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Abstract

Biological measurements of intracellular regulation processes are typically noisy, and time resolution is low. In
practice often only steady state measurements of perturbation experiments are available. Since data acquisition is
expensive, a framework for experimental design that allows the inclusion of prior knowledge and takes uncertainty into
account is highly desirable. We introduce a framework for the experimental design problem to infer parameters from
steady state observations of intracellular networks. Our network model consists of (nonlinear) ordinary differential
equations based on chemical reaction kinetics. We consider sets of structural perturbation experiments, that is, steady
state measurements of the system subject to gene knockout or mutations. The model is stochastically embedded by
introducing Gaussian measurement errors. This allows the application of a statistical Bayesian framework and usage of
information-theoretic measures for experimental design. We propose to choose the optimal experiments with respect
to identifiability of model parameters by maximizing the information content of the expected outcome, measured as
the entropy of the posterior distributions. In this setting the posterior has no closed form and an analysis requires
efficient sampling methods. We introduce a simulation-based experimental design framework for the identification
of network parameters with an efficient entropy estimation approach. First results are shown on a network model for
secretory pathway control. Secretion of proteins from cells involves the budding of vesicles at the Golgi. For this
process PKD activity is central.
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1. Introduction

A main goal in systems biology is to reveal regulatory mechanisms underlying complex behavior of intracellular
networks at the molecular level. For this purpose, differential equation models based on chemical reaction kinetics
have become a standard model class to describe the dynamic of signaling networks, metabolic pathways or regulatory

Email address: {kramer,radde}@ist.uni-stuttgart.de ()

c⃝ 2012 Published by Elsevier Ltd.

Procedia Computer Science 1 (2012) 1645–1653

www.elsevier.com/locate/procedia

1877-0509 c⃝ 2012 Published by Elsevier Ltd.
doi:10.1016/j.procs.2010.04.184

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

http://www.elsevier.com/locate/procedia
http://dx.doi.org/10.1016/j.procs.2010.04.184
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


A. Kramer and N. Radde / Procedia Computer Science 0 (2010) 1–9 2

mechanisms. In order to develop reliable predictions with these models, parameters have to be estimated from ex-
perimental data. This inverse problem is usually formulated as an optimization problem. Since the data available for
this purpose is usually scarce and noisy, and time resolution is low [1], the optimization problem is ill-posed, and the
performance of standard methods such as least-squares or maximum likelihood estimation is poor [2, 1]. Data acquisi-
tion for the identification of intracellular processes is often expensive and time-consuming. Therefore, a model-based
optimal design of experiments with respect to identifiability of parameters or, more generally, model selection, can
highly facilitate the development of reliable models by a pre-selection of the most informative experiments.

Our focus is on Bayesian frameworks for experiment planning. Such a statistical framework has several advantages
in our setting. First, it uses a stochastic modeling framework, which generally allows to integrate intrinsic stochastic
effects and measurement errors. Second, Bayesian approaches can include prior knowledge and beliefs about the
outcome in terms of an a-priori distribution over model parameters. Since this prior distribution does not depend on
the data, it can stabilize the solution with respect to data noise and avoids overfitting [2]. As such additional knowledge
is often available for real biological systems, the Bayesian framework is generally appropriate here. Third, the result
is not only a point estimate, but a posterior distribution over model parameters, which can be analyzed in different
respects. It contains information about the reliability of the estimated parameter values in terms of its variance and
about the degree of identifiability. Furthermore, stochastic models can generally cope with unobserved states, missing
values and hidden variables, which is typically encountered in biological data sets.

In design problems a cost functional is optimized with respect to a set of potential experiments (for an introduction
into design problems and a discussion of different cost functions we refer to [3]). A statistical framework allows the
application of information-theoretic measures for this cost function such as the entropy of the posterior distribution or
Kullback-Leibler divergence (KLD).

Using a Bayesian framework in order to estimate parameters of nonlinear differential equations is particularly
challenging, because the likelihood function does not have a conjugate prior distribution and thus the posterior cannot
be computed in closed form but has to be approximated by Markov Chain Monte Carlo (MCMC) sampling strategies
[1]. When evaluating the cost function for a given experimental setting, this requires estimating the posterior densities
from these samples, which can for example be done by using kernel density estimators. The relation between the
parameters to be estimated and the observations y can be quite complicated. For example, if steady states are measured
under different perturbations, these are implicitly described by the solution set x̄(θ) of the implicit equation f (x̄, θ) = 0.
This usually requires simulations with an appropriate numerical integration method in each optimization step, which
can be very expensive computationally.

Bayesian experimental design has recently been applied to biological networks in different settings. For example,
Steinke et al. [1] use linear models with independently and identically distributed Gaussian noise and sparsity enforc-
ing Laplace priors for the identification of gene regulatory networks from steady state measurements. This approach is
a compromise between sparsity and computational tractability. On the one hand, the log-posterior density is concave
in this setting and thus has a single maximum which allows using a normal approximation, for which many quantities
such as the relative entropies can easily be calculated. On the other hand, compared to Gaussian prior distributions, it
favors sparse solutions.

An analysis of the posterior distribution is much harder with nonlinear differential equation models. The posterior
might be multimodal and standard approximating inference methods become algorithmically unstable or are limiting
from the computational side, i.e. require an excessive amount of time. One of the first approaches towards nonlinear
models is described in Calderhead & Girolami [4]. They investigate the effect of the number and choice of observed
variables on the information content of the posterior distribution for the well-known repressilator model described in
[5]. The posterior is investigated by MCMC sampling with time-varying transition kernels, and the KLD of prior and
posterior distribution is approximated by using a kernel density estimator for the posterior and numerical Monte Carlo
integration for calculating the expectation EP(log Q) of the posterior logarithm log Q with respect to the prior density
P.

A Bayesian experimental design method for the identification of network structures was recently introduced by
Busetto & Buhmann in combination with a novel clustering technique [6]. The likelihood function was build from
nonlinear stochastic differential equations, and the KLD of prior and posterior was investigated via MCMC with
importance sampling. The method was evaluated on a Goodwin model. A similar framework was developed by
Busetto et al. [7] for model selection of nonlinear dynamical systems, which requires averaging over the set of
parameters that represents a single model. The utility function to be optimized in that work was the KLD as well.
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An optimal design method was applied to guide live-cell fluorescence microscopy experiments in Bandara et al. [8],
which shows that model-based experiment planning can highly improve identifiability of model parameters in a real
setting and thus be a valuable tool for building accurate quantitative models with as few experiments as possible.
Finally, a more general review about several aspects in experimental design and model discrimination is given by
Kreutz & Timmer [9].

Those articles described indicate that a Bayesian framework is generally advantageous for the identification of
biological networks, and it has also proven useful in first applications. However, while linear Gaussian models and
static data are well-investigated, Bayesian design remains a fairly unexplored field in the context of nonlinear dynamic
systems [7].

In this paper we introduce a Bayesian approach for calculating the expected information content of a set of ex-
periments with respect to identifiability of model parameters. This is the basis for experimental design, which seeks
to optimize this information content by a pre-selection of appropriate experiments. Information content is optimized
by minimizing the entropy of the posterior distribution. The entropy is estimated by first sampling from the poste-
rior via a Metropolis algorithm. This sample is then used to normalize the posterior by approximating the density
using a multivariate Gaussian kernel density estimator with data-driven bandwidth. Within this setting we suggest
a simulation-based approach to evaluate the likelihood function, which is particularly suited to deal with hidden
variables and marginal likelihoods. We will show first results on the identification of two and three parameters of
a regulatory network for secretory pathway control at the trans-Golgi network in mammalian cells. In contrast to
previous works, we use realistic, easily obtainable data sets (relative equilibrium concentrations) and aim to limit
computational costs by limiting the number of evaluations of the kernel density estimator, which in our setup is used
for normalization purposes only.

2. Bayesian experimental design for parameter identification in kinetic network models

2.1. The likelihood function - Stochastic model

We consider ordinary differential equations of the form

ẋ = f (x, θ), x ∈ Rn, θ ∈ Rm, f : Rn
+ × Rm

+ → Rn ∈ C1(x, θ) (1)

with a vector field f that is continuously differentiable, such that a unique and smooth solution φ(t, x0, θ) exists for
each initial state x0 ∈ Rn

+ and parameter vectors θ ∈ Rm
+ [10]. This model describes the dynamics of a regulatory

network and is based on chemical reaction kinetics, which is not further specified here. We only assume that the
system has a trapping region in the positive orthant, i.e. a region that is eventually reached from all initial conditions,
and that it has at least one stable steady state, which is not a strong restriction, since it is fulfilled for most chemical
reaction networks. The vector θ contains the parameters to be estimated from data, such as for example rate constants
or Michaelis-Menten constants.

The data set we will use for learning consists of steady state measurements under different structural perturbations
p = 1, . . . , P such as for example knockout of components or manipulation of regulation strengths via mutations that
affect the regulatory activity of components. In our modeling framework, these perturbations translate into changes in
the values of the parameter vector θ, which we denote by θp. The perturbed steady states are measured in units of the
steady state of the unperturbed system, zp(θp) = x̄p(θp)

x̄(θ) . Note that this identification problem is generally very difficult
regardless of how the differential equations are stochastically embedded or how the prior distributions are chosen in a
Bayesian setting. First of all, the parameters and the observations are related via an implicit function, f (x̄p, θp) = 0.
For the inverse problem, we can think of the dependence of this output on the parameters in terms of bifurcation
diagrams, which inherits several challenges for the optimization problem [2]. For example, at bifurcation points the
observations can change nonsmoothly with parameters [11], which translates into a nonsmooth likelihood function in
a stochastic framework. Furthermore, there might be several bifurcation branches for certain parameter values, which
introduces a dependence of the long-term behavior, here the steady states, on the initial state x0.

Measurement error is described by an additive and normally distributed noise term with mean zero and variance
σ2,

yp
i = zp

i (θp) + εi, ε ∼ N(0, σ2
i ). (2)
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We measure a subset I of all network components. This stochastic framework relies on the assumption that different
independent error sources contribute additively to the overall noise term, and clearly any other distribution would be
possible here as well. In contrast to stochastic differential equation models or Markov processes, the noise term does
not affect the underlying deterministic system. Thus our modeling framework only includes noise due to measurement
errors, but not intrinsic stochasticity (for relations between these model classes we refer to [12]). Given dataY = {yp

i :
i ∈ I, p = 1, . . . , P} the probability of seeing the data Y given parameters θ reads

p(Y|θ) =
P∏

p=1

∏

i∈I
p(yp

i |zp
i (θp)) =

P∏

p=1

∏

i∈I

1√
2πσ2

i

exp

⎡⎢⎢⎢⎢⎢⎢⎣−
1
2

(
yp

i − zp
i (θp)

σi

)2⎤⎥⎥⎥⎥⎥⎥⎦. (3)

In general this does not permit a conjugate modeling framework, and the posterior distribution has to be investigated
via sampling or other approximating methods [13]. In practice the setup is often even worse, since usually not all
variables can be observed. A stochastic framework provides a solution to that via marginalizing over the hidden
states, that is, calculating the expectation value of the observed states with respect to the distribution over the hidden
ones [14, 15, 16, 17]. This partial observability often comes along with an additional problem, the structural and
practical identifiability of model parameters [18]. In our setting, structural non-identifiability comes from the fact
that steady state measurements do not always contain the information required to identify all parameters. A simple
example is the steady state of a reversible reaction (A�B) with rate constants k1 and k−1 described by mass action
kinetics. According to the law of mass action, the ratio of concentrations on the right and the left hand sides of the
reactions equal the ratio of the rate constants. Thus steady state measurements of this system only allow to identify
the ratio of the two rate constants rather than their individual values. Practical identifiability refers to the fact that
sparse data does not always contain the information for a unique identification of the parameters.

Our framework allows a simple and efficient evaluation of the likelihood via simulation of the trajectory until
convergence to a steady state is reached. Since the steady states of each variable are uniquely determined for any θ, and
measurement noise does not feed back into the system, integration over hidden variables is not required although we
cannot observe all variables of the system. In other words, the steady states x̄i(θ, x0) do only depend on the parameters
and the initial conditions and not on the steady state coordinates x̄ j of other network variables, and the same holds for
the observations y. This comes from the fact that we assume a pure measurement noise model and simplifies analysis
considerably. In order to calculate the likelihood, we determine the steady states x̄p(θp) via simulations, which directly
allows to calculate the likelihood for any yp via equation (3). This approach is similar to the likelihood-free methods
introduced first in Marjoram et al. [19]. The only drawback is that the steady states determined in this way might
depend on the initial conditions x0 if the system has several distinct steady states. Since x0 is generally unknown,
simulations have to be conducted for several x0 in the trapping region of the system.

2.2. Bayesian framework - experimental design

For the prior densities over network parameters we use independent gamma distributions for each parameter,

f (x|b1, b2) =

⎧⎪⎪⎨⎪⎪⎩
b

b2
1
Γ(b2) xb2−1e−b1 x x ≥ 0
0 x < 0

(4)

and fixed hyperparameters b1/2. With this relatively simple prior we do not address the problem of learning the
network topology, but assume it to be known, such that all models are of the same complexity, i.e. have the same
number of parameters.

We propose to choose the most informative experiments over a finite set of perturbation experiments by minimizing
the expected entropy of the posterior distribution Q. This requires estimating the posterior entropy. To this end, we
generate 60.000 configurations from the posterior via Metropolis sampling: Given a current parameter vector θp

and the data set Y, suggest an update θ̃p from a symmetric transition kernel p(θ̃p|θp), then use the stochastic model
to simulate data (zp

i (θp)), and accept θ̃p with probability p = min(1, p(θ̃p)p(Y|θ̃p)
p(θp)p(Y|θp) ). To estimate the expected entropy

EQ[log Q], use this parameter sample to approximate the posterior density with a Gaussian kernel estimator and use
the approximate distribution to find the correct normalizing factor for the posterior sample using only a small subset
of the sample. Evaluate the normalized sample to determine the entropy, the details are given in [20]. Compared
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Figure 1: Interactions of proteins and lipids for the regulation of secretory transport at the trans-Golgi network. Left: Regulatory network. Arrows
indicate activation, blunt ends inhibitions, and enzyme-driven regulations are marked with a star (�). Right: Differential equation model.

to previous work [4, 6, 7], instead of calculating the entropy with the estimated posterior density, we only use this
approximation to normalize the posterior, and the entropies are calculated with the normalized posterior values at the
sample points. Moreover, we improved the kernel density estimation by using multivariate Gaussian kernels whose
covariance is a priori estimated from a subsample of the posterior.

3. Application to a model for secretory pathway control at the trans-Golgi network in mammalian cells

3.1. Network model

Many proteins which are produced in a cell are secreted into the extracellular environment to become active
for example as hormones, neurotransmitters, antibodies or digestive enzymes. These proteins play a crucial role in
transmitting signals across cells and tissues, and secretory transport is highly regulated to ensure a proper activity.
We focus on regulation of the activity of protein kinase D (PKD), which has been identified as a crucial regulator of
secretory transport at the trans-Golgi network [21]. Specifically, PKD is critically involved in the fission of transport
carriers, and was recently shown to play a dual role in CERT-mediated transport from the endoplasmic reticulum (ER)
to the trans-Golgi network (TGN) [21, 22]. Here we use a differential equation model for this regulation via PKD,
which is based on a description of the processes in Fugmann et al. [21]. According to [21], PKD is recruited to
the TGN by diacylglycerol (DAG), which is generated via different pathways. PKD localized at the TGN activates
Phosphatidylinositol 4-kinase IIIβ (PI4(K)IIIβ), which in turn increases Phosphatidylinositol(PI)4-phosphat (PI(4)P)
levels at the TGN. PI(4)P recruits the transport protein CERT, which has a START domain specific for ceramide,
to the Golgi complex. CERT contributes to PKD activation by providing ceramide as a precursor for further DAG
production. Thus the system has a positive feedback loop. Additionally, CERT has been shown to be a PKD substrate.
Active PKD decreases the affinity of CERT towards PI(4)P by direct phosphorylation, which counteracts the indirect
positive regulation via PI(4)KIIIβ. The detailed mechanisms of this system are still unknown [23, 24].

From a mathematical point of view, this system has an interesting network structure, since it consists of two
interrelated feedback loops. The interaction graph is shown in Figure 1. We describe this system by the set of
equations on the Right of Figure 1. We used first order mass action kinetics for most reactions. Phosphorylation of
CERT by PKD and conversion of ceramide to sphingomyelin and DAG, which is driven by the enzyme sphingomyelin-
synthase, are described by Michaelis-Menten terms. The positive orthant is invariant for the flow of this system, and
the vector field is continuously differentiable and has a unique fixed point in this region.

3.2. Results

Our approach was tested with simulated data of the secretory pathway model (5), for which we used one randomly
selected parameter vector

θ∗ = (0.95, 1.42, 1.30, 1.48, 1.46, 1.20, 0.87, 1.42, 0.80) . (6)
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Figure 2: Comparison of two experiments; Left: The inhibition of CERT is deactivated; adjacent: the resulting posterior is shown. Right: the
transport of Ceramide is enhanced by 1.5; The posterior densities clearly indicate a linear relation between both parameters. Including both
perturbations into one experiment set confines the posterior to a single point (where the lines intersect). This point coincides with the true values
θ∗2/8. The prior distribution (not shown), is a gamma distribution with mean 2 and unit variance.

parameters θ2 θ8 θ9
posterior maximum 1.28 1.61 1.43

posterior mean 1.6(2) 2.3(4) 1.4(2)
prior maximum 1.5 1.5 1.5

prior mean 2 2 2
true values θ∗ 1.42 1.42 0.80

Table 1: The estimates of the unknown parameter subset. Only one perturbation was considered: θ8 = 0. The numbers in parentheses represent the
standard deviation, i.e.: 1.23(1) = 1.23 ± 0.01

Among these, the two, respectively three parameters θ2, θ8 and θ2, θ8, θ9 are assumed to be unknown. PKD is the only
measured output (with a signal to noise ratio of 10). We determined the expected information content for two data
sets, with P = 1:

1. no inhibition of CERT: θ18 = θ
pert
8 = 0 (Figure 2 left)

2. enhanced Ceramide transport: θ15 = θ
pert
5 = 1.5 θ5 (Figure 2 right)

The hyperparameters for the gamma-prior were set such that mean and variance resulted to 2 and 1 respectively. This
choice reflects a relatively vague a-priori knowledge about the true parameter values. Figure 2 shows a comparison
of two experiments. The entropies of these two densities are very similar: −0.31(5) and −0.37(6) respectively. The
combined posterior (P=2; not shown) has an entropy of −4.36(2), this experiment contains full information on the
true parameter values within a small error margin. Since there is a large difference between prior and posterior in
both cases, the expected data is generally very informative with respect to these two parameter values, especially for
parameter θ2. The second experiment, Figure 2 (right), appears to be slightly more informative and should be prefered
to the first if only one experiment is to be performed. The combined dataset however is vastly more informative,
thus performing both expermients is very rewarding. The figures also show that both parameters are positively corre-
lated. This result is obvious in the context of our model, where the parameter θ2 describes the rate of PKD-mediated
phosphorylation of PI(4)KIIIβ, and θ8 is the strength of CERT-phosphorylation via PKD. Increasing θ2 increases the
concentration of active PI(4)KIIIβ and thus strengthens at the same time the overall effect of the positive feedback
loop in the network. As phosphorylation of CERT decreases its activity, an increase in θ8 has the opposite effect.
Hence the net effect on PKD activity can partly be compensated by increasing both parameters simultaneously, which
is reflected in the posterior distributions.

Figure 3 shows a comparison of prior and posterior densities for three parameter values. Here we used parallel
coordinates to plot the 30% of the respective samples with the highest values. Each label on the abscissa has its
own ordinate where the value of the label-symbol is noted. The points on all ordinates are connected to produce a θ
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Figure 3: Prior - Posterior; On the right: A sample from the posterior distribution over the parameters θ2, θ8 and θ9 plotted in parallel coordinates,
each polyline represents a θ configuration with the color indicating the associated posterior, the y axis represents the values of the labeled entities
on the x axis. Shown are the 30% samples with highest posterior values. It shows a positive correlation between θ2 and θ8 and a less pronounced
negative correlation between θ8 and θ9. The expected information content of the perturbation experiment shown in Figure 2 (left) is highest for θ2
and lowest for θ9, as can be seen at the maxima and the variances of the posteriors. On the left: the prior distribution plotted in the same manner.
The error bars attached to the posterior-mean represent the standard deviation of the whole distribution, not the standard deviation of the mean
estimator. The values of the colormap are unnormalized.

configuration polyline. These plots also contain information about the correlation of parameters. An hourglass shape
between two ordinates indicates negative correlation. positive correlations result in nonintersecting line sets.

A comparison of the maximum posterior estimates with the true values (blue dots) indicates that the expected
information content of the data is highest for the parameter θ2. The parameter θ9 describes the maximal DAG pro-
duction rate from conversion of ceramide, which is triggered by a sphingomyelin synthase. While the posterior gives
an almost perfect estimate for θ2, i.e. the maximum is close to the true value and the variance in θ2 direction is
low, both the distance between estimated maxima and true values and the posterior variance are higher for θ8 and
θ9. Moreover, while the positive correlation between θ2 and θ8 is still clearly visible here, there is a tendency for a
negative correlation between θ8 and θ9. In the context of the secretory pathway model, the latter correlation is more
subtle and not directly obvious from the model any more. First, both parameters are part of the negative feedback
loop. Thus a stronger inhibition of CERT by increasing the maximal phosphorylation rate θ8 has a negative effect on
x1 at first glance. In contrast, increasing the conversion rate of ceramide to DAG is expected to have a positive effect
on x1. However, this simple picture does not consider that a negative effect on PKD activity eventually turns into an
unpredictable effect on CERT that depends on both the indirect positive and direct negative regulation, and it does also
not take into account that the enzyme-driven reactions might be at its saturation, such that if for example ceramide
raises, this might not at all have an effect on PKD.

4. Discussion and conclusions

In this paper we introduced a statistical Bayesian method for experimental design with respect to identifiability of
model parameters. We consider differential equation models that describe the dynamic of regulatory networks, and
the data used for learning correspond to steady state measurements of network variables under different perturbations.
The described procedure provides an optimization criterion for experiment evaluation: the expected information con-
tent of the posterior distribution, measured as the inverse of the respective entropy. This value is estimated using
MCMC sampling in combination with multivariate Gaussian kernel density estimators to approximate the posterior
density. In this setting, the likelihoods and the expectation value of the entropy are both approximated via Monte Carlo
simulations. We show first results for a model of secretory pathway control at the trans-Golgi network via the protein
kinase D and demonstrate that an analysis of the posterior density gives, besides point estimates, also information
about correlations across variables and identifiability.

Our method is generally able to deal with nonlinear systems and the problems typically encountered in biological
models such as partial observability, hidden states and sparse and noisy data sets. Moreover, such a statistical learning
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approach provides not only point estimates, but also allows for an estimation of uncertainties. Furthermore, it can in
principle be applied to higher-dimensional problems, which is one of the major goals in the future. We expect that
this step will currently be limited by excessively long computation times, since the sample size needed for an ade-
quate representation of the posterior increases exponentially with the dimension, which requires for example further
optimization with respect to the sampling strategies. Further issues will probably be the potentially complex relation
between parameters and steady state measurements, which might translate into multiple modes, discontinuities and
ruggedness of the posterior function. Instead of prior densities with fixed hyperparameters a fully Bayesian approach
could be applied as well. These problems are currently investigated in our group. We are furthermore on the way
to extent the secretory pathway model by collecting experimental data available in the literature, which we are go-
ing to use for parameter identification. We plan to support model building and parameter identification by applying
the introduced design methods in cooperation with our experimental partners, the Institute for Immunology and Cell
Biology at the University of Stuttgart.
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