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a b s t r a c t

After a general analysis regarding the concept of coal “cleat system”, its genetic origin and practical
applications to coalbed methane (CBM) commercial production and to CO2 geological sequestration
projects, the authors have developed a method to answer, quickly and accurately in accordance with the
industrial practice and needs, the following yet unanswered questions: (1) how to define the spatial
orientation of the different classes of cleats presented in a coal seam and (2) how to determine the
frequency of their connectivites. The new available and presented techniques to answer these questions
have a strong computer based tool (geographic information system, GIS), able to build a complete
georeferentiated database, which will allow to three-dimensionally locate the laboratory samples in the
coalfield. It will also allow to better understand the coal cleat system and consequently to recognize the
best pathways to gas flow through the coal seam. Such knowledge is considered crucial for under-
standing what is likely to be the most efficient opening of cleat network, then allowing the injection with
the right spatial orientation, of pressurized fluids in order to directly drain the maximum amount of gas
flow to a CBM exploitation well. The method is also applicable to the CO2 geological sequestration
technologies and operations corresponding to the injection of CO2 sequestered from industrial plants in
coal seams of abandoned coal mines or deep coal seams.
� 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by

Elsevier B.V. All rights reserved.
1. Introduction

The coal fracture system has been investigated since the earliest
days of coal mining operations, and the first descriptions and
speculations on fracture origin dated back to the late 19th century,
aiming to determine the design of mine workings (Pattison et al.,
1996). Such studies consisted in general descriptions of the
appearance of the fractures and measurements confined to their
orientation, which are considered important issues in designing
coal mines so as to maximize extraction efficiency and to improve
safety conditions.
s).
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In the past, coalbed gas was considered mostly as a hazard
(Flores, 1998) due to the effect of both fire-damps and gas out-
bursts. Many studies were also carried out in the scope of mine
safety related to these phenomena, i.e. coal fracturing and tectonics
(Alpern,1963, 1967, 1970). An account of more recent investigations
was given by Cao et al. (2001), Jin et al. (2003), Ryan (2003), and
Solano-Acosta et al. (2007, 2008), respectively.

Coalbed gas corresponds nowadays almost to a resource com-
modity through the commercial exploitation of CBM deposits, and
the study of coal fracturing is again considered crucial. In fact, as
stated by several different authors (Gamson, 1994; MacCarthy et al.,
1996; Ayers, 2002; Durucan and Shi, 2009), the prerequisite to
obtain economical and technical viable projects in coalbed gas re-
covery as well as in CO2 injection is intimately related to coal
permeability which, in turn, depends on coal fracturing.

Many terms were used over the years to designate the natural
fracturing of coal. However, the term “cleat”, used for the first time
in 1925, was the one retained by the current miners, geologists, and
engineers as the general designation for a variety of fractures
commonly found in coal, usually as a result of the coalification
process and basin regional tectonics. In fact, cleats in coal have been
described as equivalent to joints in competent rocks or as closely
spaced, pervasive fractures originated from an almost impercep-
tible movement associated with an extensional opening. After the
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work of Macrae and Lawson (1954), Nickelsen and Hough (1967),
Ting (1977), Karacan and Okandan (2000), and Wolf et al. (2001),
the formation of cleat appears to be influenced by shrinkage
occurring during the process of coalification, stress release, and
extensional strain. It was also documented that, in general terms, a
cleat system is present in coal ranging from lignite to anthracite,
being commonly well developed in low volatile bituminous coals.
This is justified by the fact that the increases of heat and pressure,
usually associated with metamorphism, produce plastic flow that
destroys the original cleat structure. This fact was more recently
confirmed by Su et al. (2001).

Many hypotheses exist concerning the origin of cleats in coal.
However, authors like Ting (1977) and Close (1993) believed that
cleat genesis can be effectively classified in three main processes:
dehydration, devolatilization, and tectonics. The first process con-
sists of dehydration caused by mechanical compaction of plant
fragments when water is expelled from peat induced by over-
burden. This process is easily understandable since coal, at the very
beginning of its formation, has a high moisture content, which
progressively decreases as rank increases. Consequently, coal suf-
fers considerable changes in volume that lead to fragments being
rearranged due to inter-granular slippage, compaction, and the
collapse of cellular cavities. As a result, coal fractures tend to in-
crease as dehydration increases. The devolatilization effect consists
in the loss of volatile matter during the coalification process and
after the loss of moisture has already been completed. This mech-
anism also produces a decrease in coal volume which, once more,
induces fracture formation.

Tectonics apparently controls cleat orientation in coal in a pro-
cess somewhat similar to jointing observed in other rocks. It is
common to relate the strike directions of cleats to major structures
such as folds in many basins, although local and lateral distur-
bances, such as faults, folds, and stresses, induced by differential
compaction and produced by underlying non-coal material, tend to
complicate the coal cleat system. Another aspect that must be
pointed out is that, locally, cleats can be rotated and deviated from
the settings resulting from the stress field. In order to avoid this
effect, it is necessary to study a set of samples strategically posi-
tioned, depending on the spatial basin geometry, in the coalfield to
permit a real representative stress field study.

The cleat system, as it is currently understood, is theoretically
characterized by two main sets of sub-parallel fractures (“face
cleat” and “butt cleat”), both mostly orthogonal to bedding. Face
cleats are usually dominant, with individual surfaces almost planar,
persistent, laterally extensive, and widely spaced. Butt cleats
constitute a poorly defined set of natural fractures, orthogonal or
nearly orthogonal to face cleats. Face cleats are continuous
throughout the coal seam, while butt cleats tend to be discontin-
uous, non-planar, commonly ending at the intersection with face
cleats. However, in practical terms, detailed cleat characteristics of a
coal seam are far more complex than the two main fracture sets as
described above. This fact is on the basis of different detailed cleat
classifications in literature, e.g. Ammosov and Eremin (1963),
Tremain et al. (1991), and Gamson et al. (1993). In 1998, Laubach
et al. (1998) defined the following detailed cleat characteristics:
orientation, spacing, aperture, height, length, and connectivity as
crucial indices to classify the cleat system in a coal basin.

2. The need for a new approach to study coal cleat system

Since the very first studies on the coal cleat system process,
several authors have been interested in introducing a correct and
adequate methodology to quantitatively characterize coal cleat
networks. However, up to date, it was only possible to obtain
quantitative results by a rather expensive and time-consuming
method, similar to the one used in micro-tectonics which is a
direct response of regional and local tectonic settings (Ting, 1977;
Close, 1993; Levine, 1993; Pyrak-Nolte et al., 1993; van Krevelen,
1993; Laubach et al., 1998; Montemagno and Pyrak-Nolte, 1999;
Morris et al., 1999; Mazumder et al., 2006).

In the present work, a new, semi-automatic, fast, accurate, and
statistically based optical method, aiming to obtain more reliable
results in order to satisfy the current industrial practice and needs,
was developed. In this regard, it should be mentioned that, more
recently, Alpern and Lemos de Sousa (2002) have proposed, to
adapt to CBM problems, an alternative mechanical degradation test
that was developed to study the outburst prediction (Alpern, 1963)
throughwhich it has been possible to define a “fracturability index”
in correlation with gas circulation.

In fact, it is well known that the natural network of fractures
presented in coal allows the drainage of CBM from coal seams to the
production wells through the cleat system. Furthermore, in a
classical approach, exploitation methods include additional frac-
ture opening induced by stimulation with injection of various
fluids. However, evenwhen using more advanced technologies that
are applied in several basins, such as open-hole cavity completion
method, the gas production advantage revealed to be either suc-
cessful or unsuccessful depending on the basins and/or the coal
seams (see also Ayers (2002)). This means that only in very favor-
able cases it is possible to obtain advantageous economic levels of
CBM production.

Therefore, what really matters in the authors’ opinion is, in each
case, to know (i) the spatial orientation of the different classes of
fractures (cleat) and (ii) the frequency of their connectivity, in order
to make possible a right orientated hydraulic fracturing injection of
fluids (water, gas, or combining both fluids) under pressure to open
the cleat system, thus allowing the highest amount of gas release. In
fact, the cleat families of highest connectivity frequency are those
that define the gas circulation network to the production well, and
are, therefore, the most favorable ones to be opened by fluids,
although they must be injected in the correct direction. Taking this
fact into account, drilling a higher number of holes does not solve
per se the problem of gas production from coal seams. The method
must be applied with extreme care, otherwise it may lead to
misleading conclusions. One limitation in this method is related
with the availability of the core samples needed to this kind of
studies.

Other options, like the televiewer method, considered as the
best solution to study in situ the cleat system mostly in terms of
orientation, do not, in the authors’ opinion, allow to study the
microfractures, only the meso andmacrofractures. Additionally, the
presented method is able to statistically describe in detail the
characteristics of the studied samples, also in terms of spacing,
aperture, height, length, filling, and connectivity.

It should also be noted that, although the coal cleat system also
depends on the local and regional tectonics, the cleat network
cannot be inferred using conventional regional micro-tectonics
studies. Indeed, in terms of mechanical properties, coal has a very
particular rheologic behavior; the deformation threshold is totally
different from the other rocks presented in the local stratigraphic
column, even considering strata directly contacting with coal
seams, i.e. the roofs and floors. This particular rheologic behavior
occurs due to its microlitotypes composition, i.e. if one is dealing
with a rich liptite coal, one will certainly have difficulties in
observing a pertinent fracture network, since liptite has a high
elasticity behavior and this performance will be more complex
when liptite is strongly interstratifiedwith the other microlitotypes
whose behaviors are totally different. Additionally, in most basins
that correspond to CBM deposits, the ellipsoid of effective tectonic
stress is more or less constant, i.e. there are no changes in amount



Fig. 2. Image obtained with high-resolution scanner.
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or direction of the effective stress. What really changes with local
tectonics is the deformation strength of the different rocks filling
the basin, since coal does not have a standard behavior directly
linked to tectonic stress, due to the above-mentioned aspects. Coal
having very weak deformation strength is not able to resist minor
changes of the effective tectonic stress. This is the reason that it is
necessary to stimulate gas production by opening cleats and
injecting fluids under pressure during CBM operational issues, and
that statement agrees with the experimentally well-established
fact that coalbed permeability is highly stress-dependent
(Gamson et al., 1993; Ayers, 2002).

3. Development of the proposed methodology: the “coal core
tectonics” (CCT) method

The necessity of a methodology able to produce accurate, reli-
able, and statistically significant three-dimensional (3D) data in an
easy and semi-automated way, as well as allowing a correct rep-
resentation of the stress system of the coal basin, has been con-
ducted by the authors regarding the method described in detail in
Fig. 1. Sample orientation in NeS and WeE planes.
this section and entitled “coal core tectonics” (CCT) method, based
on the work initially performed by Rodrigues (2002). A supple-
mentary advantage of the method is its time-saving feature, since
using the GIS tool is possible to perform a detailed analysis of a core
sample in just a few hours. GeoMedia software provides GIS with
advanced parameters that include improved display, performance,
and spatial analysis. GIS has been adopted in many geological
studies since it provides the opportunity to combine layers of in-
formation about a geographical area in order to produce a better
understanding of different parameters involved, which will obvi-
ously depend on the purpose of the project.
Fig. 3. Representation of the cleat plunging lineation.



Fig. 4. (a) Cleat elements identified on the sample used in the example given and (b) detail of the image represented in Fig. 4a.
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GIS was chosen for three different reasons: (i) A GIS project
permits to link data sets by common location of the data, such as
geographical position (e.g. detailed coalfield geographical location),
which helps numerous different institutions to share their data. By
creating a shared database, one institution can benefit from the
Fig. 5. Frequency of plunging lineation determined on different planes: (a) NeS plane (N p
lineation); and (d) WeE plane (E plunging lineation).
work of another and that will also improve organizational inte-
gration. (ii) A GIS project is not just an automated decision-making
system but a tool to query, analyze, and map data as a support in
the decision-making process. GIS can then be used to decide where
is the best location to exploit a new coal depositdfor coal mining or
lunging lineation); (b) NeS plane (S plunging lineation); (c) WeE plane (W plunging



(3)

Table 1
Data of the most frequent cleats on each plane.

Classes of
cleat frequency
(in decreasing
order) (%)

NeS plane
(N plunging
lineation) (�)

NeS plane
(S plunging
lineation) (�)

WeE plane
(W plunging
lineation) (�)

WeE plane
(E plunging
lineation) (�)

7.7 88 88 88 88
6.5 89 86 87 87
6.1 87 87 89 85
5.1 85 84 85 86
4.2 86 89 86 84
3.1 80 85 83 89
2.7 83, 84, and 3 83 84 83
2.4 2 82 78 and 82 3
2.1 5 80 80 82
1.9 82 81 79 and 81 5 and 7
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underground direct utilization such as in the case of CBM pro-
ductiondin order to minimize the potential environmental
impactdif it is localized in a low risk area or if it is close to a
population centerdand to maximize the economic profit. The in-
formation can be presented concisely and clearly in the form of a
map and an accompanying report, allowing the project manager to
focus on the real issues, rather than trying to understand isolated
data. Since GIS products can be quickly produced, multiple sce-
narios can be evaluated efficiently and effectively. That will allow
the making of better decisions. (iii) GIS creates maps from the data
collected from databases. Mapping with this method is much more
flexible than by the traditional manual or automated cartography
approaches. It is also possible to digitalize existing paper maps and
to translate them into the GIS environment. The GIS cartographic
database can be both continuous and scale free. Map products can
then be created centered on any location, on any scale, and showing
previously selected information, effectively symbolized to highlight
specific characteristics.

The new methodology in the paper was developed as follows:

(1) The use of samples that correspond to non-damaged borehole
core samples, inwhich it is possible to macroscopically observe
the cleats. Cores are then cut into two orthogonal planes and
the two surfaces are roughly polished to clearly identify the
cleat characteristics. Prior to the cut, if the cores have the
tendency to break in small pieces, a previous treatment with
polymer resin as a binder becomes necessary. Samples with
these characteristics will be considered as cleat representative
samples of the basin, allowing statistical inference.

(2) The choice of the coal cleat characteristics indicated in the
literature (Laubach et al., 1998) that are considered to be more
directly related to gas production (cleat directions, measured
Table 2
Cleat lines measured in NeS plane (N plunging lineation) and WeE plane (E
plunging lineation).

Classes of
cleat frequency
(in decreasing
order) (%)

Cleat lines measured
in NeS plane (N
plunging lineation) (�)

Cleat lines measured
in WeE plane (E
plunging lineation) (�)

7.7 88/0 88/90
6.5 89/0 87/90
6.1 87/0 85/90
5.1 85/0 86/90
4.2 86/0 84/90
3.1 80/0 89/90
2.7 3/0; 83/0; and 84/0 83/90
2.4 2/0 3/90
2.1 5/0 82/90
1.9 82/0 7/90 and 5/90
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as a reference, preferably an correctly orientated core during
drilling or to measure the borehole direction in small intervals
with accuracy; cleat frequency, taking into account different
types of cleats; cleat height; cleat length; cleat spacing;
number of cleat connectivity/intersections; and cleat aperture
and number of cleats filled with minerals).
The use of GIS combined with appropriate software, as a tool to
quantitatively develop the following items: borehole
geographical location; sample orientation; scanning of core
samples; the adopted model; georeferentiation of core sample
images, cleat digitalization and cleat characterization; statisti-
cal analyses from georeferentiatiated data; and connectivity
frequency.
3.1. Borehole geographical location

The first stage comprises registering all pertinent local geolog-
ical information, and collecting all relevant data, such as carto-
graphic parameters, as well as the geographical coordinates of the
system in use. It is absolutely indispensable to create specific da-
tabases since all data will be georeferentiated through local
geographical coordinates.

3.2. Sample orientation

The second stage is the most difficult to be systematically
investigated due to high costs and time-consuming procedures
needed to obtain orientated samples during drilling. However, the
sample orientation is considered to be an indispensable tool in CBM
prospection, because it is the only way to have an accurate
knowledge of sample cleat network in field, in terms of the coal
basin stress field. In the absence of orientated data it is always
possible, at least, to obtain the orientation of the borehole axis from
the televiewer data.

In the example presented and for simplification, the core length
plane as a reference planewas used, inwhich the orthogonal planes
of the core drilled correspond to northesouth (NeS) andwesteeast
(WeE) planes, wherein all measurements were made (Fig. 1).

3.3. Core samples scanning

It is very difficult to obtain an acceptable optical image to be
used for a visual interpretation, particularly in the case of the lack of
contrasts in the examined surface, as it is always the case in coal.
However, using a high-resolution scanner, with proper scanning
parameter adjustments, it is possible to obtain reliable images in
le 3
at lines measured in NeS plane (S plunging lineation) and WeE plane (W
nging lineation).

lasses of cleat
equency (in
ecreasing
rder) (%)

Cleat lines measured
in NeS plane (S
plunging lineation) (�)

Cleat lines measured
in WeE plane (W
plunging lineation) (�)

.7 88/180 88/270

.5 86/180 87/270

.1 87/180 89/270

.1 84/180 85/270

.2 89/180 86/270

.1 85/180 83/270

.7 83/180 84/270

.4 82/180 78/270 and 82/270

.1 80/180 80/270

.9 81/180 79/270 and 81/270
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Fig. 6. Cleat frequencies determined from NeS plane (N plunging lineation) and WeE plane (E plunging lineation): letters AeJ indicate cleat frequencies 1e10. Cleat frequencies
determined from NeS plane (S plunging lineation) and WeE plane (W plunging lineation): letters KeT indicate cleat frequencies 1e10.
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Table 4
Calculated planes by combining NeS plane (N plunging lineation) with WeE plane
(E plunging lineation) and NeS plane (S plunging lineation) with WeE (W plunging
lineation).

Classes of cleat
frequency (in
decreasing order) (%)

Cleat planes calculated
from combining NeS
(N) to WeE (E) planes

Cleat planes
calculated from
combining NeS (S)
to WeE (W) planes

7.7 N135� , 89�E N135� , 89�W
6.5 N108� , 89�E N143� , 87�W
6.1 N121� , 87�E N162� , 88�W
5.1 N141� , 87�E N142� , 86�W
4.2 N124� , 87�E N109� , 89�W
3.1 N174� , 89�E N125� , 86�W
2.7 N179� , 88�E N139� , 85�W
2.4 N146� , 4�E N127� , 84�W
2.1 N179� , 82�E N135� , 83�W
11.9 N91� , 82�E N131� , 83�W
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which discontinuities can be identified (Fig. 2). With a high quality
image it is also possible, in “GIS environment”, to improve the
image, with specific parameters which allow to introduce changes
in brightness and contrast, as well as the assembly of a negative
image. Besides the already mentioned feature to create collections
of databases, which will allow to georeferentiate data observed in
the core sample, the high-resolution scanner also allows to improve
the captured images.

3.4. The adopted model

The next step consists in creating a database comprising all
measured and interpreted data, all related to sample images, such
as the images themselves, the cleat digitalization, and some even-
tual complementary information. Due to the fact that when one is
dealingwith apparentmeasurements, it is indispensable to develop
a new modified terminology to characterize the cleat system. Note
that the main objective is to relate the cleat system to the gas cir-
culation, the relevant information will be: the description of the
plane where the data were collected; the azimuth of the cleat,
expressed in the dip direction; the cleat direction; the cleat length;
Fig. 7. (a) Mean plane (sketched line) determined for 90�e120� plunging lineation interva
120�e150� plunging lineation interval in NeS plane (N plunging lineation); and (c) mean pl
(N plunging lineation).
the cleat aperture (open or closed); the cleat filling (by secondary
mineralization, as referred to by Faraj et al. (1996)); and any
eventual additional information.
3.5. Georeferentiation of core sample images, cleat digitalization,
and cleat characterization

The scanned images are georeferentiated in the GIS program,
which directly allows cleat digitalization and cleat characterization
of each interpreted line on the basis of the above described model.
It is also pertinent to focus the attention on the adopted scale, since
it could influence the digitalization process, as well as its inter-
pretation. Since the average cleat length in the example presented
in Fig. 2 is less than 1 mm, the best scale corresponds to enlarging
the original image up to 10,000 times. Fig. 3 shows the cleats, which
were digitalized in the selected sample taking into account the
following direction of dip: light green lines correspond to the
intersection of horizontal cleatdWeE plane; black lines corre-
spond to intersection of vertical cleatdWeE plane; red lines
correspond to W cleat plunging lineationdWeE plane; light blue
lines correspond to E cleat plunging lineationdWeE plane; dark
blue lines correspond to intersection of horizontal cleatdNeS
plane; dark green lines correspond to intersection of vertical
cleatdNeS plane; brown lines correspond to cleat N cleat plunging
lineationdNeS plane; and purple lines correspond to S cleat
plunging lineationdNeS plane.
3.6. Statistical analyses from georeferentiated data

This stage consists in converting georeferentiated data into the
form of text and statistical parameters in order to allow a correct
and suitable statistical interpretation as well as optimum stereo-
graphic projection. Data must then be processed by specific soft-
ware able to produce reliable statistical results and to plot lines
and planes determined in GIS. There are a different number of
powerful commercial computerized applications available for that
purpose.
l in NeS plane (N plunging lineation); (b) mean plane (sketched line) determined for
ane (sketched line) determined for 150�e180� plunging lineation interval in NeS plane



Fig. 8. (a) Mean plane (sketched line) determined for 90�e120� plunging lineation interval in NeS plane (S plunging lineation); (b) mean plane (sketched line) determined for
120�e150� plunging lineation interval in NeS plane (S plunging lineation); and (c) mean plane (sketched line) determined for 150�e180� plunging lineation interval in NeS plane (S
plunging lineation).
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3.7. Connectivity frequency

The connectivity frequency is one of the most important pa-
rameters to be taken into account due to its relevant role in gas
circulation. Based on the digitalized values and statistical data, it is
possible to establish a global connectivity frequency, which is
determined by calculating the total cleat connection. In order to
filter the huge set of data (e.g. 5072 cleats), three intervals of cleat
plunging lineation were considered (i.e. 0�e30�, 30�e60�, and
60�e90�).
4. Results and discussion

The example given before to demonstrate the proposed meth-
odology refers to a coal core of approximately 1m in length that the
authors collected. It belongs to a coalfield in the exploration stage.

After the implementation of all the above-mentioned steps,
necessary for the application of the GIS, a total of 5072 elements
were accounted in the present exercise. Fig. 4a represents a block-
diagram of the 3D data obtained from the whole core, and Fig. 4b
shows a detail of the image represented in Fig. 4a. It is possible to
verify that some cleats can be followed from the NeS plane to the
WeE plane, which is possibly due to the effects induced by the
regional stress identified on the coalfield. Fig. 4 also allows
concluding that all data obtained with the GIS analysis consist of
Table 5
Mean planes frequencies in NeS plane (N plunging lineation)/WeE plane (E
plunging lineation) and NeS plane (S plunging lineation)/WeE plane (W plunging
lineation).

Plane
intersection

Plunging lineation
interval (�)

Mean planes Frequency (%)

NeS (N)/
WeE (E)

90e120 N100� , 85�E 8.4 NeS (N) 10.1 WeE (E)
120e150 N127� , 87�E 23.4 NeS (N) 22.6 WeE (E)
150e180 N177� , 86�E 12.1 NeS (N) 8.6 WeE (E)

NeS (S)/
WeE (W)

90e120 N109� , 89�W 4.2 NeS (S) 5.2 WeE (W)
120e150 N135� , 85�W 30.5 NeS (S) 40.2 WeE (W)
150e180 N162� , 88�W 5.6 NeS (S) 6.5 WeE (W)
lines, which will be combined afterwards and used to determine
the primary stress planes presented in coal seams.

The statistical treatment and interpretation of data were carried
out according to the following three sequential procedures:

(1) Initially, the two different planes were analyzed individually, in
order to produce a suitable filtering of the large number of el-
ements collected, as follows:
(i) To calculate the frequencies of the cleat intersections in Ne

S and WeE planes, and the plunging lineation of each
element was taken into account. Since the measured cleats
have a large variety of lengths, the best option consisted in
determining frequencies on the basis of cleat length stan-
dardization classes. As a result the following data were
obtained:
NeS plane:
North plunging lineation ¼ 37.6%
South plunging lineation ¼ 60.0%
Intersection of vertical cleat ¼ 2.2%
Intersection of horizontal cleat ¼ 0.2%
WeE plane:
West plunging lineation ¼ 52.9%
East plunging lineation ¼ 45.0%
Intersection of vertical cleat ¼ 1.8%
Intersection of horizontal cleat ¼ 0.3%
(ii) To determine, on both NeS and WeE planes, the cleat fre-
quencies of each plunging lineation in each direction, his-
tograms were drawn. As the vertical and horizontal cleats
on both planes correspond to plunges of 90� and 0�,
respectively, the statistical analysis has focused on the
north and south plunges of lineations on NeS plane, and
west and east plunging lineations on WeE plane. Histo-
grams in Fig. 5 show that the plunges of lineation around
85� and 89� are the most frequent in both planes, followed
by the ones around 3� and 5�. All the other measurements,
although less frequent, can yet be relevant to defining the
stress field.

(iii) To point out the frequency of the cleat intersection in NeS
and WeE planes, it is necessary to select at least 50% of the



(2)

Fig. 9. Schematic representation of the four dominant planes determined in the pre-
sent case study.

Table 6
Classes of plunging lineation defined on sample WTB 5/30.

Class designation Plunging lineation interval (�)

Class 0 0
Class 1 >0 and �30
Class 2 >30 and �60
Class 3 >60 and <90
Class 4 90
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measured cleats in order to obtain a statistical sampling
representation. The frequency of cleat plunging lineation
between 20� and 60� is too low and it will not produce a
major effect on gas circulation stage. Table 1 presents the
most frequent cleat plunging lineation, which conforms to
the minimum of 50% mentioned above.

The second stage consists of linking intersections of the two
NeS and WeE planes on the basis of the structural theoretical
fundaments, which consider that two lines collected from two
different planes will allow the determination of the plane that
goes through those lines. From Table 1 it is possible to
Fig. 10. Histogram of connectivity frequency from
conclude that any set of lines is capable of producing different
planes, which implies the need to establish criteria to define
which planes should be considered as the most important
ones. The question was bypassed by applying statistical data
presented in term from (1) above. In fact, these statistical
results will allow to combine data from NeS plane (N
plunging lineation) to data from WeE plane (E plunging
lineation), which corresponds to plunging lineation planes
with the lowest cleat frequency, and will also allow to
combine data from NeS plane (S plunging lineation) to data
from WeE plane (W plunging lineation), corresponding to
plunging lineation planes with the highest cleat frequency.
The results obtained from such combinations are presented in
Tables 2 and 3.
In this second stage, further procedures are necessary and
consist in:
(i) Projecting lines using stereographic projection.

In the example given, Fig. 6 presents the main planes for
each cleat frequency as well as the basic statistical pa-
rameters obtained with stereographic projections.

(ii) Determining the most representative planes.
Structural principles allow dividing cleat plunging
lineation data into intervals, since it is possible to
consider the calculated cleat planes of the same family if
plunging lineation changes between an acceptable
variation degree. In fact, planes determined from cleat
lines projection shown in Table 4 allow us to consider
that the best option is to create intervals of 30�.
Consequently, it is possible to calculate three different
planes from NeS plane (N plunging lineation)
combining with WeE plane (E plunging lineation), and
from NeS (N plunging lineation) combining with WeE
(W plunging lineation). Fig. 7 shows the three mean
planes in NeS (N plunging lineation)/WeE plane (E
plunging lineation) planes, calculated by combining
planes corresponding to cleat frequencies 2 and 10
(Table 4 and Fig. 7a), planes corresponding to cleat fre-
quencies 1, 3, 4, and 5 (Table 4 and Fig. 7b) and planes
from cleat frequencies 6, 7, and 9 (Table 4 and Fig. 7c).
Fig. 8 shows the three other mean planes in NeS plane
(S plunging lineation)/WeE (W plunging lineation)
planes, calculated by combining planes corresponding
to cleat frequencies 1, 2, 4, 6, 7, 8, 9, and 10 (Table 4 and
different classes of plunging lineation.
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Fig. 8b). The two other mean planes correspond to
planes that fall into the other specific interval condi-
tions, i.e. the mean plane defined in 90�e120� plunging
lineation interval is represented by the cleat frequency 5
(Table 4 and Fig. 8a), and the one defined in the 150�e
180� plunging lineation interval is represented by cleat
frequency 3 (Table 4 and Fig. 8c).

(iii) Selecting the dominant planes on the basis of cleat fre-
quency criterion and on the data presented in item
(ii) above.

Table 5 shows that in the first set of three planes interception,
the most frequent plane corresponds to N127�, 87�E, and in the
second set of three planes interception, the most frequent is
N135�, 85�W.
Besides the twomain planes mentioned above, it is obvious that
vertical and horizontal planes should also be considered (item
(i) from (1) above). In what concerns the vertical plane, and due
to the highest frequency detected in NeS plane, it should be
concluded that this plane strikes at 53�N.
The four dominant planes are represented in the solid model
diagram presented in Fig. 9.

(3) In what concerns cleat connectivity in direct relation with gas
release from the seam, the presented method considers a new
parameter, the “global connectivity frequency, Gcf”, calculated
by the ratio between the total length of cleat intersection and
the total length of cleat detected. In the present example a
value of Gcf ¼ 85.77% is obtained.

Finally, it is also important to study the interception between
some specific cleat plunging lineation. Taking into account classes
of plunging lineation of 30�, as well as vertical and horizontal cleats
(see Table 6), it is possible to obtain important results. The ten
possible combinations are presented in Fig. 10. The most frequent
ones consist, in decreasing order, in interceptions between classes 1
and 3, followed by interceptions between classes 2 and 3, and be-
tween classes 3 and 4. This will allow to conclude that the cleat
planes included in these classes of plunging lineation are the
dominant ones in terms of gas release. In fact, this conclusion is also
strongly supported by the high frequency determined for the
planes N127�, 87�E and N135�, 85�W(see Table 2), also sustained by
sub-horizontal to horizontal planes (item (i) from (1) above).

5. Conclusions

The present study allows concluding that whenever the pa-
rameters referred to above in (2) and (3) in Section 4 are defined, it
is therefore possible to inject, in the right space orientation, pres-
surized fluids in order to open the coal cleat system, and directly
drain the maximum amount of gas flow to CBM exploitation wells
or even to inject CO2, as it is the case of CO2 geological sequestration
projects. In the specific case study herein presented, the best di-
rection to induce the fluid injection falls into the planes N127�, 87�E
and N135�, 85�W, which is strongly supported by their high fre-
quency. The present approach to best define the coal cleat system
was developed as a contribution to the selection of the completion
method for coalbed exploration wells in terms of design, and
therefore cost estimates. Moreover, the method is applicable to the
primary investigation steps of any potential CBM reservoir, i.e.
prospecting and exploring phases, thus contributing to best esti-
mate of its economic potentiality since the very beginning.
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