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SUMMARY

The target range of a bacterial secretion system can
be defined by effector substrate specificity or by the
efficacy of effector delivery. Here, we report the
crystal structure of Tse1, a type VI secretion (T6S)
bacteriolytic amidase effector from Pseudomonas
aeruginosa. Consistent with its role as a toxin, Tse1
has amore accessible active site than related house-
keeping enzymes. The activity of Tse1 against iso-
lated peptidoglycan shows its capacity to act
broadly against Gram-negative bacteria and even
certain Gram-positive species. Studies with intact
cells indicate that Gram-positive bacteria can remain
vulnerable to Tse1 despite cell wall modifications.
However, interbacterial competition studies demon-
strate that Tse1-dependent lysis is restricted to
Gram-negative targets. We propose that the previ-
ously observed specificity for T6S against Gram-
negative bacteria is a consequence of high local
effector concentration achieved by T6S-dependent
targeting to its site of action rather than inherent
effector substrate specificity.

INTRODUCTION

Type VI secretion systems (T6SSs) provide bacteria a means of

delivering protein effectors to both eukaryotic and prokaryotic

cells (Jani and Cotter, 2010; Schwarz et al., 2010a). Like other

complex bacterial export pathways, including type III and IV

secretion, protein transfer via T6S most likely involves direct

translocation (Ma et al., 2009; Russell et al., 2011). Unlike these

pathways, however, the T6SS displays likeness to bacterio-

phage (Cascales and Cambillau, 2012; Kanamaru, 2009).

Structural, genetic, and biochemical data support a model in

which the T6SS punctures recipient cell membranes by using

a contractile phage-tail-like apparatus (Basler et al., 2012;

Russell et al., 2011).

The Pseudomonas aeruginosaHcp secretion island I-encoded

T6SS (H1-T6SS) targets at least three effector proteins to recip-
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ient bacterial cells (Hood et al., 2010). When delivered, these

effector proteins, termed type VI secretion exported 1–3 (Tse1–

Tse3), act in the cytoplasm to induce stasis (Tse2) or in the

periplasm to promote lysis by hydrolyzing peptidoglycan (Tse1

and Tse3) (Russell et al., 2011). P. aeruginosa employs cognate

periplasmic immunity proteins, T6S immunity 1 and T6S immu-

nity 3 (Tsi1 and Tsi3), to protect itself against intercellular self

targeting of Tse1 and Tse3, respectively. The Tse proteins were

shown to contribute significantly to the fitness of P. aeruginosa

in competition against a close relative of the organism, P. putida,

under cell-contact-promoting conditions (Russell et al., 2011).

Tse1 is a peptidoglycan amidase with specificity toward the

g-D-glutamyl-meso-2,6-diaminopimelic acid (D-Glu–mDAP)

bond, and Tse3 is a muramidase that cleaves the b-1,4 linkage

between N-acetylmuramic acid (MurNAc) and N-acetylglucos-

amine (GlcNAc) (Russell et al., 2011). Tse1 belongs to a diverse

superfamily of type VI amidase effector (Tae) proteins that

consist of members broadly distributed among the proteobacte-

ria (Russell et al., 2012). The Tae proteins segregate into four

highly divergent families on the basis of sequence homology;

Tse1 is a member of family 1. Reflective of their sequence diver-

gence, representatives of the Tae families display varying

cleavage specificities within the peptide stems of peptidoglycan

(Russell et al., 2012).

Functionally, the T6SS appears to be quite plastic. Systems

ostensibly devoted to interactions with bacterial or host cells

have been defined, and one system involved in both has been

reported (MacIntyre et al., 2010; Schwarz et al., 2010a; Schwarz

et al., 2010b). Specificity within these organisms is largely

unexplored, and, where specificity has been observed, its

mechanistic basis is not known. For example, Burkholderia

thailandensis T6SS-1 and the Vibrio cholerae Vas system appear

to specifically target Gram-negative bacteria. Such specificity

could arise in numerous ways, including regulatory mechanisms,

the requirement for specific receptor(s) on recipient cells, the

phylogenetic distribution of immunity proteins, susceptibility to

effector activity, or a combination of these factors. Here, we

determine the structure of Tse1 from P. aeruginosa. Our

structural, genetic, and biochemical analyses of Tse1 provide

molecular insights into the specificity of this effector against

Gram-negative bacteria and establish a general framework for

defining the target range of the T6SS.
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Figure 1. Overall Structure of Tse1
(A) Ribbon diagram showing the overall structure of Tse1. Secondary elements

referred to in the text are labeled.

(B) Top-down view of the Tse1 active site. The active site cleft is formed by the

N- and C-terminal lobes, with catalytic residues Cys30 andHis91 positioned at

the N-terminal ends of a2 and b2. See also Figure S1.
RESULTS

Crystal Structure of Tse1
We recently discovered that Tse1 is an amidase-type T6S

effector that degrades cell wall peptidoglycan of neighboring

bacteria. To understand the structural basis for Tse1 activity

and to define its relation to other amidases, we solved its X-ray

crystal structure to a resolution of 2.6 Å (Figure 1A, Table S1, Fig-

ure S1A). Our final model contained 146 of the 154 residues

present in the native protein. Although the asymmetric unit con-

tained four Tse1 molecules, we observed a molecular mass in

solution consistent with a monomeric species (Figures S1B

and S1C). Given this finding and the high overall similarity

between the Tse1 monomers (Ca root-mean-square deviation

[rmsd] = 0.21–0.36 Å), we limit our discussion to one of the

molecules, chain A.

Tse1 adopts the classical a + b papain-like amidase fold,

comprising an antiparallel b sheet surrounded by a helices
(Figures 1A, 1B, and S1D). The N-terminal lobe, consisting of

a1–a3, folds together with the C-terminal lobe, comprising

b1–b4 and a4–a5, to form a V-shaped active-site cleft (Dubey

et al., 2007). The active site is composed of conserved

secondary-structure elements a2 and b2. Similar to other

amidases, the reactive cysteine of Tse1, Cys30, is positioned

at the N-terminal end of a2, and the catalytic histidine, His91,

resides at the N-terminal end of b2 (Figure 1B).

The Active Site of Tse1 Is Highly Accessible
To prevent the toxic consequences of inappropriate cell wall

degradation, peptidoglycan hydrolase activity in the cell is tightly

regulated. Accordingly, these enzymes are often members of

larger complexes or contain structural features implicated in

controlling their activity (Typas et al., 2012). For instance, struc-

tural studies of peptidoglycan papain amidases have revealed

a closed active site architecture or and occlusion of the active

site by noncatalytic regulatory domains (Figure 2A). In contrast,

Tse1 has an exposed active site with highly accessible catalytic

residues. Superposition of Tse1 with its closest structural

homologs, the NlpC/P60-family amidases B. subtilis YkfC (Z

score = 9.7, Ca rmsd = 3.9 Å) and E. coli Spr (Z score = 9.4,

Ca rmsd = 2.8 Å), identified with the DALI server (Holm and

Rosenström, 2010), reveals that differences in the loops

surrounding the conserved catalytic center account for its

open active site architecture (Figure 2B) (Anantharaman and

Aravind, 2003; Aramini et al., 2008; Russell et al., 2011; Xu

et al., 2010). On the N-terminal lobe, loop 1 extends outward

from the catalytic cysteine by approximately 10.0 Å relative to

its position in YkfC and Spr (Figure 2B). On the C-terminal

lobe, loop 2 extends parallel to b1 and b2, thereby lengthening

the substrate binding cleft. In Spr and YkfC, the curvature of

this loop causes it to abut a5, forming a surface that truncates

the cleft. Our observation that Tse1 lacks the repressive struc-

tural features typically associated with these enzymes is consis-

tent with its role as a cell wall-degrading toxin.

Conserved Surfaces Coordinate Substrate Binding
by Tse1
In an effort to understand the molecular basis for Tse1 function,

we investigated the residues important for peptidoglycan recog-

nition by using a combination of conservation mapping and

ligand-docking studies. To overcome the high degree of

sequence diversity within Tae effector family 1, we threaded

family members onto the Tse1 structure to generate an accurate

alignment (Figure S2A) (Kelley and Sternberg, 2009). This

analysis revealed considerable surface variation within family 1

Tae effectors, with the notable exception of a conserved patch

encompassing residues within the active site cleft and a wide,

adjacent perpendicular groove (Figure 3A). To explore the sig-

nificance of sequence conservation within these regions, we

aligned the Tse1 structure to other papain-like amidases with

finely mapped substrate interaction sites (Yao et al., 2009).

Although we recognize that the peptide stems of peptidoglycan

differ in many respects from those of typical peptide protease

substrates, for consistency we will use the subsite (S) and

substrate position (P) nomenclature of Schechter and Berger in

our description of the Tse1 structure (Figure 3B) (Schechter
Cell Reports 1, 656–664, June 28, 2012 ª2012 The Authors 657



Figure 2. Tse1 Has an Open Active Site Relative to Housekeeping

Amidase Enzymes

(A) Comparison of bacterial amidase structures. Surface representation of

B. subtilis YkfC (PDB ID 3H41),M. tuberculosis RipB (PDB ID 3PBI), and E. coli

Spr (PDB ID 2K1G) in the same orientation as Tse1 highlights regulatory

structural element types not found in the toxin. Regulatory structural elements

and catalytic cysteine residues are shown in red and yellow, respectively. YkfC

has an additional domain adjacent to its active site, and RipB contains an

N-terminal extension that occludes its substrate binding cleft (Böth et al., 2011;

Xu et al., 2010). In Spr, residues proximal to the active site limit accessibility

to catalytic residues (Aramini et al., 2008).

(B) Superposition of the catalytic centers of Tse1, YkfC, and Spr. Homologs

were identified using the DALI server (Ca rmsd YkfC, 3.9 Å, 127 residues; Spr,

2.8 Å, 129 residues).
and Berger, 1967). Conservation of active site architecture

between Tse1 and papain proteases allowed us to confidently

map S2, S1, and S10 sites onto the Tse1 structure (Figure 3A).

Interestingly, our structural alignment shows that the residues

defining each of these sites constituting the Tse1 catalytic

center are perfectly conserved within family 1 effectors

(Figure S2A).

To expand on our identification of evolutionarily conserved

substrate interaction sites, we attempted to determine the

structure of a Tse1 catalytic mutant (C30A) in the presence of

its minimal peptide ligand, L-alanyl-g-D-glutamyl-meso-

diaminopimelic acid (L-Ala-D-Glu-mDAP), which includes the

preferred cleavage site of Tse1 (Table S1). Although we

observed additional electron density near the active site S10
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position not present in the apo structure, this density was insuf-

ficient for determining the overall placement of the ligand.

We therefore turned to molecular modeling and employed

Glide to dock the L-Ala-D-Glu-mDAP molecule into the refined

Tse1 catalytic mutant structure. In the top scoring pose

(XPscore = �11.46 kcal/mol), the scissile bond of L-Ala-D-Glu-

mDAP lies between the catalytic residues Cys30 and His91

(Figure 3C).

The docked ligand fragment is engaged in an extensive

hydrogen bond network with the Tse1 active site cleft (Figure

S2B). N-terminal to the scissile bond of the substrate, Ala30

and Ser31 each have backbone hydrogen bond contacts to

the peptide at P1 (Figure 3C). Asn29 contacts the peptide via

a sidechain hydrogen bond at P2 (D-Glu), and Ala50 forms

a backbone hydrogen bond with L-Ala. On the C-terminal side

of the scissile bond, the carboxylate of the D-stereocenter of

mDAP (P10) engages in hydrogen bonding contacts to the side

chain of Ser112 (Figure 3C). Also, Tyr89 accepts a hydrogen

bond from the P10 amide and Trp130 donates a hydrogen

bond to the P10 hydroxyl at the C-terminal end of L-Ala-D-Glu-

mDAP (Figure 3C). Several other residues within the active site,

including Leu84, Ala114, and Val129, also mediate hydrophobic

contacts with the peptide.

To test the importance of these modeled peptidoglycan

interactions in Tse1 activity, we mutated a subset of the

contacting residues and measured the effects on periplasmic

Tse1 toxicity in E. coli. In line with our predictions, substitutions

within residues engaged in contacts with the ligand disrupted

Tse1 activity (Figure 3D). In contrast, a substitution in a residue

near the active site—at a position not predicted to make

substrate contacts—did not inhibit Tse1 toxicity (C110A). Impor-

tantly, none of the mutations influenced overall Tse1 levels.

Together with our conservation analyses, these substrate-

modeling and mutational studies of the Tse1 active site define

the residues that most likely mediate key interactions with

peptidoglycan.

Tse1 Requires a P30 Residue for Cleavage
Our earlier work demonstrated that Tse1 preferentially cleaves

the donor peptide stem of tetrapeptide-tetrapeptide crosslinks

in peptidoglycan (Russell et al., 2011). Although both tetrapep-

tide donor and acceptor stems contain the preferred cleavage

site of Tse1, the configuration of the P10 and P20 residues,

mDAP and D-Ala, respectively, differ between the two. In the

acceptor stem peptide, but not the donor, mDAP participates

at its D-stereocenter in the crosslink and thus is at the vertex

of a branched structure to two D-Ala residues. Likewise, at the

P20 position, the asymmetric nature of the crosslink results in

either a D-Ala bonded to mDAP (donor) or a free C-terminal

D-Ala (acceptor).

To gain further insight into the specificity of Tse1 and to deter-

mine how the enzyme distinguishes between donor and

acceptor stems, we studied its activity in vitro against mutant

E. coli sacculi enriched in pentapeptide stems (Meberg et al.,

2001). Interestingly, Tse1 readily cleaved pentapeptide-

tetrapeptide crosslinked peptidoglycan in both the donor and

acceptor stems (Figures 4A, S3A, and S3B). The enzyme also

processed uncrosslinked pentapeptides, and consistent with



Figure 3. Conserved Family 1 Active Site Residues Mediate Substrate Recognition in Tse1

(A) Surface representation of Tse1 with color corresponding to amino acid conservation within Tae family 1 effectors. The position of subsites S2, S1, and S10

within the Tse1 structure are shown.

(B) Schematic representation of canonical subsites that mediate papain protease-substrate interactions. Enzyme subsites (blue, S4–S30) interact with positions

along the peptide ligand (P4–P30). P-sites are assigned according to their positions relative to the site of cleavage (red arrow).

(C) Molecular docking of a peptidoglycan fragment into the Tse1 active site identifies putative substrate recognition sites. Docked L-Ala-D-Glu-mDAP (cyan) is

shown with Tse1 (gray, upper panel). Tse1 residues mediating L-Ala-D-Glu-mDAP contacts are labeled (lower panels), and lines representing hydrogen bonds

(orange) are shown. See also Figure S2.

(D) Growth of E. coli expressing periplasmic tse1 (peri-Tse1) harboring indicated mutations (top panel). Numbers on the left represent 10-fold serial dilutions.

Western blot analysis of periplasmic Tse1 expression in corresponding cells is shown below. RNA polymerase (RNAP) is used as a loading control.
our earlier findings, it did not efficiently degrade free uncros-

slinked tetrapeptides (Russell et al., 2011). Tse1 retained speci-

ficity for the D-Glu–mDAP bond in each of these contexts. These

data indicate that peptidoglycan cleavage by Tse1 is insensitive

to P10 (mDAP) participation in a branched structure. Rather, the

data strongly suggest that the critical determinant for Tse1

cleavage at the D-Glu–mDAP bond is the presence of a P30

residue. This residue can be either mDAP in the donor stem of

tetrapeptide-tetrapeptide and pentapeptide-tetrapeptide

crosslinks or D-Ala (position 5) in uncrosslinked pentapeptide

stems and the acceptor stem of pentapeptide-tetrapeptide

crosslinks. The cleft in the S10 region of the Tse1 active site is

wide and bifurcates into two channels, thus helping to explain

how Tse1 could accommodate a branch in peptidoglycan at

this position. However, given the conformational flexibility of

the substrate, it is not currently possible to determine which of

these channels would hold the crosslink versus the terminal

D-Ala residues.

Tse1 Can Cleave Gram-Positive Peptidoglycan
The surprising finding that Tse1 is promiscuous with regard to

the involvement of the P10 residue (mDAP) in a crosslink led us

to hypothesize that the enzyme might possess activity against

other types of peptidoglycan. To more broadly probe the activity

of Tse1 against peptidoglycan, we incubated the purified

enzyme with sacculi prepared from two Gram-positive organ-

isms, Streptococcus pneumoniae and Bacillus subtilis. The

B. subtilis peptidoglycan is similar to that of Gram-negative

bacteria; however, notable differences exist. ThemDAP residues
of B. subtilis bear an amide modification, and its uncrosslinked

and acceptor peptide stems are most often tripeptides

generated through the action of an LD-carboxypeptidase

(Vollmer, 2012; Vollmer et al., 2008). The peptidoglycan of

S. pneumoniae is more typical of Gram-positive bacteria; it

contains an amidated D-Glu residue at position 2 and L-Lys

instead of mDap at position 3. Both direct crosslinks and

crosslinks with a Ser-Ala or Ala-Ala interpeptide bridge occur

simultaneously in this organism (Bui et al., 2012; Severin and

Tomasz, 1996).

Analysis of B. subtilis peptidoglycan cleavage products

through the use of high-performance liquid chromatography

(HPLC) and mass spectrometry (MS) showed that Tse1 cleaves

both of the major crosslinked species found in this organism—

mono- and diamidated tripeptide-tetrapeptide—at the expected

position between D-Glu and mDAP (Figure 4B). The enzyme did

not efficiently cleave uncrosslinked tripeptide stems present

in the sample. Under similar conditions, Tse1 displayed no

detectable activity against S. pneumoniae peptidoglycan (Fig-

ure 4C). These data suggest that Tse1 exhibits a strong prefer-

ence for mDAP-type, directly crosslinked peptidoglycan.

T6S-Exported Tse1 Is Not Effective against B. subtilis
Studies of the activity of T6SSs against different bacteria

have yielded evidence that the secretion pathway is specifically

active against Gram-negative bacteria (MacIntyre et al., 2010;

Murdoch et al., 2011; Schwarz et al., 2010b). Our in vitro

evidence that Tse1 is active against the mDAP-type peptido-

glycan of Gram-positive bacteria provided an opportunity to
Cell Reports 1, 656–664, June 28, 2012 ª2012 The Authors 659



Figure 4. Tse1 Is Specific for Glu-mDAP-type Peptidoglycan

(A–C) Tse1 degrades only the Glu-mDAP-type peptidoglycan of E. coli and B. subtilis and not the Lys-type peptidoglycan of S. pneumoniae. Shown are partial

HPLC chromatograms of sodium-borohydride-reduced soluble E. coli (A), B. subtilis (B), or S. pneumonia (C) peptidoglycan sacculi products resulting from

digestionwith cellosyl (top) or with Tse1 followed by cellosyl (bottom). Assignments of Tse1 cleavage products weremade on the basis of MS analysis (in A, peaks

E and F; Figure S3A) or prior work (Bui et al., 2012; Russell et al., 2011). Structures corresponding to the major peaks are shown schematically, hexagons and

circles representing sugars and amino acid residues, respectively. Reduced sugar moieties are shown with gray fill. Modifications or substitutions relative to

typical Gram-negative peptidoglycan are indicated with red fill.

(D) Tse1 can lyse B. subtilis cells in vitro. Shown is the activity of purified Tse1 and lysozyme against B. subtilis and EDTA-permeabilized E. coli. Error bars

represent ± SD; n = 3. See also Figure S3C.

(E) Tse1 delivered by the H1-T6SS does not contribute to lysis of B. subtilis. Shown is relative lysis as measured by supernatant LacZ activity of the indicated

recipient organisms in growth competition under T6SS-promoting conditions with the indicated P. aeruginosa strains. Error bars represent ± SD; n = 3.

(F) Tse1 is secreted byDretS P. aeruginosa. Shown is western blot analysis of total extracellular Tse1 levels in competition assays againstB. subtilis (B), E. coli (E),

and P. putida (P).
define the basis of this apparent cell-targeting selectivity.

Because peptidoglycan modifications, including wall techoic

acids, are lost during preparation of sacculi, we first probed

whether Tse1 could act on intact B. subtilis cells (Bui et al.,

2012). For reference, we compared the activity of Tse1 against

B. subtilis and permeabilized E. coli with that of the indiscrimi-

nant muramidase lysozyme (Nakimbugwe et al., 2006). Quantita-

tive studies showed that lysozyme and Tse1 display similar lytic

activity against E. coli, whereas a Tse1 catalytic mutant (C30A)
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showed no appreciable activity (Figures 4D and S3C). The rate

of lysis of B. subtilis by Tse1 was lower than that of lysozyme;

however, the enzyme retained significant activity against these

cells.

The capacity of Tse1 to lyseB. subtilis cells left open the possi-

bility that the enzyme—exported via the T6SS—could contribute

to the fitness of P. aeruginosa in competition against this

organism. A common feature of T6SSs is that they are tightly

repressed under in vitro culturing conditions (Bernard et al.,



2010; Hood et al., 2010; Silverman et al., 2011). The systems can

become activated in the presence of competing bacteria, by

physical cues, or by activation through natural or engineered

mutations. For example, a deletion of retS in P. aeruginosa

renders the H1-T6SS highly expressed and constitutively active

(Goodman et al., 2004; Laskowski et al., 2004). Therefore, to

eliminate repression as a confounding factor in our effort to

understand the fundamental determinant of cell-targeting

specificity by the T6SS, we employed the DretS genetic back-

ground of P. aeruginosa in these studies (Goodman et al.,

2004; Laskowski et al., 2004). A key property of this strain is

that it indiscriminately releases Tse effectors into the milieu at

levels greater than those observed in natural isolates (data not

shown) yet retains the capacity to translocate effector proteins

when in contact with Gram-negative cells (Hood et al., 2010;

Russell et al., 2011). As a sensitive measure of the impact of

Tse1 activity, we quantified the lysis of recipient cells by release

of the cytoplasmic LacZ enzyme during interbacterial competi-

tion assays. Our results showed that P. aeruginosa DretS causes

significant lysis of E. coli and that deletion of tse1 restores levels

to nearly those of the controls, suggesting that themajority of this

effect is attributable to the Tse1 enzyme (Figure 4E). A similar

effect was observed with P. putida, an organism previously

described as a target of the H1-T6SS (Russell et al., 2011).

However, we found that Tse1 does not contribute to lysis of

B. subtilis by P. aeruginosa.

To further probe the differential activity of Tse1 against

B. subtilis and the Gram-negative organisms, we quantified

extracellular Tse1 levels during interbacterial competitions.

Using band densitometry relative to purified recombinant Tse1,

we calculated an average of 3 ng of extracellular Tse1 in our

competition assays (Figure 4F). Although it is difficult to approx-

imate the extracellular volume available to Tse1 in a colony of

bacteria, the effective Tse1 concentration most likely falls below

the 0.01 mM required to observe significant B. subtilis lysis in our

in vitro assays. Considering those results, together with the

in vitro and cell-based assays, which show that Tse1 can act

enzymatically against B. subtilis cell wall peptidoglycan, the

most parsimonious explanation for the lack of lysis of

B. subtilis cells in bacterial competition assays is that physiolog-

ical levels of Tse1 do not reach effective concentrations in this

setting. We posit that a fundamental barrier to T6S targeting of

bacteriolytic effectors—one that supersedes enzymatic speci-

ficity—is the failure of the toxins to reach an effective concentra-

tion unless targeted appropriately by the T6S apparatus.

DISCUSSION

Our structural, biochemical, and functional dissection of the

Tse1 effector protein from P. aeruginosa offers key insights

into several facets of T6S. Tse1 belongs to family 1 of the Tae

superfamily, a superfamily with representatives distributed

widely throughout the g and b proteobacteria (Russell et al.,

2012). Like other known enzyme superfamilies, the Tae group

comprises dozens of enzymes that share a common catalytic

motif and strategy, although with extensive divergence in

sequence and substrate specificity (Khersonsky and Tawfik,

2010; Russell et al., 2012). Despite the sequence divergence of
Tae effectors, our structure shows that Tse1 shares a conserved

amidase fold, albeit with considerable modifications. In contrast

to its housekeeping counterparts, Tse1 is a naked enzyme with

a highly accessible active site. This observation suggests that

it may be constitutively active and thus highly potent in vivo.

Consistent with this, we observed that E. coli undergoes rapid

lysis upon induction of periplasmic-targeted Tse1, and in our

current study, we found Tse1 activity accounts for the majority

of the bacteriolytic effects of the H1-T6SS (Russell et al., 2011).

Sequence divergence within the Tae superfamily provides

insights into the molecular basis of overlapping and unique

substrate preferences among its constituent families. Mapping

of Tae conservation on the Tse1 structure revealed a highly

conserved core with considerable surface variability outside of

the catalytic center. This finding highlights the ability of T6S

effectors to evolve, even under the constraints of enzymatic

function and T6SS export requirements. Given our finding that

the corresponding T6S amidase immunity superfamily displays

less sequence conservation than its cognate effector proteins,

the extent of Tae surface diversity could allow for variable immu-

nity interactions (Russell et al., 2012).

Delineating all substrates exported by a secretion system is

essential for understanding the full spectrum of effects that it

can mediate. However, determinants for export through the

T6SS remain obscure. Previous studies have focused on identi-

fying substrates either by proteomics or through informatics-

based searches that rely on sequence or functional homology

(Hood et al., 2010; Russell et al., 2012). Although these

approaches have been successful, defining the precise determi-

nants of T6S export is required for an unbiased approach to

substrate identification. The three-dimensional structure of a

T6S effector provides a first step toward this end. Using the

structure of Tse1, we were able to generate a confident align-

ment of family 1 effectors. Interestingly, we did not observe

highly conserved features outside of the active sites of these

enzymes, suggesting that a simplistic sequence or structure-

based export signal is unlikely. Structural comparison of dif-

ferent Tse effectors within the same organism in combination

with a more precise understanding of the secretion mechanism

will likely be important for the dissection of T6S export

determinants.

The path that T6S effector proteins travel en route to recipient

cells has not been delineated. Although there is no direct

evidence, is has been postulated that effectors exit the T6SS

through a pore formed most proximally by an abundant ring-

shaped hexameric component of the apparatus, termed

hemolysin coregulated protein (Hcp) (Basler et al., 2012;

Cascales, 2008; Mougous et al., 2006). If effectors do pass

through the pore of Hcp, the structures of Hcp1 and Tse1 from

P. aeruginosa offer glimpses into how this process might

proceed. These structures show that the inner diameter of the

Hcp pore is approximately 40 Å, whereas Tse1 adopts a globular

shape with a diameter of approximately 32 Å at its narrowest

point and 47 Å at its widest. Of note, extended loops of Tse1,

and not core structural regions, define its widest dimension.

Conformational flexibility within these regions or partial unfolding

may therefore facilitate accommodation of the native protein

within the Hcp1 pore. Tse1 is considerably smaller than Tse3
Cell Reports 1, 656–664, June 28, 2012 ª2012 The Authors 661



(44.4 kDa), another substrate of the H1-T6SS that is translocated

to recipient cell periplasm. It is strongly predicted that the region

of this protein responsible for its muramidase activity adopts

a G-type lysozyme fold—a domain slightly larger than Tse1

(>20 kDa) (Russell et al., 2011). Therefore, if transit through

Hcp is a general property of T6S effectors, Tse3 would also

most likely require significant rearrangements to its native

structure.

Our structural and in vitro analyses of Tse1 have also lent

insight into the previous observation that T6S targets Gram-

negative and not Gram-positive organisms (MacIntyre et al.,

2010; Schwarz et al., 2010b). Our data show that not only is

the enzyme more broadly adapted to Gram-negative than

Gram-positive peptidoglycan, but that even in an instance

wherein the effector protein is biochemically competent for an

attack on a Gram-positive cell, it fails to elicit significant effects.

It remains possible that Gram-positive-adapted effectors of the

T6SS await discovery. However, our data suggest that the

fundamental barrier to targeting of known T6S bacteriolytic

effectors to Gram-positive cells is their inability to reach an

effective concentration without directed localization to their

peptidoglycan substrate by the secretory apparatus. Together,

these observations strongly support the model that selectivity

of the T6SS is not encoded in enzyme activity per se, but rather

through proper delivery of effectors to their appropriate targets.

EXPERIMENTAL PROCEDURES

Bacterial Strains and Growth Conditions

P. aeruginosa, B. subtilis, and P. putida strains used in this study were derived

from the strains PAO1, JH642, and KT2440, respectively (Nelson et al., 2002;

Srivatsan et al., 2008; Stover et al., 2000). Details are included in Extended

Experimental Procedures.

Tse1 Structure Determination and Analyses

Tse1 crystals were obtained by sitting drop vapor diffusion at 25�C from a 1:1

mixture of 10 mg/ml protein with 0.2 M sodium thiocyanate, 0.1 M HEPES

(pH 7.5), and 20% PEG3350 for 3 days. Crystals were cryopreserved in 20%

glycerol, and diffraction data were collected at the Lawrence Berkeley National

Laboratory Advanced Light Source Beamline 8.3.1 (MacDowell et al., 2004).

Phases were obtained experimentally with data from a selenomethionine-

substituted crystal with the the PHENIX software suite. Coot (Emsley and

Cowtan, 2004) and maximum likelihood refinement with PHENIX (Adams

et al., 2010) were used for iterative building and refinement. The structure

was validated by MOLProbity (Davis et al., 2004). Coordinates and structural

factors were deposited in the Protein Data Bank (PDB ID 4EOB and 4F4M).

Structural homologs identified through the use of the DALI server (Holm and

Rosenström, 2010) were visualized with Chimera (Pettersen et al., 2004).

Structural models of family 1 homologs were built with the PHYRE One to

One threading algorithm (Kelley and Sternberg, 2009) and aligned with

Chimera.

Ligand Docking

The refined structure of Tse1 was optimized in Maestro by the Protein Prepa-

ration Wizard (Schrodinger, 2010). Ligand conformers were flexibly docked

by Glide 5.6 (Friesner et al., 2004; Friesner et al., 2006; Halgren et al., 2004)

with the OPLS2005 force field. Details are included in Extended Experimental

Procedures.

In Vitro Peptidoglycan Assays

Purified peptidoglycan sacculi from E. coli MC1061 or CS703-1 (300 mg)

(Meberg et al., 2001), B. subtilis 168 (300 mg), or S. pneumoniae R6 (120 mg)

were incubated with Tse1 (1 mM) in 300 ml of 20 mM Tris/HCl (pH 8.0) for
662 Cell Reports 1, 656–664, June 28, 2012 ª2012 The Authors
4 hr at 37�C. Muropeptides were prepared as detailed in Extended Experi-

mental Procedures and analyzed by HPLC and MS as described previously

(Bui et al., 2009; Glauner, 1988).

Whole-Cell Lysis Assays

Overnight cultures of E. coli K12 and B. subtilis JH642 were subinoculated

into LB media and grown to late logarithmic phase. Cells were harvested by

centrifugation and resuspended in permeabilization buffer (4 mM EDTA,

0.5 M sucrose, 0.2% v/v Tween-20, and 40 mM Tris-HCl [pH 8.0]) to an

OD600 of 1.0. Three concentrations of either Tse1 or lysozyme was added

and cells were incubated at 27� Celsius. The lysis rate was defined as the

average buffer-subtracted decrease in the OD600 of cells. Details are included

in the Extended Experimental Procedures.

Competitive Lysis Assays

Overnight cultures of b-galactosidase recipient strains and donor

P. aeruginosa strains were washed, mixed 1:1, and spotted on a nitrocellulose

membrane placed on 3% agar LB low-salt media for 4 hr at 37�C (B. subtilis

and E. coli) or 30�C (P. putida). Cells were suspended in PBS. Cellular and

extracellular LacZ fractions were harvested as described previously without

TCA precipitation (Mougous et al., 2006). Cellular LacZ was released by

permeabilization with 16.7% v/v chloroform. LacZ activity in fractions was

determined with the use of the Tropix Glacto-Light kit (Applied Biosystems).

See full details in Extended Experimental Procedures.
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