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Exposure of young rats to diphenyl ditelluride during lactation affects the
homeostasis of the cytoskeleton in neural cells from striatum and cerebellum
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A B S T R A C T

In the present report we examined the effect of maternal exposure to diphenyl ditelluride (PhTe)2

(0.01 mg/kg body weight) during the first 14 days of lactational period on the activity of some protein

kinases targeting the cytoskeleton of striatum and cerebellum of their offspring. We analyzed the

phosphorylating system associated with glial fibrillary acidic protein (GFAP), and neurofilament of low,

medium and high molecular weight (NF-L, NF-M and NF-H, respectively) of pups on PND 15, 21, 30 and

45. We found that (PhTe)2 induced hyperphosphorylation of all the proteins studied on PND 15 and 21,

recovering control values on PND 30 and 45. The immunocontent of GFAP, NF-L, NF-M and NF-H in the

cerebellum of 15-day-old pups was increased. Western blot assays showed activation/phosphorylation of

Erk1/2 on PND 21 and activation/phosphorylation of JNK on PND 15. Otherwise, p38MAPK was not

activated in the striatum of (PhTe)2 exposed pups. On the other hand, the cerebellum of pups exposed to

(PhTe)2 presented activated/phosphorylated Erk1/2 on PND 15 and 21 as well as activated/

phosphorylated p38MAPK on PND 21, while JNK was not activated. Western blot assays showed that

both in the striatum and in the cerebellum of (PhTe)2 exposed pups, the immunocontent of the catalytic

subunit of PKA (PKAca) was increased on PND 15. Western blot showed that the phosphorylation level of

NF-L Ser55 and NF-M/NF-H KSP repeats was increased in the striatum and cerebellum of both 15- and 21-

day-old pups exposed to (PhTe)2. Diphenyl diselenide (PhSe)2, the selenium analog of (PhTe)2, prevented

(PhTe)2-induced hyperphosphorylation of striatal intermediate filament (IF) proteins but it failed to

prevent the action of (PhTe)2 in cerebellum. Western blot assay showed that the (PhSe)2 prevented

activation/phosphorylation of Erk1/2, JNK and PKAca but did not prevent the stimulatory effect of

(PhTe)2 on p38MAPK in cerebellum at PND 21. In conclusion, this study demonstrated that dam exposure

to low doses of (PhTe)2 can alter cellular signaling targeting the cytoskeleton of striatum and cerebellum

in the offspring in a spatiotemporal manner, which can be related to the neurotoxic effects of (PhTe)2.
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1. Introduction

The neuronal cytoskeleton comprises a protein network formed
mainly by microtubules (MT) and neurofilaments (NF), the
intermediate filaments (IFs) of neurons. Neurofilaments are
composed of three different polypeptides whose approximate
molecular masses are 200, 160, and 68 kDa, and are commonly
referred to as heavy (NF-H), medium (NF-M) and light (NF-L)
neurofilament subunits (Ackerley et al., 2000). The assembly of the
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three NF subunits forms a typical NF, in which NF-L is known to
polymerize on its own, whilst NF-M and NFH form lateral side-
arms (Petzold, 2005). Glial fibrillary acidic protein (GFAP) is the IF
of mature astrocytes (Eng et al., 2000) and vimentin (Vim) is the IF
of cells of mesenchymal origin (Alberts et al., 2008).

The IF proteins are important phosphoproteins whose phos-
phorylation is a dynamic process mediated by the action of several
protein kinases and phosphatases. The phosphorylation level of IFs
provides the cells a mechanism to reorganize the filaments
contributing to the maintenance of their homeostasis (Chang and
Goldman, 2004). In particular, physiological levels of phosphor-
ylation of NFs promote their integration into a cytoskeleton lattice,
controlling the axonal caliber and stabilizing the axon. Therefore
the physiological phosphorylation of IF proteins plays a major role
on the cellular dynamics and this is dependent on the activation of
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several signaling pathways involved in phosphorylating specific
sites on IF subunits in response to intra and extracellular signals
(Sihag et al., 2007).

The major sites of phosphorylation of NF-L and NF-M subunits
were identified as Ser-55, which is phosphorylated by protein
kinase A (PKA); Ser-57, which is phosphorylated by Ca2+/
calmodulin-dependent protein kinase II (PKCaMII); Ser-51, by
protein kinase C (PKC) (Gill et al., 1990; Heins et al., 1993); and Ser-
23, by PKA and protein kinase C (PKC), respectively (Daile et al.,
1975; Kemp et al., 1975). On the other hand, most of the
phosphorylation sites on NF-M and NF-H are located on multiple
lysine-serine-proline (KSP) repeat motifs abundant in the carbox-
yl-terminal tail domain of these NF subunits (Geisler et al., 1987;
Lee et al., 1988; Xu et al., 1992). It is now evident that proline-
directed kinases, such as cyclin-dependent kinase 5 (Cdk5) and
mitogen-dependent protein kinase (MAPK) are the main kinases
that phosphorylate Ser residues on the KSP repeats (Jaffe et al.,
1998; Sun et al., 1996; Veeranna et al., 1998).

Phosphorylation of the amino-terminal head domain sites on
GFAP and NF proteins plays a key role in the assembly/disassembly
of IF subunits into 10 nm filaments and influences the phosphor-
ylation of sites on the carboxyl-terminal tail domain (Sihag et al.,
2007). Otherwise, the C-terminal regions of NF-H and NF-M
protrude laterally from the filament backbone when phosphory-
lated (Sihag et al., 2007) and a considerable body of evidence
supports the notion that phosphorylation of C-terminal side arms,
in particular those of NF-H, regulates NF axonal transport (Shea
and Chan, 2008).

The importance of types III and IV IFs, including GFAP and NF
subunits, on cellular function is evident from the fact that
perturbation of their function accounts for several genetically
determined protein misfolding/aggregation diseases (Arbustini
et al., 2006; Green et al., 2005). In this scenario, studies showing
increased axonal accumulation of NFs in transgenic mice or in mice
expressing mutant NF subunit have shown that aberrant
organization or assembly of NFs is sufficient to cause disease
arising from selective dysfunction and degeneration of neurons
(Beaulieu et al., 1999; Julien et al., 1995). In fact, perikaryal
accumulation/aggregation of aberrantly phosphorylated neurofi-
laments is a pathological feature of several human neurodegener-
ative diseases, such as Alzheimer’s disease, motor neuron diseases
and Parkinson’s disease (Grant and Pant, 2000; Lariviere and Julien,
2004; Nixon, 1993; Sasaki et al., 2006).

Although the tellurium (Te) element rarely occurs in the free
state in nature, metallic Te is known to be present in plant
material, particularly in members of the Allium family, such as
garlic (Larner, 1995). A number of studies have shown that trace
amounts of Te are present in body fluids, such as blood and urine
(Newman et al., 1989; Siddik and Newman, 1988). Neurotoxicity
of tellurium has been reported in the literature. In this context,
inorganic tellurium treatment was found to cause significant
impairment in retention of the spatial learning task (Widy-
Tyszkiewicz et al., 2002). But to date, no telluroproteins have
been identified in animal cells. Nowadays, two cases of toxicity
in young children from ingestion of metal-oxidizing solutions
that contained substantial concentrations of Te were reported in
the literature (Yarema and Curry, 2005). Clinical features of
acute Te toxicity include a metallic taste, nausea, blackened oral
mucosa and skin and garlic odor of the breath (Muller et al.,
1989; Taylor, 1996).

Our laboratory have obtained persuasive evidence indicating
that diphenyl ditelluride (PhTe)2 is a neurotoxic compound for rats,
disrupting the homeostasis of the cytoskeleton. In this context,
cytoskeletal proteins from different brain regions of rats constitute
important molecular targets of (PhTe)2 both in vivo and in vitro. We
reported that (PhTe)2 induced in vitro hyperphosphorylation of
GFAP, vimentin and NF subunits in hippocampus of PND 21 rats.
This action showed a significant cross-talk among signaling
pathways elicited by (PhTe)2, connecting glutamate metabotropic
cascade with activation of Ca2+ channels (Heimfarth et al., 2011).
Nonetheless, (PhTe)2 induced hypophosphorylation of GFAP and
NF subunits only in cerebral cortex (not in hippocampus) of 9- and
15-day-old animals through Ca2+-mediated mechanisms (Heim-
farth et al., 2012).

In contrast to (PhTe)2, diphenyl diselenide (PhSe)2 exhibits
neuroprotective and anti-inflammatory activities in different in

vivo and in vitro models, including against the toxicity of (PhTe)2

(Moretto et al., 2005; Funchal et al., 2006; Nogueira and Rocha,
2011). Accordingly, data from our laboratory showed that (PhSe)2

prevented the in vitro effects of (PhTe)2 on the phosphorylating
levels of IF proteins in slices of cerebral cortex of 17-day-old rats
(Funchal et al., 2006; Moretto et al., 2005). Most importantly, the in

vivo hyperphosphorylation of cortical IF proteins, induced by a
subcutaneous injection of (PheTe)2, was totally reversed by a single
injection of (PheSe)2 24 h after (PheTe)2 administration (Heimfarth
et al., 2008).

Taking into account the importance of (PhTe)2 as an interme-
diate in organic synthesis, the increasing evidence of its
neurotoxicity, the high lipophilicity and the increasing possibility
of occupational exposure to this compound, the present study
evaluated the toxicity of (PhTe)2 transmitted via maternal milk on
the homeostasis of the cytoskeleton of pups during lactation as
well as the ability of (PhSe)2 in preventing these effects induced by
low levels of exposure to (PhTe)2. The purpose of these
experiments was to define lactation as an important via of
intoxication with Te and the susceptibility of specific brain
structures to (PhTe)2 during a period of intense brain development.
In fact, during lactation intense biochemical and morphological
changes make brain more susceptible to disruption by neurotoxic
agents.

Considering the lipophylicity of this compound, we can suppose
that it is excreted in milk like other hydrophobic toxicants, for
instance, polychlorinated biphenyls (Nar et al., 2012). Data about
the metabolism of (PhTe)2 are also not available in the literature.
However, the transformation of part of (PhTe)2 to inorganic Te(IV),
which is extremely reactive and could bind to milk proteins, cannot
be ruled out. In fact, the determination of tellurium speciation in
mothers and pups will be highly needed and, consequently,
analytical methodologies must be developed to allow such type of
toxicological studies.

We have chosen to study the effects of (PhTe)2 in the cerebellum
since the development of this brain structure is mainly postnatal and
the vulnerability during this phase of rapid growth has been largely
described (Dobbing et al., 1970; Dobbing and Sands, 1973; Dobbing,
1974). Similarly, important developmental events are described in
the striatum during the first postnatal weeks (Chesselet et al., 2007;
Pérez-Navarro et al., 1993). Therefore, considering striatum and
cerebellum, elucidation of the biochemical steps leading to (PhTe)2-
induced neurotoxicity in this developmental period provide us new
clues to the mechanisms underlying the actions of this neurotoxin in
these two brain structures. Therefore, in the present report we
describe the effects of dam exposure to (PhTe)2 and/or (PhSe)2 on the
cellular signaling targeting the cytoskeleton of striatum and
cerebellum in their offspring.

2. Materials and methods

2.1. Radiochemical and compounds

[32P]Na2HPO4 was purchased from CNEN, São Paulo, Brazil.
Benzamidine, leupeptin, antipain, pepstatin, chymostatin, acryl-
amide and bis-acrylamide and anti-PKAca, anti-GFAP (G3893),



Fig. 1. Effects of (PhTe)2 administered to dams during lactation period on the gain of

weight of the dams (A) and on the body weight of their pups (B). Body weight was

obtained daily after (PhTe)2 administration. Data were analyzed by a two-way

ANOVA (2 treatments � 8 dams or 24 pups weight determinations) with the last

factor treated as a repeated measure. Data are reported as means � SEM of 8–16

animals and expressed in grams.
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anti-NF-L (N5264), anti-NF-M (N2787) and anti-NF-H (N0142)
antibodies were obtained from Sigma (St. Louis, MO, USA). The
chemiluminescence ECL kit peroxidase and the conjugated anti-
rabbit IgG (A0545) were obtained from Amersham (Oakville,
Ontario, Canada). Anti-ERK (#9102), anti-pERK (#3371), anti- anti-
SAP/JNK (#4671S), anti-pSAP/JNK (#4671), anti-actin (#4967),
anti-PKA (#4782), anti-KSP repeat (#MAB1592) antibodies were
obtained from Cell Signaling Technology (USA) and anti-pSer55NF-
L (sc12965-R) p38MAPK (sc7972), anti-phospho p38MAPK
(sc17852R), were obtained from Santa Cruz Biotechnology Inc.
The organochalcogenides (PhSe)2 and (PhTe)2 were synthesized
using the method described by Paulmier (1986) and Petragnami
(1994), respectively. Analysis of the 1H NMR and 13C NMR spectra
showed that the compound obtained presented analytical and
spectroscopic data in full agreement with their assigned struc-
tures. The purity of the compounds were assayed by high
resonance mass spectroscopy (HRMS) and was higher that
99.9%. (PhTe)2 was dissolved in dimethylsulfoxide (DMSO) just
before use. The final concentration of DMSO was adjusted to 0.1%.
Solvent controls attested that at this concentration DMSO did not
interfere with the phosphorylation measurement. All other
chemicals were of analytical grade and were purchased from
standard commercial supplier.

2.2. Animals

Adult female Wistar rats (200–250 g) and their offspring
were obtained from our breeding stock. Rats were maintained
on a 12-h light/12-h dark cycle in a constant temperature (22 8C)
colony room. On the day of birth the litter size was culled to
seven–eight pups. Litters smaller than seven pups were not
included in the experiments. Water and a 20% (w/w) protein
commercial chow were provided ad libitum. The experimental
protocol followed the ‘‘Principles of Laboratory Animal Care’’
(NIH publication 85-23, revised 1985) and was approved by the
Ethics Committee for Animal Research of the Federal University
of Rio Grande do Sul.

2.3. Exposure to diphenyl ditelluride

Animal exposure to (PhTe)2 was carried out as described by
Stangherlin et al. (2006). Briefly, sexually naive female rats were
mated with males previously tested as fertile (three females and
one male in each cage). The onset of pregnancy was confirmed by
the presence of sperm in vaginal smears (day 0 of pregnancy) and
pregnant dams were immediately housed in individual cages. At
birth, the dams received (PhTe)2 (0.01 mg/kg, experimental
group) or canola oil (1 ml/kg, control group) via subcutaneous
(s.c.) injection once daily during the first 14 days of lactational
period (sub-chronic exposure). At birth, all litters were culled to
seven-eight pups. On PND 15, 21, 30 or 45 the animals from an
entire litter were killed by decapitation without anesthesia, the
brain was removed and cerebral structures – striatum and
cerebellum – were separated. In the experiments with 30 or 45-
day-old animals, pups from entire litters were weaned on PND 21
and placed on ad libitum standard rat chow diets until sacrifice. In
the experiments designed to study prevention of (PhTe)2 effects,
animals were treated with a subcutaneous injection of (PhSe)2

(1 mg/kg body weight) 30 min before each (PhTe)2 administra-
tion. Rats were sacrificed on PND 21.

2.4. Preparation and labeling of slices

Rats were killed by decapitation, striatum and cerebellum were
dissected onto Petri dishes placed on ice and cut into 400 mm thick
slices with a McIlwain chopper.
2.5. Preincubation

Tissue slices were initially preincubated at 30 8C for 20 min in a
Krebs–Hepes medium containing 124 mM NaCl, 4 mM KCl, 1.2 mM
MgSO4, 25 mM Na–HEPES (pH 7.4), 12 mM glucose, 1 mM CaCl2,
and the following protease inhibitors: 1 mM benzamidine, 0.1 mM
leupeptin, 0.7 mM antipain, 0.7 mM pepstatin and 0.7 mM chy-
mostatin.

2.6. In vitro 32P incorporation experiments

After preincubation, the medium was changed and incubation
was carried out at 30 8C with 100 ml of the basic medium
containing 80 mCi of [32P] orthophosphate. The labeling reaction
was normally allowed to proceed for 30 min at 30 8C and stopped
with 1 ml of cold stop buffer (150 mM NaF, 5 mM, EDTA, 5 mM
EGTA, Tris–HCl 50 mM, pH 6.5), and the protease inhibitors
described above. Slices were then washed twice with stop buffer to
remove excess radioactivity.

2.7. Preparation of the high salt-Triton insoluble cytoskeletal fraction

from tissue slices

After treatment, IF-enriched cytoskeletal fractions were
obtained from striatum and cerebellum of 15-, 21-, 30- or 45-
day-old rats as described by Funchal et al. (2003). Briefly, after the
labeling reaction, slices were homogenized in 400 ml of ice-cold
high salt buffer containing 5 mM KH2PO4 (pH 7.1), 600 mM KCl,
10 mM MgCl2, 2 mM EGTA, 1 mM EDTA, 1% Triton X-100 and the
protease inhibitors described above. The homogenate was
centrifuged at 14,000 � g for 10 min at 4 8C, in Eppendorf
centrifuge, the supernatant was discarded and the pellet
homogenized with the same volume of the high salt medium.
The suspended pellet was centrifuged as described and the
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supernatant was discarded. The final Triton-insoluble IF-enriched
pellet, containing NF subunits, Vim and GFAP, was dissolved
in 1% SDS and protein concentration was determined (Lowry et al.,
1951).

2.8. Polyacrylamide gel electrophoresis (SDS-PAGE)

The cytoskeletal fraction was prepared as described above.
Equal protein concentrations were loaded onto 10% polyacryl-
amide gels and analyzed by SDS-PAGE according to the
discontinuous system of Laemmli (1970). After drying, the gels
were exposed to X-ray films (Kodak T-Mat) at �70 8C with
intensifying screens and finally the autoradiograph was obtained.
Fig. 2. Effects of (PhTe)2 administered to dams during lactation period on the in vitro phosp

of their pups. At birth, dams received (PhTe)2 (0.01 mg/kg, experimental group) or canola

days of lactational period. On PND 15, 21, 30 or 45 the animals were killed by decapitation

and the in vitro phosphorylation of IF proteins in the striatum (A, B, C, D and E) and cere

neurofilament; NF-M, middle molecular weight neurofilament subunit; NF-L, low molec

and G: 1 = control; 2 = (PhTe)2. Representative stained gel and autoradiographs of th

means � SEM of 10–12 animals and expressed as percent of control. Statistically significant 

Tukey–Kramer test are indicated: *P < 0.05.
Cytoskeletal proteins were quantified by scanning the films with a
Hewlett-Packard Scanjet 6100C scanner and determining optical
densities with an Optiquant version 02.00 software (Packard
Instrument Company). Density values were obtained for the
studied proteins.

2.9. Preparation of total protein homogenate

Tissue slices were homogenized in 100 ml of a lysis solution
containing 2 mM EDTA, 50 mM Tris–HCl, pH 6.8, 4% (w/v) SDS. For
electrophoresis analysis, samples were dissolved in 25% (v/v) of
solution containing 40% glycerol, 5% mercaptoethanol, 50 mM
Tris–HCl, pH 6.8 and boiled for 3 min.
horylation of IF proteins in striatum (A, B, C, D and E) and cerebellum (F, G, H, I and J)

 oil (1 ml/kg, control group) via subcutaneous injection once daily during the first 14

 without anesthesia, the brain was removed, striatum and cerebellum were isolated

bellum (F, G, H, I and J) of the pups were determined. NF-H, high molecular weight

ular weight neurofilament subunit and GFAP, glial fibrillary acidic protein. In Fig. 2E

e proteins studied are shown (E, striatum; J, cerebellum). Data are reported as

differences from canola oil-treated rats, as determined by one-way ANOVA followed by



Fig. 3. Effect of (PhTe)2 administered to dams during lactation on the

immunoreactivity of IFs in the cytoskeletal fraction from striatum (A) and

cerebellum (B) of pups on PND 15 and 21. The IF immunocontent was measured by

Western blot assay, as described in Section 2.10, using specific antibodies.

Representative blots are shown in (C). b-actin was used as loading control. Data are

reported as means � SEM of 10–12 animals and expressed as percent of control.

Statistically significant differences from canola oil-treated rats, as determined by one-

way ANOVA followed by Tukey–Kramer test are indicated: *P < 0.05. NF-H, High

molecular weight neurofilament subunit; NF-M, middle molecular weight

neurofilament subunit; NF-L, low molecular weight neurofilament subunit and

GFAP, glial fibrillary acidic protein.
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2.10. Western blot assay

Cytoskeletal fractions (50 mg) or homogenate (80 mg) were
separated by SDS-PAGE and transferred to nitrocellulose mem-
branes (Trans-blot SD semi-dry transfer cell, BioRad) for 1 h at 15 V
in transfer buffer (48 mM Trizma, 39 mM glycine, 20% methanol
and 0.25% SDS). The nitrocellulose membranes were washed for
10 min in Tris–buffered saline (TBS; 0.5 M NaCl, 20 mM Trizma, pH
7.5), followed by 2 h incubation in blocking solution (TBS plus 5%
defatted dried milk). After incubation, the blot was washed twice
for 5 min with TBS plus 0.05% Tween-20 (T-TBS), and then
incubated overnight at 4 8C in blocking solution containing the
following monoclonal antibodies: anti-NF-H (clone N52), diluted
1:1000, anti-NF-150 (clone NN-18) diluted 1:500, anti-NF-68
(clone NR-4) diluted 1:1000, anti-GFAP (clone G-A-5) diluted
1:400, anti-ERK diluted 1:1000, anti-pERK diluted 1:1000, anti-
SAP/JNK (clone 98F2) diluted 1:1000, anti-pSAP/JNK, diluted
1:1000, anti-p38MAPK (A-12) diluted 1:1000, anti-phospho p38,
diluted 1:1000, anti-PKAca, diluted 1:1000, anti-KSP repeats
diluted 1:1000 or anti-pSer55NF-L diluted 1:800. The blot was
then washed twice for 5 min with T-TBS and incubated for 2 h in
blocking solution containing peroxidase conjugated anti-rabbit
IgG diluted 1:2000 or peroxidase conjugated anti-mouse IgG
diluted 1:2000. The blot was washed twice again for 5 min with T-
TBS and twice for 5 min with TBS. The blot was then developed
using a chemiluminescence ECL kit. Immunoblots were quantified
by scanning the films as described above. Optical density values
were obtained for the studied proteins.

2.11. Protein determination

The protein concentration was determined by the method of
Lowry et al. (1951) using serum bovine albumin as the standard.

2.12. Statistical analysis

Data were statistically analyzed by one-way analysis of
variance (ANOVA) followed by the Tukey–Kramer multiple
comparison test when the F-test was significant. All analyses
were performed using the SPSS software program on an IBM-PC
compatible computer.

3. Results

In the present report we attempted to analyze the in vivo effects
of (PhTe)2 (0.01 mg/kg of body weight) administered to dams
during lactation on the homeostasis of the cytoskeleton of their
pups. We therefore analyzed the phosphorylating system associ-
ated with the IF proteins of striatum and cerebellum of pups on
PND 15, 21, 30 and 45. To access the systemic toxicity of the
neurotoxin, the body weight of dams and their offspring were
initially recorded during the experimental period. Results showed
that (PhTe)2 did not reduce body weight of dams during the first
14 days of lactation period, when compared with non-exposed
control dams (Fig. 1A). Also, the body weight of offspring from
(PhTe)2-injected dams was not altered until PND 45 when
compared with control pups (Fig. 1B).

Slices from striatum and cerebellum of pups were incubated
with 32P-orthophosphate and the phosphorylation pattern of
astrocyte (GFAP) as well as neuron (NF-L, NF-M and NF-H) IF
proteins recovered in the cytoskeletal fraction was evaluated
during development. As depicted in Fig. 2, we found that (PhTe)2

induced hyperphosphorylation of all the IF proteins studied in
the striatum (Fig. 2A–D) and cerebellum (Fig. 2F–I) at PND 15
and 21, recovering control values at PND 30 and 45. Protein
levels evaluated by Western blot assay showed increased
immunocontent of the GFAP, NF-L, NF-M and NF-H in the
cerebellum of 15-day-old pups (Fig. 3B), while in the striatum
(PhTe)2 failed to alter the immunocontent of the proteins
studied (Fig. 3A).

Next, we investigated the potential participation of the second
messenger-independent protein kinases, which phosphorylate
sites located on the carboxyl-terminal tail domain and second
messenger-dependent protein kinases, described to target residues
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on the amino-terminal head domains of the IF subunits (Grant and
Pant, 2000) in the (PhTe)2-induced hyperphosphorylation of the IF
proteins from striatum and cerebellum of pups.

Western blot assays using specific antibodies against total and
phosphorylated forms of MAPKs in the striatum showed activa-
tion/phosphorylation of Erk1/2 on PND 21 (Fig. 4A) and activation/
phosphorylation of JNK on PND 15 (Fig. 4B). Otherwise, p38MAPK
was not activated in the striatum of (PhTe)2 exposed pups (Fig. 4C).
Fig. 4. Effect of (PhTe)2 administered to dams during lactation on MAPK pathways of the

ERK1/2 (A, D), JNK (B, E) and p38MAPK (C, F) of striatum (A, B, C) and cerebellum (D, E, F) w

Actin was used as loading control. Data are reported as means � SEM of 10–12 animals a

treated rats, as determined by one-way ANOVA followed by Tukey–Kramer test are indica
On the other hand, the cerebellum of pups exposed to (PhTe)2

presented activated/phosphorylated Erk1/2 at PND 15 and 21
(Fig. 4D) as well as activated/phosphorylated p38MAPK on PND 21
(Fig. 4F), while JNK was not activated (Fig. 4E). In addition, Western
blot assays showed that either in the striatum or in the cerebellum
of (PhTe)2 exposed pups, the immunocontent of the catalytic
subunit of PKA (PKAca) was increased on PND 15 and 21 (Fig. 5A
and B).
ir pups on PND 15 and 21. Western blot assay of total and phosphorylated forms of

ere carried out as described in Section 2.10. Representative blots are shown (G). b-

nd expressed as percent of control. Statistically significant differences from canola oil-

ted: *P < 0.05.



Fig. 5. Effect of (PhTe)2 administered to dams during lactation on PKAc-a
immunoreactivity in the striatum (A) and cerebellum (B) of their pups on PND 15

and 21. Western blot assay of PKAc-a was carried out as described in Section 2.10.

Representative blots are shown. b-Actin was used as loading control. Data are

reported as means � SEM of 10–12 animals and expressed as percent of control.

Statistically significant differences from canola oil-treated rats, as determined by one-

way ANOVA followed by Tukey–Kramer test are indicated: *P < 0.05.
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In an attempt to identify the phosphorylating sites targeted by
the protein kinases PKA and MAPK, we assayed NF-LSer55, the
main phosphorylating site targeted by PKA on NF-L, as well as KSP
repeats, targeted by MAPKs (Heimfarth et al., 2011) on NF-M/NF-H,
respectively. Western blot assay using anti-phosphoSer55 anti-
body and anti-NF-M/NF-H KSP repeats showed that the phos-
phorylation level of NF-M/NF-H KSP repeats and NF-LSer55 was
increased in striatum (Fig. 6A and B) and cerebellum (Fig. 6C and D)
of both 15- and 21-day-old pups exposed to (PhTe)2. These findings
are in line with the evidence that activated MAPKs and PKA target
phosphorylating sites on IFs in the cerebral structures of lactating
rats whose dams were injected with (PhTe)2.

To access the ability of (PhSe)2 to prevent the action of (PhTe)2

on the phosphorylating system associated with the cytoskeleton,
dams were injected with the organic selenium (1 mg/kg body
weight) 30 min before each (PhTe)2 administration. Interestingly,
we found that (PhSe)2 prevented hyperphosphorylation of striatal
IF proteins from astrocytes and neurons, but it failed to prevent the
action of (PhTe)2 in the cerebellum, as demonstrated in 21-day-old
pups (Fig. 7A and B).

Next, we intended to identify some protein kinases involved in
the ability of (PhSe)2 to prevent the action of (PhTe)2 on the
cytoskeletal proteins. Therefore, we evaluated the effects of that
compound on MAPKs and PKAca activities. Western blot assays
using specific antibodies against total and phosphorylated forms of
Erk1/2 showed that the Se compound prevented activation of this
protein kinase either in striatum or in cerebellum of 21-day-old
pups (Fig. 8A and B). Similarly, Western blot assay using anti-
PKAca antibody showed that in the presence of (PhSe)2 the level of
the active form of the enzyme was not different from control levels
in both striatum and cerebellum of PND 21 pups (Fig. 9A and B).
Interestingly, we found that (PhSe)2 failed to prevent the
stimulatory effect of (PhTe)2 on p38MAPK in cerebellum (Fig. 10).

4. Discussion

The suckling period in the rat represents a period of intense
development of brain, particularly of neural components that will
modulate synaptogenesis. Consequently, neurotoxicants that
disrupt neural development during this critical period can cause
permanent changes in brain biochemistry and behavior (Rice and
Barone, 2000). In this context, the lactation in rats corresponds to a
period of brain development ranging from the last gestational
period to the onset of puberty in humans (Haut et al., 2004).
Although extrapolation of conclusions from animal data to humans
must be done with caution, the use of experimental animals of
various developmental ages give us important clues about the
evolution of neurotoxicant-induced brain damage and its possible
consequences in humans. Therefore in the present study we used
an experimental model of lactational intoxication with (PhTe)2 to
determine potential changes in IF phosphorylation in rat brain. We
demonstrate that exposure to (PhTe)2, via maternal milk lead to
altered homeostasis of the cytoskeleton of striatum and cerebel-
lum of PND 15 and 21 pups. In our experimental conditions we
used a low dose of (PhTe)2 (0.01 mg/kg of body weight) which did
not provoke any significant specific overt sign of maternal
intoxication, such as reduction of body weight, tremor, garlic
odor and loss of hair. Also, pups presented a normal development
and gain of body weight. However, despite the absence of an
apparent systemic toxicity, we found altered protein kinase
activities and disruption of the homeostasis of the cytoskeleton
in neural cells of both striatum and cerebellum of these pups.

Although we cannot exclude the involvement of a systemic
toxicity of (PhTe)2 on the observed IF hyperphosphorylation in
lactating pups, our previous data showing hyperphosphorylation
induced by in vitro treatment with (PhTe)2 (Heimfarth et al., 2011,
2012) strongly suggest that the effect of the neurotoxicant is
mainly related to an action on signaling mechanisms upstream of
the enzymatic activities targeting the cytoskeleton, rather than an
indirect effect in organs other than the brain.

The neurotoxic effect of this compound was evidenced by
hyperphosphorylation of IF proteins associated with the IF
enriched cytoskeletal fraction of glial cells (mainly astrocytes)
and neurons from the two brain structures studied on PND 15 and
21 pups. The treatment with (PhTe)2 provoked activation of PKA
and MAPKs such as Erk1/2, JNK and p38MAPK, targeting neuronal
cytoskeletal proteins both on NF-LSer55 and on KSP repeats.
Activation of the protein kinases is a spatiotemporally regulated
event providing an interesting insight on the differential
susceptibility of the protein kinases associated with the IF
cytoskeleton of striatum and cerebellum at different develop-
mental stages, in response to the injury induced by this
neurotoxicant via maternal milk.



Fig. 6. Effect of (PhTe)2 administered to dams during lactation on the immunocontent of phosphoNF-H KSP repeats (A and C) and phosphoNF-L Ser55 (B and D) of striatum (A

and B) and cerebellum (C and D) of their pups on PND 15 and 21. Western blot assays were carried out as described in Section 2.10. Representative blots are shown in (E). Data

are reported as means � SEM of 10–12 animals and expressed as percent of control. Statistically significant differences from canola oil-treated rats, as determined by one-way

ANOVA followed by Tukey–Kramer test are indicated: *P < 0.05.
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It is important to note that IF hyperphosphorylation was
observed on PND 15 and 21, restoring control values afterwards. It
is difficult to evaluate the molecular mechanisms leading to the
disruption of cytoskeletal homeostasis until PND 21, however they
could be related with the maturation program of these brain
structures. In fact, during the suckling period, the brain of rats
undergoes intensive morphological and biochemical modifications
(Ben-Ari and Holmes, 2006). In this context, Tepper et al. (1998)
showed that the postnatal third week is an intense period of
morphological and electrophysiological changes in the striatum.
Therefore, it is feasible that the most prominent susceptibility of
striatum until the third postnatal week be related to the
developmental events characteristic of this period. Moreover, in
the cerebellum, the susceptibility to (PhTe)2 could be related to the
postnatal appearance of granule cells (Fonnum and Lock, 2000).

In the cerebellum of 15-day-old pups, the IF hyperphosphor-
ylation was accompanied by an increased immunocontent of the
astrocyte and neuron IF proteins. This is in line with previously
reported data showing increased immunocontent of IF proteins in
cerebral cortex of 15-day-old rats injected with (PhTe)2 (0.3 mmol/
kg body weight) (Heimfarth et al., 2008).

The IF organization in eukaryotic cells depends on the
phosphorylation level of its constituent proteins which are
controlled by the activity of the cytoskeletal-associated phosphor-
ylating/dephosphorylating system (Sihag et al., 2007). In this
context, aberrant phosphorylation/dephosphorylation of cytoskel-
etal proteins in response to different stressors could be a
consequence of changes in the activity of IF-associated kinases
or phosphatases and may have serious consequences for cellular
function and structure (Loureiro et al., 2010, 2011; Pierozan et al.,
2012). This evidence is supported by the present results, showing
the action of (PhTe)2 on the protein kinase activities which, in turn,
disrupt the homeostasis of the cytoskeleton and this could be on
the basis of the neurotoxicity of this compound. Aberrant
phosphorylation of cytoskeletal proteins is thought to be related
to neuronal damage and formation of aggregates of cytoskeletal
elements in different cell compartments, which can be considered
a common characteristic of some neurodegenerative diseases
(Petzold, 2005). It is known that carboxyl-terminal phosphoryla-
tion of NF-H progressively restricts association of NF with kinesin,
the axonal anterograde motor protein, and stimulates its interac-
tion with dynein, the axonal retrograde motor protein (Motil et al.,
2006). This event could represent one of the mechanisms by which
carboxyl-terminal phosphorylation would slow NF axonal trans-
port. Consistent with this, MAPK phosphorylates NF-M and NF-H
tail domains (Chan et al., 2004; Li et al., 1999; Veeranna et al.,
1998) and alters the association of neurofilaments with motor
proteins (Yabe et al., 2000). Therefore, extensively phosphorylated
NF-M and NF-H as well as MAPK activation could interfere with NF
axonal transport and explain, at least in part, the consequent
neural dysfunction associated with this intoxication. In astrocytes,
the action of (PhTe)2 induced hyperphosphorylation of GFAP, by
PKA. It is of note that this protein kinase is implicated in the
phosphorylation of sites in the head domain of GFAP, as well as NF-
L in neurons (Pierozan et al., 2012). Phosphorylation of the head
domain of these IF subunits is known to be important for filament
assembly. Therefore, abnormal phosphorylation of the head
domain sites of these IF proteins could lead to nonphysiological
disassembly of IFs contributing to disruption of cell homeostasis
(Gill et al., 1990; Heins et al., 1993).

Also, misregulation of the phosphorylating level of the
cytoskeletal proteins in intoxicated pups could be related with



Fig. 7. Prevention of the effect of (PhTe)2 on the phosphorylation of IF proteins by

(PhSe)2 on PND 21 pups. Striatum (A); cerebellum (B). Dams received (PhSe)2 (1 mg/

kg body weight) 30 min before each (PhTe)2 or canola oil administration once daily

during the first 14 days of lactation, as described in Section 2.3. NF-H, high

molecular weight neurofilament; NF-M, middle molecular weight neurofilament

subunit; NF-L, low molecular weight neurofilament subunit and GFAP, glial

fibrillary acidic protein. Data are reported as means � SEM of 10–12 animals and

expressed as percent of control. Statistically significant differences from canola oil-

treated rats, as determined by one-way ANOVA followed by Tukey–Kramer test are

indicated: *P < 0.05.

Fig. 8. Prevention of the effect of (PhTe)2 on ERK1/2 MAPK by (PhSe)2 on PND 21

pups. Dams received (PhSe)2 (1 mg/kg body weight) 30 min before each (PhTe)2 or

canola oil administration once daily during the first 14 days of lactation, as

described in Section 2.3. The immunocontent of ERK 1/2 and phospho-ERK 1/2 were

determined by Western blot assay in striatum (A) and cerebellum (B) of their pups.

Representative blots are shown. Data are reported as means � SEM of 10–12 animals

and expressed as percent of control. Statistically significant differences from canola oil-

treated rats, as determined by one-way ANOVA followed by Tukey–Kramer test are

indicated: *P < 0.05.
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the behavioral deficits reported in (PhTe)2 injected rats (Widy-
Tyszkiewicz et al., 2002). It is always expected that the deleterious
effects of tellurium are preferentially expressed during develop-
ment, since the intense plasticity underlying the developmental
events (Xie et al., 2006; Tolias et al., 2011) are dependent on
efficient remodeling of the cytoskeleton which, in turn, is
dependent on the physiological phosphorylation of the cytoskele-
tal proteins. Improper developmental plasticity likely impedes
information processing in the brain.

It is important to emphasize that the effect of (PhTe)2 was not
mimicked by its analogous selenium compound (PhSe)2,
since diselenide per se was unable to cause alterations in the
phosphorylation level of the IF proteins. Nonetheless, exposure to
(PhTe)2 plus (PhSe)2 via maternal milk prevented activation of
Erk1/2 and PKA in the striatum on PND 21 pups, but failed to
prevent activation of p38MAPK in the cerebellum at the same
developmental stage. Considering that p38MAPK was phosphory-
lated/activated only in the cerebellum of PND 21, we are tempted
to speculate that these findings support the inability of (PhSe)2 to
prevent hyperphosphorylation of the IF proteins of this cerebral
structure.

Supporting the relevance of maternal milk as via of exposure for
the (PhTe)2 toxicity, Stangherlin et al. (2009a) reported the effect of
(PhTe)2 (0.03 mg/kg of body weight) exposure to mothers on the
cerebral oxidative status in hippocampus and striatum of their
offspring. Also, the same concentration of (PhTe)2 administered to
dams caused cognitive impairment in pups intoxicated via

maternal milk (Stangherlin et al., 2009b). Otherwise, higher doses
of (PhTe)2 (0.12 mg/kg of body weight) administered to dams
provoked reduction of body weight gain of dams and teratogenic
effects in fetuses (Stangherlin et al., 2005).

The neuroprotective effect of (PhSe)2 against the neurotoxic
effects of (PhTe)2 can be related in part to the antioxidant and anti-
inflammatory properties of the selenium compound (Nogueira and
Rocha, 2011). Furthermore, (PhSe)2 could also change the
distribution of tellurium in the dam and pups. We could also
propose that prevention of the toxic effects of (PhTe)2 could be
related to the fact that (PhSe)2 is less reactive than (PhTe)2, and
consequently could interact with target proteins without interfer-
ing with the protein function.

Also, it is important to note that our group previously reported
that young rats injected with (PhTe)2 (0.3 mmol/kg body weight)
presented hyperphosphorylation of NF subunits, GFAP and vimentin
in cerebral cortex as well as GFAP and vimentin in hippocampus,
reinforcing that one of the actions of the neurotoxicant in vivo is
focused on the signaling mechanisms upstream of the homeostasis
of the cytoskeleton of neural cells. Interestingly, these effects were
totally reversed by a single subcutaneous injection of (PhSe)2



Fig. 9. Prevention of the effect of (PhTe)2 on PKA activation by (PhSe)2 on PND 21

pups. Striatum (A); cerebellum (B). Dams received (PhSe)2 (1 mg/kg body weight)

30 min before each (PhTe)2 or canola oil administration once daily during the first

14 days of lactation, as described in Section 2.3. The immunocontent of PKAca was

determined by Western blot assay. Representative blots are shown. b-Actin was

used as loading control. Data are reported as means � SEM of 10–12 animals and

expressed as percent of control. Statistically significant differences from canola oil-

treated rats, as determined by one-way ANOVA followed by Tukey–Kramer test are

indicated: *P < 0.05.

Fig. 10. Prevention of the effect of (PhTe)2 on p38MAPK activation from cerebellum

of 21-day-old pups by (PhSe)2. Dams received (PhSe)2 (1 mg/kg body weight)

30 min before each (PhTe)2 or canola oil administration once daily during the first

14 days of lactation, as described in Section 2.3. The immunocontent of p38MAPK

and phospho-p38MAPK was determined by Western blot assay. Representative

blots are shown. Data are reported as means � SEM of 10–12 animals and expressed

as percent of control. Statistically significant differences from canola oil-treated rats, as

determined by one-way ANOVA followed by Tukey–Kramer test are indicated:

*P < 0.05.
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(5 mmol/kg body weight) (Heimfarth et al., 2008). Therefore, the
present data together with evidence in the literature are in line with
Stangherlin et al. (2006) who proposed that it seems plausible to
assume that tellurium become bioavailable to suckling rats after
exposure of their mothers to (PhTe)2.

5. Conclusions

In conclusion, (PhTe)2 injected to dams markedly activated
MAPKs and PKA taking part of the phosphorylating system
associated with the cytoskeleton in striatum and cerebellum of
their offspring, reinforcing the relevance of maternal milk as
transmission via for this neurotoxicant. This effect was spatiotem-
porally regulated, and apparently in lactating pups, the post-
traductional mechanisms regulating the cytoskeleton from
striatum and cerebellum in younger pups is more susceptible to
the action of the neurotoxicant than in older ones. In fact, suckling
rats can be considered extremely susceptible to (PhTe)2-induced
neurotoxicity, since the dose of (PhTe)2 given to dams was
extremely low. As corollary, the offspring of (PhTe)2-treated dams
is expected to be exposed to telluride levels much lower than that
given to their mothers. Regarding to the ability of selenium
compounds to protect against the tellurium toxicity toward the
phosphorylating system associated with the cytoskeletal proteins,
the present findings show a promising route to be exploited for a
possible treatment of organic tellurium poisoning.

Taking into account the relevance of the signaling mechanisms
targeting the cytoskeleton during early postnatal brain develop-
ment (Guardiola-Diaz et al., 2011; Riederer, 1992), we presume
that misregulation of the homeostasis of the cytoskeleton we
evidenced can probably contribute to the deleterious action of
(PhTe)2 on the developing and adult brain, a fact that might explain
at least in part the neurotoxicity of this compound, however these
consequences need further investigation.

Although the exposure of pregnant humans to (PhTe)2 is
unlike, the extensive use of this compound in organic synthesis
and, particularly, its high lipophilicity can determine it
deposition in adipose tissue for a long time. Consequently, an
occasional exposure to (PhTe)2 in a period before pregnancy
could lead to exposure to this compound during pregnancy and/
or lactation, depending on the it mobilization from adipose
tissue. The results presented here clearly indicate that manipu-
lation and use of (PhTe)2 must be done with caution in order to
avoid contamination. This is more important to women in the
reproductive period particularly in view of the neurotoxicity of
very low doses of (PhTe)2.
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Pérez-Navarro E, Alberch J, Marsal J. Postnatal development of functional dopamine,
opioid and tachykinin receptors that regulate acetylcholine release from rat
neostriatal slices. Effect of 6-hydroxydopamine lesion. Int J Dev Neurosci
1993;11:701–8.
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