kappa_{1}$. For k large, since $\bar{x} \leqq x_{2}$ and $x_{2} \rightarrow 0$ as $k \rightarrow \infty,-\frac{1}{2} \kappa_{2}+(n-2)\left(e^{x_{1}}-1\right) / \bar{x}^{2}>0$. This contradicts $f^{\prime}(\bar{x}) \leqq 0$. So for k large, $f(x)>0$ on [x_{1}, x_{2}]. In particular, $x_{2} h^{\prime}\left(x_{2}\right) \geqq-\kappa_{2}$.
For $x \geqq x_{2}$, we have $x^{n-1} e^{-(1 / 4) x^{2}} h^{\prime}(x) \geqq x_{2}^{n-1} e^{-(1 / 4) x_{2}^{2} h^{\prime}\left(x_{2}\right) \text { while } h<0}$ since $\left[x^{n-1} e^{-(1 / 4) x^{2}} h^{\prime}\right]^{\prime}=-\left[2(n-2) / x^{2}\right]\left[e^{h^{2}}-1\right] \geqq 0$. Thus, while $h<0$ on $\left[x_{2}, \sqrt{2(n-2)}\right], x^{n-1} h^{\prime}(x) \geqq-\kappa_{2} e^{(1 / 2)(n-2)} x_{2}^{n-2}=:-\kappa_{3} x_{2}^{n-2}$. Integrating from x_{2} to x, we have $h(x) \geqq\left[-\kappa_{3} /(n-2)\right]\left[1-x_{2}^{n-2} x^{2-n}\right] \geqq$ $\kappa_{3} /(n-2)=:-\kappa_{4}$. In particular, if $q \in\left(x_{2}, x_{3}\right)$ is the value where $h^{\prime}(q)=0$, then $h(x) \geqq-\kappa_{4}$ where κ_{4} is independent of α_{k}.

Suppose there is a $\delta>0$ such that $x_{3}(k) \geqq \delta$ for all large k. Let $\sigma \in(0,1)$ be such that $n<2+8 \sigma$. If $\left(e^{h}-1\right) / h \geqq \sigma$ on $[\delta / \theta, \delta]$ where θ is the number constructed in Lemma 7, then by Lemma 7, h would have to have another zero in $[\delta / \theta, \delta]$, contradicting $h<0$ on $\left(x_{2}, x_{3}\right)$. So h must be bounded away from zero on $[q, \delta / \theta]$ for all large k, say $\left(1-e^{h}\right) 2 e^{-(1 / 4)(\delta / \theta)^{2}} \geqq \kappa_{5}>0$. Then $\quad\left[x^{n-1} e^{-(1 / 4) x^{2}} h^{\prime}\right]^{\prime}=2(n-2) x^{n-3} e^{-(1 / 4) x^{2}}\left(1-e^{h}\right) \geqq(n-2) \kappa_{5} x^{n-3}$. Integrating from q to x yields $x^{n-1} h^{\prime}(x) \geqq x^{n-1} e^{-(1 / 4) x^{2}} h^{\prime}(x) \geqq$ $\kappa_{5}\left[x^{n-2}-q^{n-2}\right]$. Integrating once more from q to x yields $h(x) \geqq$ $h(q)+\kappa_{5} \ln (x / q)-\left[\kappa_{5} /(n-2)\right] q^{n-2}\left[q^{2-n}-x^{2-n}\right]$. In particular, $h(\delta / \theta) \geqq$ $c_{1}+c_{2} q^{n-2}-c_{3} \ln q$ where c_{i} are independent of $\alpha_{k}, i=1,2,3$. The righthand side of this inequality tends to ∞ as $q \rightarrow 0(k \rightarrow \infty)$, a contradiction to $h(\delta / \theta)<0$. Thus, $x_{3}(k)$ cannot be bounded away from 0 for all k.

Lemma 13. Let k be sufficiently large so that $h\left(x, \alpha_{k}\right)$ has at least $2 m-1$ zeros on $(0, \sqrt{2(n-2)})$. Then there is a k_{0} such that for all $k>k_{0}, h\left(x, \alpha_{k}\right)$ has at least $2 m+1$ zeros on $(0, \sqrt{2(n-2)})$.

Proof. Since $x_{1}(k)$ and $x_{2}(k)$ tend to 0 as $k \rightarrow \infty$, there is a value k such that for $k>k, h\left(x, \alpha_{k}\right)$ has at least one zero $(m=1)$. By Lemmas 11 and 12, for k sufficiently large, $x_{3}(k)$ exists and tends to 0 as $k \rightarrow \infty$. As in Lemma 9, for k large, a linear comparison shows the existence of a fourth zero $x_{4}(k)$ for $h(x)$. Thus, there is a k_{0} such that for all $k>k_{0}, h\left(x, \alpha_{k}\right)$ has at least 3 zeros on $(0, \sqrt{2(n-2)})$. So the result is true for $m=1$.

The inductive step depends on Lemma 10 holding for $x_{i}(k)$ in general. That is, we need to show that $x_{i}^{2} h^{\prime}\left(x_{i}\right) \rightarrow 0$ as $k \rightarrow \infty$ for $i=2 m-1,2 m$. As in Lemma 10, it is sufficient to show that $x_{i}^{2} y^{\prime}\left(x_{i}\right) \rightarrow 0$ as $k \rightarrow \infty$. At $x_{2 m-1}$, $0>y^{\prime}\left(x_{2 m-1}\right)>-2 / x_{2 m-1}$. Consequently, $\left(x_{2 m-1}\right)^{2} y^{\prime}\left(x_{2 m-1}\right)>-2 x_{2 m-1}$ and so $\left(x_{2 m-1}\right)^{2} y^{\prime}\left(x_{2 m-1}\right) \rightarrow 0$ as $k \rightarrow \infty$ since $x_{2 m-1} \rightarrow 0$.

Integrating Eq. (4) from $x_{2 m-1}$ to $x_{2 m}$ yields

$$
\begin{aligned}
0 & >x_{2 m}^{2} \exp \left(-\frac{1}{4} x_{2 m}^{2}\right) y^{\prime}\left(x_{2 m)}\right. \\
& =x_{2 m-1}^{2} \exp \left(-\frac{1}{4} x_{2 m-1}^{2}\right) y^{\prime}\left(x_{2 m-1}\right)-\int_{x_{2 m-1}}^{x_{2 m}} t^{n-1} e^{-(1 / 4) t^{2}}\left[e^{y}-1\right] d t \\
& \geqq x_{2 m-1}^{2} y^{\prime}\left(x_{2 m-1}\right)-\frac{1}{n} e^{y\left(x_{2 m-1}\right)}\left[x_{2 m}^{n}-x_{2 m-1}^{n}\right] \\
& =x_{2 m-1}^{2} y^{\prime}\left(x_{2 m-1}\right)-\frac{2(n-2)}{n}\left(x_{2 m}^{n} / x_{2 m-1}^{2}\right)+\frac{2(n-2)}{n} x_{2 m-1}^{n-2} \\
& \geqq x_{2 m-1}^{2} y^{\prime}\left(x_{2 m-1}\right)-\frac{2(n-2)}{n} \theta^{n} x_{2 m-1}^{n-2}+\frac{2(n-2)}{n} x_{2 m-1}^{n-2}
\end{aligned}
$$

using the inequality $x_{2 m} \leqq \theta x_{2 m-1}$ which holds whenever the even-subscripted root comes into existence. The right-hand side of the inequality tends to 0 as $k \rightarrow \infty$, so $x_{2 m}^{2} y^{\prime}\left(x_{2 m}\right) \rightarrow 0$ as $k \rightarrow \infty$.

This particular information was used in Lemma 11 in the construction of a number $q(k) \in\left(x_{2 m-1}, x_{2 m}\right)$ in the case $m=1$. The proof for general m proceeds in exactly the same way. The lemma is proved.

Recall that $Z_{m}=\{\alpha \in[0, \infty): h(x, \alpha)$ has at least $2 m+1$ zeros on $(0, \infty)\}, m=1,2, \ldots$. For $m=1$, lemmas 5 and 6 showed that Z_{1} is bounded below by $\alpha=1$. Of course, then all of the sets $Z_{m}, m \geqq 2$, are bounded below. Lemma 13 shows that Z_{m} is nonempty for $m \geqq 1$. We defined $\bar{\alpha}_{m}=\inf Z_{m}$. Also note that h has a finite number of zeros on $(0, \infty)$ by lemma 6. By continuous dependence, if $h(x, \bar{\alpha})$ has a zero on $(\sqrt{2(n-2)}, \infty)$, then so does $h(x, \alpha)$ for $|\alpha-\hat{\alpha}|$ small. So lemma 6 also implies that h cannot pick up more zeros until the $2 m$-th zero decreases past $\sqrt{2(n-2)}$.

Theorem. Let $\bar{\alpha}_{m}=\inf Z_{m}$. Then the solutions $y\left(x, \bar{\alpha}_{m}\right)$ to (4)-(6) have the property $\lim _{x \rightarrow \infty}\left[1+\frac{1}{2} x y^{\prime}\left(x, \bar{\alpha}_{m}\right)\right]=0$.

Proof. From the definition of $\bar{\alpha}_{m}, y\left(x, \bar{\alpha}_{m}\right)<S(x)$ for $x>\sqrt{2(n-2)}$. For if $y\left(\bar{x}, \bar{\alpha}_{m}\right)=S(\bar{x})$ for some $\bar{x}>\sqrt{2(n-2)}$, then by continuous dependence, for $\left|\alpha-\bar{\alpha}_{m}\right|$ small, $y(\hat{x}, \alpha)=S(\hat{x})$ for some $\hat{x}>\sqrt{2(n-2)}$ and $y(x, \alpha), y\left(x, \bar{\alpha}_{m}\right)$ have at least $2 m+1$ zeros, a contradiction to $\bar{\alpha}_{m}=\inf Z_{m}$.

Suppose that $y^{\prime \prime}\left(\bar{x}, \bar{\alpha}_{m}\right)<0$ for some $\bar{x}>\sqrt{2(n-1)}$. Then $y^{\prime \prime \prime}(\bar{x})=$ $[\bar{x} / 2-(n-1) / \bar{x}] y^{\prime \prime}(\bar{x})+\left[\frac{1}{2}+(n-1) / \bar{x}^{2}-e^{v(\bar{x})}\right] y^{\prime}(\bar{x}) \leqq[\bar{x} / 2-(n-1) / \bar{x}]$ $y^{\prime \prime}(\bar{x})+\left[\frac{1}{2}+(n-1) / \bar{x}^{2}-2(n-2) / \bar{x}^{2}\right] y^{\prime}(\bar{x})<0$ since $y(\bar{x})<S(\bar{x})$ and $\bar{x}>\sqrt{2(n-1)}$. Thus, $y^{\prime \prime}(x)$ must remain negative for $x>\bar{x}$. By continuous dependence, for $\alpha>\bar{\alpha}_{m}$ (but close), there must be a value $\bar{x}(\alpha)$ such that $y^{\prime \prime}(\bar{x}, \alpha)<0$. Similarly, $y^{\prime \prime}(x, \alpha)<0$ for $x>\bar{x}$. On $\left[\sqrt{2(n-2)}, 2 \bar{x}\left(\bar{\alpha}_{m}\right)\right]$, $\left|y^{\prime}\left(x, \bar{\alpha}_{m}\right)-S^{\prime}(x)\right| \geqq \delta>0$ (or else $y^{\prime}=S^{\prime}$ for some $\hat{x}>\sqrt{2(n \cdot 2)}$, and Eq. (12) implies that y must intersect S, a contradiction to the definition of $\bar{\alpha}_{m}$). By continuous dependence, $\left|y^{\prime}(x, \alpha)-S^{\prime}(x)\right| \geqq \frac{1}{2} \delta$ on this same interval for $\alpha>\bar{\alpha}_{m}$ (but close). Consequently, $y(x, \alpha)$ does not intersect $S(x)$ for $x>\sqrt{2(n-2)}, \alpha \in Z_{m}$, a contradiction to the definition of $\bar{\alpha}_{m}$. Thus, $y^{\prime \prime}\left(x, \bar{\alpha}_{m}\right)>0$ for $x>\sqrt{2(n-1)}$.

We have that $y^{\prime}\left(x . \bar{\alpha}_{m}\right)<0$ and $y^{\prime \prime}\left(x, \bar{\alpha}_{m}\right)>0$ for $x>\sqrt{2(n-1)}$. The limit of $y^{\prime}\left(x, \bar{\alpha}_{m}\right)$ as $x \rightarrow \infty$ must exist and be nonpositive. Suppose that for large $x, y^{\prime}\left(x, \bar{\alpha}_{m}\right) \leqq-\varepsilon<0$. From Eq. (4) we have that $0=y^{\prime \prime}+$ $[(n-1) / x-x / 2] y^{\prime}+e^{y}-1 \geqq y^{\prime \prime}-\varepsilon[(n-1) / x-x / 2]-1$. So $y^{\prime \prime} \leqq 1+$ $\varepsilon(n-1) / x-\varepsilon x / 2$. The right-hand side tends to $-\infty$ as $x \rightarrow \infty$ which forces $y^{\prime \prime}<0$ somewhere. But this contradicts $y^{\prime \prime}\left(x, \bar{\alpha}_{m}\right)>0$. So $y^{\prime}\left(x, \bar{\alpha}_{m}\right) \rightarrow 0$ as $x \rightarrow \infty$.

Consider the function $x y^{\prime}\left(x, \bar{\alpha}_{m}\right)$. Since $y\left(x, \bar{\alpha}_{m}\right)<S(x)$ and since $y^{\prime}\left(\bar{x}, \bar{\alpha}_{m}\right)=S^{\prime}(\bar{x})$ for some $\bar{x}>\sqrt{2(n-2)}$ implies that $y=S$ for some x (contradicting the definition for $\left.\bar{\alpha}_{m}\right)$, it must be true that $x y^{\prime}\left(x, \bar{\alpha}_{m}\right)<-2$ for all $x>\sqrt{2(n-2)}$. Suppose that $x y^{\prime}\left(x, \bar{\alpha}_{m}\right) \leqq-2-\varepsilon<-2$ for all x large. Then (4) implies that $0 \geqq y^{\prime \prime}-(2+\varepsilon)\left[(n-1) / x^{2}-\frac{1}{2}\right]-1$ and so $y^{\prime \prime} \leqq(2+\varepsilon)(n-1) / x^{2}-\frac{1}{2} \varepsilon$. This forces $y^{\prime \prime}<0$ which was ruled out earlier. We have shown that $\overline{\lim }_{x \rightarrow \infty} x y^{\prime}\left(x, \bar{\alpha}_{m}\right)=-2$. Suppose that there is a sequence $\left\{t_{k}\right\}_{1}^{\infty}$ such that $t y^{\prime}\left(t_{k}\right) \leqq-2-\varepsilon<-2$ and (without loss of generality) $t_{k} y^{\prime \prime}\left(t_{k}\right)+y^{\prime}\left(t_{k}\right)=0$. Using Eq. (4), we have $0=y^{\prime \prime}\left(t_{k}\right)+$ $\left[(n-1) / t_{k}-t_{k} / 2\right] y^{\prime}\left(t_{k}\right)+e^{y\left(t_{k}\right)}-1=-y^{\prime}\left(t_{k}\right) / t_{k}+\left[(n-1) / t_{k}-t_{k} / 2\right]$ $y^{\prime}\left(t_{k}\right)+e^{y\left(t_{k}\right)}-1$. Thus, $\frac{1}{2} t_{k} y^{\prime}\left(t_{k}\right)=y^{\prime}\left(t_{k}\right) / t_{k}+e^{y\left(t_{k}\right)}-1$, and letting $t_{k} \rightarrow \infty$, we have that $-2-\varepsilon \geqq \lim _{k \rightarrow \infty} t_{k} y^{\prime}\left(t_{k}\right)=-2$, a contradiction. We have shown that $\varliminf_{x \rightarrow \infty} x y^{\prime}\left(x, \bar{\alpha}_{m}\right)=-2$. Thus, $\lim _{x \rightarrow \infty}\left[1+\frac{1}{2} x y^{\prime}\left(x, \bar{\alpha}_{m}\right)\right]=0$ and the theorem is proved.

4. Observations and Conclusions

The nonexistence of solutions to (4), (5) in dimensions 1 and 2 clearly shows that the asymptotic representation (3) is not valid. However, for dimension 3, this representation may be accurate.

For $n \geqq 10$, solutions to the linearized problem $L^{\prime \prime}+[(n-1) /$ $x-x / 2] L^{\prime}+\left[2(n-2) / x^{2}\right] L=0$ do not have more than one zero. We conjecture that because of this, (4), (5) does not have a solution.

The techniques discussed in this paper appear to be more general. In fact, a result by Joseph and Lundgren [3] is obtained by the procedures here. Their equation is

$$
\begin{array}{rlrl}
\ddot{u}+\frac{n-1}{t} \dot{u}+\lambda e^{u} & =0, & & 0<t<1 \\
\dot{u}(0) & =0, & u(1)=0 . \tag{17}
\end{array}
$$

There is a closed connected set $C(\lambda)$ contained in $[0, \infty) \times B$ where B is the Banach space $C^{1}[0,1]$ with the C^{1}-norm. The set $C(\lambda)$ has boundary point $(0,0)$ and represent solutions (λ, u) to (16), (17). Since e^{u} is unbounded, there is a number $\lambda^{*} \in(0, \infty)$ such that $\lambda \leqq \lambda^{*}$ is necessary for solutions to exist.

Letting $x=r t, r^{2}=\lambda, u(t)=y(x)$, we have the corresponding initial value problem

$$
\begin{align*}
y^{\prime \prime}+\frac{n-1}{x} y^{\prime}+e^{y} & =0, \quad 0<x<\infty \tag{18}\\
y(0) & =\alpha>0, \quad y^{\prime}(0)=0 \tag{19}
\end{align*}
$$

This equation has the singular solution $S(x)=\ln \left[2(n-2) / x^{2}\right]$ and $h(x)=y-S$ satisfies

$$
\begin{equation*}
h^{\prime \prime}+\frac{n-1}{x} h^{\prime}+\frac{2(n-2)}{x^{2}}\left(e^{h}-1\right)=0, \quad 0<x<\infty . \tag{20}
\end{equation*}
$$

Define $g(x)=x y^{\prime}(x)+2$. Then g satisfies

$$
\begin{equation*}
g^{\prime \prime}+\frac{n-1}{x} g^{\prime}+e^{y} g=0, \quad 0<x<\infty . \tag{21}
\end{equation*}
$$

Lemma 5 is valid for this function $g(x)$. Consequently, $h(x)$ can have at most one zero in $(0, \sqrt{2(n-2)})$ for $0<\alpha<1$. However, Lemma 6 does not follow. It appears that the absence of the term $-\frac{1}{2} x h^{\prime}$ may allow $h(x)$ to have many zeros for x large since the linearized solutions to (20) have zero which accumulate at ∞ (unlike that for Eq. (14)).
The sets $Z_{m}=\{\alpha \in[0, \infty): h(x, \alpha)$ has at least $2 m-1$ zeros on $(0, \sqrt{2(n-2)})\}, m \geqq 1$, are bounded below by $\alpha=1$. To show they are nonempty, we need to show the existence of a first zero $x_{1}\left(\alpha_{k}\right)$ for some unbounded increasing sequence $\left\{\alpha_{k}\right\}_{1}^{\infty}$. Lemma 8 can be modified for (18), (19) with only minor changes. In fact, for each $x_{1} \in(0, \infty)$, there is an $\alpha \in \mathbb{R}$ such that $h\left(x_{1}, \alpha\left(x_{1}\right)\right)=0$. The remaining results may be slightly modified for e^{y} (instead of $e^{y}-1$) and x^{n-1} (instead of $\left.x^{n-1} e^{-(1 / 4) x^{2}}\right)$. Consequently, all sets Z_{m} are nonempty and bounded below. The bifurcation diagrams in (α, λ) must look like those in Fig. 1 (where $2<n<10$). It is known that for $n \geqslant 10$, the bifurcation diagrams for (16), (17) look like that given in Fig. 2. We have indicated the conjectured diagram for (4)-(6).

Fig. 1. (a) $\ddot{u}+((n-1) / t) \dot{u}+\lambda e^{u}=0$, (b) $\ddot{u}+((n-1) / t) \dot{u}+\lambda\left(e^{u}-1-\frac{1}{2} t \dot{u}\right)=0$

Figure 2

References

1. J. Bebernes and W. C. Troy, Nonexistence for the Kassoy problem, SlaM J. Math. Anal. 18 (1987), 1157-1162.
2. D. Eberly, Nonexistence for the Kassoy problem in dimensions 1 and 2, J. Math. Anal. Appl., in press.
3. D. Joseph and T. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 49 (1973), 241-269.
4. A. Kapila, Reactive-diffusive system with Arrhenius kinetics: Dynamics of ignition, SIAM J. Appl. Math. 39 (1980), 21-36.
5. D. R. Kassoy and J. Poland, The thermal explosion confined by a constant temperature boundary. I. The induction period solution, SIAM J. Appl. Math. 39 (1980), 412-430.
6. P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487-513.

[^0]: * Partially supported by NSF Grant MCS83-01085.

