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1. INTRoDUCT10~ 

The ignition model for a high activation energy thermal explosion of a 
solid fuel in the n-dimensional unit sphere is given by 

u, - Au = de”, (C, t)EQx(o, oo), 6>0 

44,0)=11/(5), tEQ (1) 

UC<, t) = 0, (5, t)EaQx co, a), 

where ~(5, t) is the temperature perturbation of the boundary temperature 
of Q and where $([) is a radially decreasing function ($(t,) 2 $(t2) > 0 for 
It1 I < It21 d 1) and Atj + 6 exp($) 2 0 on Q. This problem has been studied 
by Kapila [4] and by Kassoy-Poland [S]. 

Let $(l) = 0. For each n 2 1, there is a critical value 6* such that if 
6 > 6*, then the solution to (1) is singular at a finite time, T. In fact, 
solutions to (1) are radially symmetric, so ~(5, t) = u(r, t), where r = 151. 
The equations in (1) can be rewritten as 

n-1 
u, = u,, + - u, + ae”, O<r<l 

r 

u(r, 0) = 0, O<r<l (2) 

u,(r, 0) = 0, ~(1, t)=O, O,<t< T, 
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where 6>6*. Let z=T-t, x=rT-li2, and 6(x, 7) = u(r, t). It is suggested 
by Kassoy and Poland [S] that the asymptotic representation of 8 for each 
fixed x as 7-O is 

8 - -ln(67) +y(x) + 2 7’yk(x). 
k=l 

(3) 

Formally evaluating (2) with the above expression and grouping the 
appropriate terms leads to the equation for y(x) as 

y”+(~-;)y~+ey-l=O, o<x<co, 

where y’(O) = 0 and matching conditions at the boundary of the hot spot 
yield the condition 1 + ixy’(x) + 0 as x -+ co. An integration yields the 
asymptotic condition y(x) N K- 2 In x as x + co. These boundary con- 
ditions are summarized as 

Y’(O) = 0, lim [ 1 + ixy’(x)] = 0. (5) r-m 

The nonexistence of solutions to (4), (5) for n = 1 is answered by Beber- 
nes and Troy [ 11. Although 1,2, and 3 are the only physically relevant 
values for n, treating n as a continuous variable, nonexistence of solutions 
to (4), (5) for 1 <n < 2 is answered by Eberly [a]. Thus, the asymptotic 
relationship (5) is not valid for dimensions 1 and 2. 

Consider equation (4) with the initial values 

y(O)=aER, y’(0) = 0. (6) 

Let solutions to initial value problem (4~(6) be denoted y(x, a). We prove 
the following: 

THEOREM. For each n E (2, lo), there is an unbounded sequence of positive 
numbers (E,,Jn)}~=, such that the solutions y(x, 6,) to the initial value 
problem (4)-(6) satisfy the limit condition in (5). 

2. PRELIMINARY RESULTS 

We will make use of a Wronskian argument throughout this paper. The 
argument is given in 

LEMMA 1. For x > 0, let p(x) be a continuously differentiable positive 
function and let q(x) be a nonnegative continuous function. Let L(x) be the 
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solution to [p(x) L’]’ + q(x) L = 0, x z=- 0, L(x,) = 0, L’(x,) # 0 for some 
x,>o. 

(i) Let N(x) b e a unction defined on a right (or left) neighborhood I f 
of x0 such that N(x,) = 0, N’(x,) = L’(x,), N(x) # 0 for x E I- {x0}, and 
[p(x) N’]‘+q(x)N<O on I. Then there is a right (or left) neighborhood J 
of x,, such that L(x) # 0, N(x) # 0, and N(x) < L(x) on J- {x,,}. 

(ii) Zf N(x) satisfies all the conditions in (i) except that [p(x) N’]’ + 
q(x) N 2 0 on I, then there is a right (or left) neighborhood J of x0 such that 
L(x) #O, N(x) #O, and N(x) > L(x) on J- {x,,}. 

Proof: The argument for (i) is given; the proof of (ii) is similar. Let 
x2x,, and suppose that N’(x,) = L’(x,)>O. Then L(x)>0 and N(x)>0 
on a right neighborhood J of x0. Define w(x) = L(x) N’(x) - L’(x) N(x). 
Then w(xO) = 0 and [p(x) w]’ = L[p(x) N’]’ - q(x) LN < 0 since L > 0. 
Integrating from x0 to x we obtain p(x) w(x) <p(xO) w(x,J =O. Thus, 
w(x) 60 on J and (N/L)‘(x) = w(x)/[L(x)]* ~0 on J. Integrating again 
from x0 to x leads to N(x)/L(x) < N’(xo)/L’(xo) = 1. Since L > 0 on J, 
N(x) 6 L(x) on J. Equality is ruled out on J- {x,,} by uniqueness to initial 
value problems. 

If x < x,,, then L(x) < 0 and N(x) < 0 on a left neighborhood J of x0. For 
w = LN’ - L’N, w(x,,) = 0 and [p(x) w]’ = L[p(x) N’]’ - q(x) LN> 0 since 
L < 0. Integrating from x to x,,, we obtain 0= p(xO) w(xO) <p(x) w(x). 
Thus, w(x) > 0 on J and (N/L)‘(x) = w(x)/[L(x)]* > 0 on J. Integrating 
again from x to x0 leads to N(x)/L(x) 2 N’(xo)/L’(xo) = 1. Since L < 0 on 
J, N(x) <L(x) on J. As before, equality is ruled out by uniqueness to initial 
value problems. A similar argument holds for L’(x,) < 0. 1 

LEMMA 2 (Existence). For each CI E 02, the initial ualue problem (4)-(6) 
has a solution. 

Proof The case n = 1 follows from standard existence results. Let n > 1 
and make the change of variables x = rt, u(t) = y(x). Consider 

n-l 
zi+A 

( 

1 
ii+- e”-I-?tti =O, 

) 
o<t<1 

t 
(7) 

G(O) = 0, u(l)=0 (8) 

where l=r*. Let B= C’[O, l] with the norm ll~ll =max,,ro, i, /u(t)1 + 
max,, ro, i, Izi(t)l. Rewrite (7), (8) in the form 

u = ALU + F(A, u), (9) 
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where Lu( t) = jh s”- ’ G(t,s)[u(s)-+sti(s)]ds, F(I,u)(t)=~;s”-‘G(t,s)x 
Ce u(s) - u(s) - 1 ] ds, and G( t, s) is a Green’s function. The function L: B + B 
is a linear compact operator and the function F: Iw x B + B is a continuous 
compact operator with F(A, u) = o( llull) as u + 0, uniformly for ;1 in boun- 
ded intervals. 

The only eigenvalue of u = ALo is A0 = 2n and the eigenspace is spanned 
by u(t) = 1 - t2. Thus, & is an eigenvalue of odd multiplicity. By the results 
in Rabinowitz [6], there is a maximal, closed, connected set of solutions, 
C(A), of (7) (8). Since A,, is the only eigenvalue of the linear problem, it 
must be that C(A) is unbounded in Iw x B. 

Each pair (A, u) E C(A) produces a pair (A, a) E [w* where tl = u(O) = y(0). 
We claim that the set P= {(A, a) E Iw*: (A, u) E C(A)} is unbounded. For 
c1> 0, y(x, a) has the property that y(0) = a and y(d) = 0 with y(x) > 0 
on [0, $). Let p(x) = ~~-le-(‘/~)~~ and q(x) = 1. Let v(x) = tl( 1 - x2/2n). 
Then [p(x) u’]’ + q(x) u = 0 and [p(x) y’]’ + q(x) y < 0 for x 2 0. By 
Lemma 1, y(x) 6 u(x) while u(x) > 0. Thus, A< 2n for all a > 0. 

Since C(A) is unbounded and 1 is bounded, either c1= 
max(lu(t)j: tE [0, l]} or /?=max{Iti(t)l: te [0, l]} is unbounded. By an 
integration of (4), it can be demonstrated that the boundedness of a implies 
the boundedness of fi. Thus, a cannot be bounded and (4~(6) has a 
solution for each CI > 0. 

For CI < 0, other arguments can be used to show that there are pairs 
(A, ~1) E P, but the existence of solutions to (4)-(6) for c1< 0 is not relevant 
to the development in the remainder of the paper. a 

LEMMA 3 (Uniqueness). For each a E R, the initial value problem 
(4)-(6) has a unique solution. 

Proof. We give an outline of the proof. Suppose that yl(x) and y*(x) 
are two solutions to (4t(6) for a given a. Define d(x)= yi(x)- y2(x). 
Then A satisfies 

Aft+(+;) A’+( f=)A=O, O<x<oo (10) 

A(0) = 0, A’=O. (11) 

Consider the equation L” + [(n - 1)/x - x/2] L’ + e”L = 0 for x > 0, 
L(x,) = 0, and L’(x,) # 0, for x sufficiently small. It can be shown that the 
solution L(x) # 0 on (0, x0). 

For c1> 0, there is a 6 sufficiently small such that y,(x) > 0 and y;(x) < 0 
on (0,6), i= 1,2. Consequently, (eY1 -eyZ)/(y, - yZ) <e” on (0,6). If 
A(x,) = 0 and A’(x,) < 0 (otherwise rename y, and y2) for some x0 E (0, a), 
then while A > 0 on a left neighborhood J of x0, [p(x) A’]’ + p(x) e” A > 0, 
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where p(x) = xn- 1e-(1’41X2. By Lemma 1, d(x) > L(x) >O on J. Conse- 
quently, J= (0, x0) and A > 0 on J. 

Equation (10) implies that A cannot have a local minimum on (0, x0). 
Since A(0) =0 and A > 0 on (0, x,), it must be that A’>0 on (0, a) for 
some cr E (0, x0). But then (10) implies that A” < 0 on (0, 0) and so 
A’(x) < A’(0) = 0 on (0, cr). This is a contradiction, so A(x) -0. Similar 
arguments work for c1< 0. 1 

LEMMA 4 (Continuous dependence). Let y(x, CI) be the unique solution 
to the initial value problem (4)-(6). Then y(x, ~1) and y’(x, u) are continuous 
on compact subsets of [0, CO) x R. 

Proof The results on existence and uniqueness combined with the fact 
that C(A) is closed and connected immediately imply the continuous depen- 
dence of y(x, a) and y’(x, a) on compact subsets of their domain. 1 

3. THE MAIN RESULTS FOR 2 < n < 10 

From the results in [2], if IX < 0, then the solution y(x, c() to the initial 
value problem (4)-(6) has the property that 1 y’(x, a)[ + cc as x -+ co. Such 
a solution cannot satisfy the boundary conditions (5). It is sufficient to con- 
sider only the values c1> 0. 

Equation (4) has a singular solution S(x) = ln[Z(n - 2)/x2]. Define 
h(x, a) = y(x, a) - S(x). Then h satisfies the differential equation 

h..+(~-~)h’+~(e”-1)=0, O<X<OO. (12) 

For x sufficiently close to 0, a linearized version of Eq. (12) is 
L”+ [(n-1)/x] L’+ [2(n-2)/x*] L=O. For each ns(2, lo), this 
equation has solutions which have zeros that accumulate at x = 0. We use 
this idea to show that there is an unbounded increasing sequence {Q} ;” 
such that the number of zeros of h(x) on (0, ,,/m) increases as 
uk + co. More precisely, we show that the sets 2, = {CIE [0, co): h(x, a) 
has at least 2m + 1 zeros on (0, co)}, m = 1,2, . . . . are nonempty and boun- 
ded below (by CI = 1). The values 6, = inf 2, provide solutions y(x, 6,) to 
(4)-(6) which satisfy condition (5). 

Define g(x) = ixy’(x) + I where y is any solution to (4). Then g satisfies 
the equation 

Gus+ g’+ (e’-- 1) g=O, o<x<co (13) 



314 EBERLYANDTROY 

LEMMA 5. Let 0 c a c 1 and let y(x, a) be the solution to (4~(6). Then 
g(x) cannot have a zero before y(x) does. 

Proof Let 
n-le-(‘/4)x* 

w = gy’ - g’y. Then (4) and (13) imply that 
cx w]’ =x”- le-(l/4) “*g(y- l)(e’- l), w(O)=O. For O<a< 1, 
y(x) 5 a < 1 while y > 0, y’ < 0. So [~“~‘e-~‘~~~~*w]~ 5 0 while y > 0 and 
g> 0. An integration and the standard Wronskian argument yields 
y(x) 5 ag(x) while y > 0 and g > 0. Thus, while y > 0, g(x) cannot have a 
zero. 

LEMMA 6. The function h(x, a) has at most two zeros on the interval 
(,fw ). Moreover, zf h(x) = 0, h’(x) ~0 at the first zero 

~>JI-r 2 n 2 , then h has exactly one zero for x > ,/m.. As a con- 
sequence, $0 <a < 1, then h(x) cannot have more than two zeros on (0, co). 

Proof Define w = Sy’- S’y where S is the singular solution given 
earlier. Then w satisfies the equation [x”- 1e-(1/4)x2w]’ = xn- 1e-(1’4)X2yS 
[F(S)--F(y)], where F(U) = (e”- 1)/u. Let r1 be the first zero for y(x). 

Suppose r, >,/m). If y(x)= S(X) at some first x> rl, then 
y’(X) -C S’(X). While 0 > S(x) > y(x), [x”-~I,c(~‘~)~*w]~ 2 0, w(X) > 0. By 
integrating, we have ~~-~e-(~‘~)~*w(x) 2 (x)“~’ eP(1’4)X2w(X) = p >O, and 
so w(x) 2 p~‘~“e’~‘~)~*. This implies that (y/S)‘(x) ,,x1-ne(1’4)x2/[S(x)]2 
and (y/S)(x)hpJ; t - e ’ ’ (1/4)12/S2(t)dt+ 1 > 1. So y(x)<S(x) for x>X 
and y has at most one point of intersection with S for x > Jm. 

Suppose r, < Jm. If y(X) = S( -) x a some first X > rr, then y(X) < 0 t 
and y’(X) > S’(x). Thus, y > S to the immediate right of X. If y = S at some 
first xi-> X, then y(x) ~0 and y’(x) < S’(x). A repetition of the previous 
argument shows that y < S for x > x. 

Suppose that r, = ,/m. Then the arguments used for 
rl > J2(n-2) or rl < J2(n-2) are valid depending on whether y’ > s’ or 
y’ < s’, respectively, at jm. 

If 0~ a < 1, and if h(x;)=O for two numbers xi, x2 cd-, then 
there is a number x between x1 and x2 where 0 = h’(x) = (2/x) g(X). This 
forces g to have a zero before y does, a contradiction to lemma 5. So for 
this range of a, h can have at most one zero before ,/fl. By the 
earlier work in this lemma, one can see that h has at most two zeros on 
(03 a). I 

These last two lemmas show that the set Z,, m 2 1, is bounded below by 
a = 1. We need to show that each of these sets is nonempty. 

LEMMA 7. Let n E (2, 10). Let CSE (0, 1) be any number such that 
n < 8 + 2a. Zf u(x) & 0 is a solution to the differential equation 
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then there is a decreasing sequence of zeros of u, say (rk};O such that 
r,+O as k+oO. Moreover, if 8=exp[2n/ (n-2)(8+20-n)] and if 
~=exp[{2tan1(~~/~~)}/~(n-2)(8+2~-n)], then l/8< 
rk + Ilrk < I/#. 

Proof Let z(x) =Xw2)(n--2)e-(m “2~(x). Then z is a solution to the 
equation z” + [ { 8o(n - 2) - (n - l)(n - 3)}/4x2 + (4~ -x2)/16] z = 0. Let 
rkfl >O be such that u(rk+l) =0 and u’(rk+,) >O. Let u(x) = 
A fi sin[ (n/m t?) ln(x/rk + , )] where A is chosen so that u’(rk + 1) = 
u’(r, + 1). Then u(x) satisfies u” + [ { 8a(n - 2) - (n - l)(n - 3)}/4x2] u = 0 
and #(Or,+ 1) = 0, u(x) > 0 on the interval (rk+ 1, &k+ ,). On a right 
neighborhood of rk + 1, z satisfies z” + [ { 8a(n - 2) - (n - 1 )(n - 3) >/ 
4x2] z 5 0. By Lemma 2, z(x) 5 u(x) on this neighborhood. Thus, z(x) must 
have another zero rk E (rk + 1, 6rk + 1 ). Similar arguments show that z(x) has 
a zero rk + 2 E (rk + ,/6, rk + ,). Repetition of the argument shows the existence 
of a sequence of zeros converging to zero. 

Let u(x) = Ax- (“2)(n-2’sin[(7c/ln t9) ln(x/r,+ r)] where A is chosen so 
that U’(rk+,)=U’(rk+I). Then u’+ [(n--1)/x] u’+ [2a(n-2)/x2] u=O 
and u’(brk + , ) = 0, u’(x) > 0 on (rk + , , drk + 1). While U’ > 0, (14) implies 
that U” + [(n - 1)/x] U’ + [2o(n - 2)/x2] u 2 0 and Lemma 2 implies that 
u(x) 2 u(x). Also, (u//u)(x) 2 (u’/u)(x) and so II’ must become zero before U’ 
does. Thus, the second zero of u occurs after drk+, and we have 
rkE(drk+Iyerk+l). 

LEMMA 8. There is an unbounded increasing sequence of values {Q) ;” 
such that h(x, ak) has a first zero x,(k) and x,(k) -+ 0 as k + co. 

Proof: Let x, E (0, ,,I’-). Let Z= [ -2/x,, 0] and consider (4) 
with y(xl) = S(x,), y/(x,) = PEZ. Denote such solutions as Y(x, p). If 
Y’(x,) = 0, then Y has a local maximum at x1. Suppose that Y(x) > 0 on 
(0, xl). Then [xn-‘e-(1’4)x2y,(x)]‘= -xn-1e--(‘/4)x2(eY- l)lO, and 
O<p= T”-‘e- (1/4)+‘(T)5x~-‘e- (“4)x2Y(~)I~n-‘Y(~) for O<xs 
T < x1. Thus, Y’(x) zpxLPn. An integration leads to Y(T) + 
(p/(n - 2)) T2-” 2 Y(x) + (p/(n - 2)) x2-n > (p/(n - 2)) x2-n for 0 < x 5 T. 
As x -+ 0, the right-hand side of the inequality tends to 00 while the 
left-hand side is constant. This is a contradiction, so there must be a num- 
ber r >O such that Y(r) =0 and Y’(r) >O. Let u(x) be the solution to 
U” + [(n - 1)/x-x/2] U’ + u = 0, u(r) = 0, u’(r) = Y’(r). Then u(x) < 0 on 
(0,r) and u(x)+ -co as x-0. Also, Y”+ [(n-1)/x-x/2] Y-I- Y= 
-(e’- Y- 1)sO. By Lemma 1, Y(x)zu(x) on (0, r). Also, Y’(x)>0 on 
this interval. 
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By continuous dependence, there is an interval I0 = (/IO, 0] such that the 
solutions Y(x, /I) have a local maximum for some x&I) E (0, xi) and such 
that Y(x, /I) < S(x) for XE (0, xi). The last property is true since 
I Y’(x, 0) - S’(x)1 2 6 > 0 for x E [Q xl] (q > 0 and small), so by continuous 
dependence, 1 Y’(x, /I) - s’(x)1 2 $5 for /I close to 0. 

Since Y(x, -2/x,) =S(x), Z,, is bounded below. Define /?,,=infZ,. In 
fact, /I0 = ( -2 +&)/xi for some E > 0 since for /I close to -2/x,, the 
function d(x) = Y(x) - S(x) must have a zero xa <xi. That is, on [q, xi] 
(q > 0 and small), Y(x, /I) -+ S(x) as /I -+ -2/x,. Thus, (e” - 1)/d 2 0 on 
[v], xi] for cr E (0, 1) such that 8 + 2a > n (and for /I close to -2/x,). But A 
is a solution to (12), so OSA”+[(n--1)/x-x/2] A’+ [2a(n-2)/x*] A. 
Let U(X) be the solution to (14) with u(x,)=O and z/(x1) = A’(x,). By 
Lemma 7, U(X) has a zero X < xi. By Lemma 1, A(x) 2 u(x) on (X, xi), so 
A(x) has a zero x2 < x,. By definition of I,, it must be that /I0 is bounded 
away from -2/x,. 

If BEZ~, then Y’(x, /I) > -2/x on (0, xi), or else there is a number 
x2 <xi such that A’(x,) = Y’(x,) - s’(x,) = 0. Since A is a solution to (12), 
this would force A to have another zero X < x2 < x,, contrary to the 
definition of the set Z,,. 

Let g(x, B) = $xY’(x, p) + 1. Then g satisfies Eq. (13) and for PE Z,, 
g(x, /I) > 0 on (0, xi). While g(x) < 1, if g’(X) = 0 for some X < xi, then (13) 
implies that g has a local maximum at X. Before g can have a local 
minimum on a left neighborhood of X, g must become 0 first. This cannot 
happen for /I E IO. Thus, g’(x) < 0 while g(x) < 1 on a left neighborhood of 
x,. At x,(/I), Y’(x,) = 0 implies that g(xO) = 1. From our earlier arguments, 
for x E (0, x,), Y’(x) > 0 and so g(x) > 1. 

Consequently, xY(x, fi) 2 x, Y(x,, /?) = xi/? > xi& > -2 + E for all 
XE(O,X,), BE&. Integrating from x to xi, we have Y(x, p)s 
[Y(x,,8)+(2-&)lnx,]-(2-&)lnxforO<x~x,,BEZo.Bycontinuous 
dependence at x,, Y(xi, /I) is bounded on compact subsets of /?. Thus, 

Y(x, fi)sM-(2-~)lnx, (15) 

where both A4 and E depend only on I, and where x E (0, xi 1. Integratin 
Eq. (4) from x0 to x (where Y’(x,) =0) yields Y’(x) = -~l-~e-(‘/~) 9 
~~os”-le-(1/4)s~[eY(s)_ 1 ] ds and then integrating from x0 to xi, we have 

Y(x,, /?)= Y(xl, B)+Jl t1~~e-i1/4)f’~~~s~-1e-(1~4)z[ey(~)- l] dsdt 

Sn-le-(1/4) szeM - (2 -E) In “ds dt 
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usingEq.(15)and whereK,=M+(2-s)lnx,.Thus, 

Y(x~,~)~K~+K,~x’tl-“S1 s”-3+edsdt 
.vl x0 

SK,+K, x’ s q t- 
‘+&dt 

= K, + f K,(x”, - x;) 

where Ki are independent of /?, i = 1, 2, 3,4. 
Therefore, for /? E I,, the local maximum values Y(x,, fl) are bounded 

above. We use this to prove that Y’(x, PO) < 0 for a right neighborhood of 
x=0. First, Y(x, PO) < S(x) on (0, xi). For if there were a value x2 such 
that Y(xz, Do) = S(x,), then by continuous dependence, for j3 E Z, close to 
PO, there would have to be a number x*(p) such that Y(xz, /?) = S(x,), a 
contradiction to the definition of I,. Second, if Y’(x,, fiO) = 0 for some 
x,, > 0, then on [q, x,] (fixed q CX,,), 1 Y’(x, PO) - S’(x)1 2 6 >O (or else 
there is a value x2 <x, such that Y’(x,)= s’(x,) and, as before, there 
would be a number X < x2 such that Y(X) = S(X), a contradiction to the 
definition of PO). By continuous dependence, 1 Y’(x, fi)- S(x)1 2 $8 for 
j3 < /?,, (but close) and there is an x0(p) >O such that Y’(x,, b) = 0 and 
Y(x, /?) < S(x) on (0, xi). This contradicts the definition of PO. Thus, 
Y’(x, fi,,) < 0 on (0, x1) and Y(x,, 8) 5 K4 for fi E I, imply that Y(0, BO) is 
finite. 

If xY’(x, PO) 5 -k < 0 on (0, xi), then for x small, an integration from x 
to x0 yields Y(x, PO) 2 Y(x,, PO) + k In x which implies Y(0) is not finite, a 
contradiction. Thus, lim, _ ,, xY’(x, PO) =O. (The limit exists since 
g(x, j&) < 1Gcf. the earlier work in the lemma.) Integrating Eq. (4) yields 
yI(x, PO) = -xl ~ ne(l/4) x2 jz”--l e-(1’4)‘2[eY- l] dt. Applying L’Hopital’s 
rule, we have lim,,, Y’b, PO) = 0. Say WA Botxl)) =4x,). 

Thus, for each x, ~(0, ,/m), there is an tl(xi)> S(x,) such that 
y(x, a) is a solution to (4)-(6) and y(x, CI) < S(x) on (0, x1), y(xl) = S(x,). 
By continuous dependence, the function xi(tx) is continuous (but not 
necessarily one-to-one). Since x1 can be picked arbitrarily close to 0, there 
is an unbounded sequence { CQ}? such that xl(ak) =: x,(k) JO as k + co. 

LEMMA 9. Let {Q);D be the sequence constructed in Lemma 8. Let 
8 = exp(2n/J(n - 2)( 10 -n)). Zf k is sufficiently large, then h(x, elk) has a 
second zero x*(k) E (x1, 8x,). 
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Proof The function h satisfies Eq. (12) where h(x,)= 0, h’(x,) > 0. 
Note that h” + [(n - 1)/x-x/2] h’ + [2(n - 2)/x*] h = - [2(n - 2)/x*] 
(e” --h - 1) 5 0. Let U(X) be the solution to (14) with u(xi) = 0 and 
u’(x,) = h’(x,). By Lemma 7, u has another zero Xe (xi, 8x,) as long as xi 
is sufficiently close to 0. But by Lemma 1, h(x) 5 U(X) on (x,, X), so h must 
also have a second zero x2(k) E (xi, 8x,), for k sufficiently large. 

LEMMA 10. Let x,(k) and x2(k) be the first two zeros for h(x, Q) where 
k is sufficoently large to guarantee their existence. Then xl-‘h’(xi) + 0 as 
k+co. 

Proof: At x1, O>y’(x,)> -2/x,, so x;-‘y’(xi)~( -2x7-*,0). Con- 
sequently, x;-‘y’(xl) +O as k + cc (since n > 2). But xl-‘h’(x,) = 
x7-‘y’(x,) + 2x;-*, so x;- ‘h’(x,) + 0 as k + 00. 

Integrating Eq. (4) from xi to x2 yields the relationship 

~>x;~le-~1!4~x:y’(x2)=x, n-le~(~,4)x:l,'(x,)-fX2 tn-1e-(1/4)r2[&‘(t)- 11 dt 

XI 

2X ;ly'(x,)-~e-~("l)(x~-x~) 

> x;-‘y’(xJ - 
2(n - 2) 

= - xyx: 
n 

= >x;-‘y’(xl)--l W-2) onxn-2 
I . 

We have used the fact that x2 5 8x, from Lemma 9. The right-hand side of 
the inequality tends to 0 as k + co, so x’;-‘y’(x2) --t 0 as k + co. As before, 
x’l- ‘h’(x2) = x ;-‘y’(x,)+2x’;~*+O as k+co. 

LEMMA 11. For k sufficiently large, there is a third zero x3(k) for 
4x, Q). 

ProoJ It is sufficient to show that there is a number q(k) > x2(k) such 
that h’(q) = 0. For if h’(q) = 0 and h(q) < 0, then h”(q) > 0 and h’(x) > 0 in 
a right neighborhood of q. The function h cannot have a local maximum 
while h ~0, so either h has a zero xj 5 2, or h ~0 and, h’> 0 for 
x > J2(n-1). In this last case, it must be that h” > 0 by Eq. (12), so h 
must have a third zero x3 > Jm. 

Let cr E (0, 1) be such that n < 2 + 80. Let U(X) be the solution to (14) 
with u(x2) = 0, u’(x2) = h’(x2) < 0. Then Lemma 7 states that u has another 
zero ‘XE (x2, 8x,) for x2 sufficiently small. If (eh- 1)/h 2 0 on [x,, 0x,], 
then (12) implies that h” + [(n - 1)/x - x/2] h’ + [2a(n -2)/x*] h 2 0 while 
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h 5 0. Lemma 1 implies that h(x) 2 U(X) on [x1, 0x,] and so h must have a 
third zero in (x2, 8x,]. 

Otherwise, there is a number X E (x2, Bx,) such that [eh(‘) - l]/h(x) = 0 
and h’(x) < 0 on a right neighborhood of 2. Let 6 > 0 be fixed. For k large, 
9x, < 6. Integrating from x2 to 26, we obtain 

+[262(n-2) t”~3~-(‘/4)r*[1 -e’W] df 

x2 

> x;- lh’(x,) + j2’ 2(n - 2) tn-3e--(‘/4)r2[ 1 - ehct)] dt = 
6 

As k-+oO, by Lemma 10, we have x; - vz’(X2) -+ 0. Since 
2e~6*[(26)“-2-6”-2][1 -eMf) ] is positive and independent of ctk, it must 
be that for k large, (26)“-’ e-62h’(26) >O. That is, it cannot be the case 
that h’ < 0 for all x > x2 where k is large. Thus, there exists a number 
q(k)>x,(k) such that h’(q) =0 and the lemma is proved. It follows 
immediately from this argument that q(k) + 0 as k + co since in the first 
case, q E (x2, 8x,), and in the second case, 6 can be chosen arbitrarily small. 

LEMMA 12. Let k be sufficiently large so that the third zero of h(x, uk), 
x3(k), exists. Then x,(k) + 0 as k + co. 

Proof: Let xi and x2 be the first two zeros of h. Let .C E (x1, x2) be the 
unique value where h’(f) =0 on that interval. On [x,, a], h”(x) ~0, so 
h(x) 5 h’(x,)(x - x1) S h’(x,)(x, - x1) 2 (0 - 1) x1 h’(x,). Since y’(xi) < 0, 
x,h’(x,) = x1 y’(xi) + 2 < 2. Thus, h(x) 5 h(f) s 2(6 - 1) =: JC~ on [xi, x2]. 

Define f(x) = h’(x) + KJX where rc2 = 3(eK1 - 1). Then f(xl) = 
h’(x,) + ~Z/xi ~0. Suppose there is a first XE (x,, x2] such that f(T) = 0. 
Then f ‘(2) 5 0. However, f’(Z) = h”(x) - K,/X~ = - &2 + ((n - 2)/Z2) 
[Ic,+2(1 -e ‘(.‘)I 2 - $c2 + (n - 2)(e”l- 1)/x2 since h(Z) 5 ICY. For k large, 
since X2xX, and x2 +O as k -+ co, --$c~ + (n-2)(eKI - 1)/x2 >O. This 
contradicts f ‘(2) 5 0. So for k large, f(x) > 0 on [x,, x2]. In particular, 
x2h’(x2) 2 --ICY. 

For x $-T2, we have Xn-le-(‘/4)x*hr(X2) 2 x;- ‘e-(‘/4)X:h’(X2) while h < 0 
e-(“4)X h’]’ = - [2(n -2)/x ] [eh - l] 2 0. Thus, while h < 0 

f?[Lc Jm], x”-‘h’(x)2 -~2e(1/2)(n-2)x;-2=: -K~x;-~. Inte- 
grating from x2 to x, we have-h(x) 2 [ -~/(n - 2)][ 1 - x;-‘xZPn] 2 
-IcJ(n - 2) =: -K~. In particular, if qE (x2, x3) is the value where 
h’(q) = 0, then h(x) 2 --ICY where ICY is independent of elk. 
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Suppose there is a 6 > 0 such that x3(k) 2 6 for all large k. Let 0 E (0, 1) 
be such that n < 2 + 80. If (eh - 1)/h 2 B on [S/0, S] where 8 is the number 
constructed in Lemma 7, then by Lemma 7, h would have to have another 
zero in [S/0, S], contradicting h < 0 on (x2, xX). So h must be bounded 
away from zero on [q, s/e] for all large k, say (1 - eh) 2e-(“4)(6/e)2 2 ic5 > 0. 
Then [~~-~,-(~/~)~~h’]’ = 2(n - 2) ~“-~~-(‘/~)~*(1 -e”) 2 (n - 2) K~,$-~. 
Integrating from q to x yields xn-i/z’(x) 2 ~~-~e-“/~‘~*K(x) 1 
ICg[Xn-*-qn-2 1. Integrating once more from q to x yields h(x) 1 
h(q) + rc,ln(x/q) - [rcs/(n - 2)] q”-‘[q’-” - x*-~]. In particular, h(6/8) 2 
Cl + c2qn-* - c,ln q where ci are independent of elk, i = 1,2, 3. The right- 
hand side of this inequality tends to co as q -+ 0 (k + co), a contradiction 
to h(6/8)<0. Thus, xX(k) cannot be bounded away from 0 for all k. 

LEMMA 13. Let k be sufficiently large so that h(x, ak) has at least 2m - 1 
zeros on (0, dm). Then there is a k, such that for all k > k,, h(x, ak) 
has at least 2m + 1 zeros on (0, ,,/m). 

Proof: Since x,(k) and x2(k) tend to 0 as k + co, there is a value E such 
that for k > E, h(x, cl,J has at least one zero (m = 1). By Lemmas 11 and 12, 
for k sufficiently large, x3(k) exists and tends to 0 as k --+ co. As in 
Lemma 9, for k large, a linear comparison shows the existence of a fourth 
zero x4(k) for h(x). Thus, there is a k0 such that for all k > k,, h(x, CQ) has 
at least 3 zeros on (0, ,/w)). So the result is true for m = 1. 

The inductive step depends on Lemma 10 holding for xi(k) in general. 
That is, we need to show that x:h’(xi) + 0 as k + 00 for i = 2m - 1, 2m. As 
in Lemma 10, it is sufficient to show that x:y’(xi) --f 0 as k + 00. At x2,,- 1, 
O> Y’(x~~- 1) > -2/x,,- ,. Consequently, (x2+ 1)2 y’(~~~--l) > -2~~~- 1 
and so (x2,,-i)* ~‘(x~,,-~)-+O as k+ co since x2m-1 +O. 

Integrating Eq. (4) from x2,,, _, to x2m yields 

O>x:,exp --ix& 
( ) 

Y’(X*m, 

2x:,-, Y’ (x2,~l)-~e~‘xl-~1)[x;,-x;,~l] 

2x:,-l y’(X&-,)-- 2(n-2)p n-2 +2(n-2) n-2 
n X2m-l -X2??-- n 
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using the inequality x2,,, 5 OxZm _ 1 which holds whenever the even-subscrip- 
ted root comes into existence. The right-hand side of the inequality tends to 
0 as k + co, so xsm y’(xz,) + 0 as k -+ co. 

This particular information was used in Lemma 11 in the construction of 
a number q(k) E (xZm _, , xzm) in the case m = 1. The proof for general m 
proceeds in exactly the same way. The lemma is proved. 1 

Recall that Z,= {a~ [0, co): h(x, a) has at least 2m + 1 zeros on 
(0, a)}, m= 1, 2, . . . . For m = 1, lemmas 5 and 6 showed that Z, is bounded 
below by a = 1. Of course, then all of the sets Z,, m 2 2, are bounded 
below. Lemma 13 shows that Z, is nonempty for m 2 1. We defined 
&=infZ,. Also note that h has a finite number of zeros on (0, 00) by 
lemma 6. By continuous dependence, if h(x, ti) has a zero on 
(J2(n-2), ~1, th en so does h(x, a) for Ia - oil small. So lemma 6 also 
implies that h cannot pick up more zeros until the 2m-th zero decreases 
past J2(n-2). 

THEOREM. Let Cc, = inf Z,. Then the solutions y(x, c(,) to (4k(6) have 
the property lim, _ a, [ 1 + ixy’(x, cl,)] = 0. 

ProoJ: From the definition of Cr,, y(x, a,) < S(x) for x>,/m. 
For if y(X, a,) = S(X) for some X > ,/a, then by continuous depen- 
dence, for Ia - Cr, 1 small, y(f, a) = S(i) for some X? > &n-2) and 
y(x, a), y(x, CI,) have at least 2m + 1 zeros, a contradiction to Cr, = inf Z,. 

Suppose that ~“(3, 2,) <O for some X> ,/m. Then y”‘(X) = 
[i/2 - (n - 1)/X] y”(X) + [+ + (n - 1)/f* - ey(“)] y’(X) 5 [X/2 - (n - 1)/X] 
y”(X) + [t + (n - 1)/X* - 2(n - 2)/X*] y’(X) < 0 since y(X) < S(X) and 
X > ,,‘a. Thus, y”( x must remain negative for x > X. By continuous ) 
dependence, for a >Cr, (but close), there must be a value if(a) such that 
y”(X, a) CO. Similarly, y”(x, a) <O for x> 2. On [J2(n-2), 2X(&,)], 
1 y’(x, c1,)- S’(x)1 2 6>0 (or else y’= s’ for some f> ,/m, and 
Eq. (12) implies that y must intersect S, a contradiction to the definition of 
Cc,). By continuous dependence, 1 y’(x, a) - S(x)1 2 @ on this same interval 
for a>& (but close). Consequently, y(x, a) does not intersect S(x) for 
x>Jm, aEZ,, a contradiction to the definition of I?,. Thus, 
y”(x, L?,) > 0 for x > Jrc,-1,. 

We have that y/(x. CL,) < 0 and y”(x, 6,) > 0 for x> J12(n-1). The 
limit of y’(x, CI,) as x -+ co must exist and be nonpositive. Suppose that 
for large x, y’(x, I?,) 5 --E ~0. From Eq. (4) we have that 0= y” + 
[(n-1)/x-x/2] y’+ey-llyy”--s[(n-1)/x-x/21-1. So y”sl+ 
.s(n - 1)/x - &x/2. The right-hand side tends to --co as x + 00 which forces 
y” < 0 somewhere. But this contradicts y”(x, c1,) > 0. So y’(x, CL,) + 0 as 
x+00. 
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Consider the function xy’(x, &,). Since y(x, ~1,) <S(x) and since 
y’(i, ~2,) = s’(X) for some Zi;> Jm 2 n 2 implies that y = S for some x 
(contradicting the definition for tL,), it must be true that xy’(x, cz,) < -2 
for all x > ,/n--2). Suppose that xy’(x, CL,) 5 -2 -E < -2 for all x 
large. Then (4) implies that 0 2 y” - (2 + E)[ (n - 1)/x2 - $I- 1 and so 
y” 5 (2 + s)(n - 1)/x2 - is. This forces y” < 0 which was ruled out earlier. 
We have shown that lim,, oo xy’(x, a,,,) = -2. Suppose that there is a 
sequence { tk} ;” such that ty’(tk) 5 -2 - E < -2 and (without loss of 
generality) tk y”(tk) + v’( tk) = 0. Using Eq. (4), we have 0 = y”( tk) + 
[(n- l)/tk- tk/2] y’(tk)+eYfrk)- 1 = -Y’(tkYfk + [:(n - lY4c - t/c/21 
.fh) + e Y(‘k) - 1. Thus, $tk y’( tk) = y’( tk)/tk + eycfk) - 1, and letting tk -+ co, 
we have that -2 -EZ lim,,, tk y’(tk) = -2, a contradiction. We have 
shown that l&., oo xy’(x, 6,) = -2. Thus, lim,, m [ 1 + ixy’(x, Cr,)] = 0 
and the theorem is proved. 

4. OBSERVATIONS AND CONCLUSIONS 

The nonexistence of solutions to (4), (5) in dimensions 1 and 2 clearly 
shows that the asymptotic representation (3) is not valid. However, for 
dimension 3, this representation may be accurate. 

For n 2 10, solutions to the linearized problem L” + [(n- l)/ 
x-x/2] L’+ [2(n - 2)/x2] L =0 do not have more than one zero. We 
conjecture that because of this, (4), (5) does not have a solution. 

The techniques discussed in this paper appear to be more general. In 
fact, a result by Joseph and Lundgren [3] is obtained by the procedures 
here. Their equation is 

n-l 
ii+- li + le” = 0, o<t<1 (16) 

t 

a(0) = 0, u(l)=O. (17) 

There is a closed connected set C(A) contained in [0, co) x B where B is the 
Banach space C’[O, l] with the C’norm. The set C(A) has boundary point 
(0,O) and represent solutions (A, u) to (16), (17). Since e“ is unbounded, 
there is a number A* E (0, co) such that A 5 I* is necessary for solutions to 
exist. 

Letting x = rt, r2 = 1, u(t) = y(x), we have the corresponding initial 
value problem 

n-l 
f’+- y’ + ey = 0, o<x<crJ (18) 

X 

y(O)=or>O, y’(0) = 0. (19) 
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This equation has the singular solution S(x) =ln[2(n - 2)/x2] and 
h(x) = y - S satisfies 

h”+- n-lb’+ y+&1)=0, o<x<co. (20) 
X 

Define g(x) = xy’(x) + 2. Then g satisfies 

n-l 
d’+ x -g’+@g=O, o<x<m. (21) 

Lemma 5 is valid for this function g(x). Consequently, h(x) can have at 
most one zero in (0, ,,/m) for 0 < CI < 1. However, Lemma 6 does not 
follow. It appears that the absence of the term -$x/r’ may allow h(x) to 
have many zeros for x large since the linearized solutions to (20) have zero 
which accumulate at cc (unlike that for Eq. (14)). 

The sets 2, = (cry [0, co): h(x, a) has at least 2m- 1 zeros on 
(0, J-l}, m 4 1, are bounded below by c1= 1. To show they are 
nonempty, we need to show the existence of a first zero xr(~) for some 
unbounded increasing sequence {cQ};O. Lemma 8 can be modified for 
(18), (19) with only minor changes. In fact, for each x, E (0, oo), there is an 
a E II3 such that h(x,, a(~,)) = 0. The remaining results may be slightly 
modified for ey (instead of eY - 1) and x”-’ (instead of ~“-ie~(~‘~)~*). Con- 
sequently, all sets Z, are nonempty and bounded below. The bifurcation 
diagrams in (a, A) must look like those in Fig. 1 (where 2 <n < 10). It is 
known that for n > 10, the bifurcation diagrams for (16), (17) look like that 
given in Fig. 2. We have indicated the conjectured diagram for (4)-(6). 

(a) (b) 

FIG. 1. (a) ii+((n- l)/t)li+le”=O, (b) ii+((n-l)/t)ti+l(e”-1 -&i)=O 

505/70/3-3 
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