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Cholesterol is a major regulator of a variety of ion channels but the mechanisms underlying cholesterol
sensitivity of ion channels are still poorly understood. The key question is whether cholesterol regulates ion
channels by direct binding to the channel protein or by altering the physical environment of lipid bilayer. In
this study, we provide the first direct evidence that cholesterol binds to prokaryotic Kir channels, KirBac1.1,
and that cholesterol binding is essential for its regulatory effect. Specifically, we show that cholesterol is
eluted together with the KirBac1.1 protein when separated on an affinity column and that the amount of
bound cholesterol is proportional to the amount of the protein. We also show that cholesterol binding to
KirBac1.1 is saturable with a KD of 390 μM.Moreover, there is clear competition between radioactive and non-
radioactive cholesterol for the binding site. There is no competition, however, between cholesterol and
5-Androsten 3β-17 β-diol, a sterol that we showed previously to have no effect on KirBac1.1 function. Finally,
we show that cholesterol–KirBac1.1 binding is significantly inhibited by trifluoperazine, known to inhibit
cholesterol binding to other proteins, and that inhibition of cholesterol–KirBac1.1 binding results in full
recovery of the channel activity. Collectively, results from this study indicate that cholesterol-induced
suppression of KirBac1.1 activity is mediated by direct interaction between cholesterol and the channel
protein.
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, IL 60612–7323, USA. Tel.: +1
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Published by Elsevier B.V.
1. Introduction

A variety of ion channels are regulated by changes in the level of
membrane cholesterol, a major lipid component of the plasma
membrane (reviewed by [1,2]). The mechanisms, however, of
cholesterol regulation of ion channels are still poorly understood.
The prevailing hypothesis is that changes in membrane cholesterol
regulate ion channel activity by affecting the integrity of the signaling
platforms that form within the environment of cholesterol-rich
membrane domains and by disrupting the interactions of the channels
with various signaling or regulatory molecules [3–8]. Alternatively, it
has also been suggested that ion channels may be regulated by
cholesterol as an annular lipid [9] or by cholesterol-induced changes
in the elastic properties of the membrane lipid bilayer [10,11]. In this
study, we investigate the mechanism of cholesterol regulation of a
prokaryotic inwardly-rectifying K+ channel, KirBac1.1, and provide
the first direct evidence for binding between cholesterol and a
purified ion channel.

Inwardly-rectifyingK+channels (Kir) is amajor class of K+ channels
known to play critical roles in the regulation of multiple cellular
functions includingmembrane excitability, heart rate and vascular tone
[12–14]. Kir channels are classified into seven sub-families (Kir1-7)
identified by distinct biophysical properties and sensitivities to different
regulators and differentially expressed in different tissues [13–15].
Cholesterol regulation of Kir channels was first demonstrated in our
earlier studies for Kir channels in endothelial cells [16] that express
predominantly Kir2.1 and Kir2.2 [17]. The same effect was observed
when Kir2 channels were heterologously expressed in a null cell line
[18,19]. Furthermore, Kir channels are suppressed by plasma hyper-
cholesterolemia in vivo in aortic endothelial cells and in bone-marrow
derived progenitor cells [20,21]. More recently, we have shown that
members of all the sub-families of Kir channels are sensitive to
cholesterol with a predominant effect being cholesterol-induced
suppression [22]. In terms of the mechanism, our recent studies
provided the first insights into the structural determinants of
cholesterol regulation of Kir channels by demonstrating that it critically
depends on a specific region in the C-terminus of the cytosolic domain,
the CD loop [22,23], as well as several other residues in the cytosolic
domain that form a “cholesterol sensitivity belt” around the channel
pore [24].

However, in the complex environment of the plasmamembrane, it
was not possible to rule out the possibility that cholesterol regulates
the channels through other intermediates. To resolve this difficulty,
we have turned to a bacterial homologue of Kir channels, KirBac1.1
that has high sequence homology with mammalian Kirs. Specifically,
the overall similarity between KirBac1.1 and different Kir2 channels
ranges between 47% (21% identity, 17% strong similarity, 9% weak
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similarity for Kir2.3) and 52% (20% identity, 21% strong similarity, 11%
weak similarity for Kir2.1). Indeed, in recent years, KirBac channels
have been extensively used as a structural model of mammalian Kir in
order to understand the general principles of the channel function and
the mechanisms by which the channels are regulated by different
agents [12,25,26]. The strength of this approach is that bacterial Kir
channels can be easily purified and reconstituted into liposomes of
well-defined lipid composition [27,28]. Using this system, we have
demonstrated that cholesterol suppresses purified KirBac1.1 channels
ruling out the possibility that any intermediate signaling molecules
are required to mediate cholesterol sensitivity of these channels [29].
Moreover, the homology between KirBac1.1 and Kir2 channels in the
sequence of their CD loops, the region that we have recently shown to
be critical for cholesterol sensitivity of the channels [23] is remarkably
high: the similarly between all Kir2 channels and KirBac1.1 channels
in the CD loop is 77% (22% identity, 22% strong similarity and 33%
weak similarity) further supporting the notion that KirBac1.1
represents an appropriate model to study cholesterol regulation of
Kir channels. It is important to note, however, that while mutations of
the residues in the CD loop abrogates the sensitivity of Kir2.1 channels
to cholesterol, this does not mean that cholesterol binds to this
domain directly. Furthermore, more recently, we showed that while
multiple potential binding sites can be identified in the Kir protein
using docking analysis, none of them overlap with the CD loop or with
more extended “cholesterol sensitivity belt” leading us to the
conclusion that these domains are regulatory sites rather than
cholesterol binding sites [24]. Moreover, the question of whether
cholesterol binding is required for cholesterol sensitivity of the
channels remained open.

In this study, we present first direct evidence that cholesterol
binds to purified KirBac1.1 channel protein and that cholesterol–Kir
binding is required for cholesterol suppression of the channel activity.
2. Methods

Dowex 50×4-100, Sephadex g50, N-methyl D-glucamine (NMG) and
cholesterol were obtained from Sigma Chemical Co. and 3-[(3-
Cholamidopropyl) dimethyl-ammonio]-propanesulfonate hydrate
(CHAPS) were purchased from Aldrich USA. 1-Palmitoyl-2-oleoyl-Sn-
glycero-3-[phospho-rac-(1-glycerol) (sodium salt)] (POPG) and 1-
Palmitoyl-2-oleoyl-sn-glycero-3[phosphoethanolamine) (POPE) were
obtained from Avanti lipids. Polystyrene column bodies were purchased
from Pierce Chem. Inc. USA. 86Rb+ was obtained from Perkin ELMER Life
and Analytical Sciences, USA and 3H-cholesterol was obtained from
American Radiolabeled Chemicals, Inc.
2.1. Purification of KirBac1.1 proteins

Protein purification was performed, as previously described [27].
Briefly, transformed E. coli BL21 GOLD (DE3) pLysS cells were grown in a
shaker at 37 °C until an OD600 of 1.0 was reached. Protein expression
was induced with 1 mM isopropyl-D-thiogalactopyranoside and cells
were grown for an additional 3 h at 37 °C. The cells were harvested, lysed
by a freeze–thaw cycle, and resuspended in 50 mM Tris–HCl pH 8.0,
150 mM KCl, 10 mM imidazole, 30 mM decylmaltoside and one EDTA-
free protease inhibitor cocktail tablet. The suspension was gently rocked
for 2–4 h at room temperature, and then centrifuged at 30,000 g for
45 min. The supernatant was mixed with cobalt affinity beads for 2 h.
The supernatant/bead mixture was moved to an empty column and the
beads extensively washed with 20–30 bed volumes of wash buffer
(50 mM Tris–HCl pH 8.0, 150 mM KCl, 10 mM imidazole, 5 mM
decylmaltoside). Target protein was eluted with 1–2 ml of wash buffer
containing 500 mM imidazole. This procedure yields purified KirBac1.1
proteins, as was verified using SDS-PAGE [27,29].
2.2. Cholesterol binding assay

Cholesterol binding assays were performed as described earlier
[30] with minor modification. In brief: desired concentration of 3H-
cholesterol or sterols were dried under nitrogen and then solublized
in 100 μl of buffer A (50 mM Tris, pH 7.5 containing 150 mMNaCl and
0.1% of CHAPS) then pre-incubated with KirBac1.1 (1.5 μg) at 37 °C.
After pre-incubation for 2 h, the assaymixturewas diluted to 1 ml and
loaded on a column prepacked with 0.5 ml of Ni-NTA-Agarose beads
pre-equilibrated with wash buffer (Buffer A with no CHAPS). After 1 h
of incubation, unbound cholesterol was washed seven times (1 ml
each time) with washing buffer. And finally, the bound cholesterol
was eluted in buffer A containing 0.25 M imidazole. The amount of
bound cholesterol was calculated after subtracting the respective
blank (no protein) and by converting the radioactivity of 3H-
cholesterol to cholesterol concentration using specific radioactivity
as specified by the manufacturer.

2.3. Measurement of 86Rb+ uptake

Rubidium flux assay was also performed as described earlier
[27,29]. In brief, disposable polystyrene columns (Pierce Chemical Co)
were packed with Sephadex G-50 (fine) beads (1 ml), swollen
overnight in buffer A or B (buffer A: 450 mM KCl, 10 mM HEPES,
4 mM NMG, pH 7; buffer B: 450 mM sorbitol, 10 mM HEPES, 4 mM
NMG, 50 μM KCl, pH 7.0). Purified KirBac1.1 proteins (2.5–10 μg per
mg of total lipid) were added to CHAPS (37 mM) solubilized mixture
of phosphatidylethanolamine: phosphatidylglycerol (9:1, Avanti
Polar Lipids, Inc., 10 mg total lipid per ml) in buffer A and incubated
for 30 min. Cholesterol was mixed with the other lipids. The mixture
was dried under nitrogen, then solubilized in 37 mM CHAPS before
adding the 10 mM HEPES buffer containing 450 mM KCl, 4 mM NMG
pH 7.4 andwas incubated at 37 °C for 1 h to swell the lipids. Column A
(with Sephadex beads in buffer A) was partially dehydrated by
spinning at 3000 rpm in a Hermle Z283 centrifuge. Liposomes were
formed by spinning 100 μl of detergent-solubilized lipid/protein
mixture through the partially dehydrated column A at 2500 rpm.
Extraliposomal solution was exchanged for buffer B by centrifugation
through a partially dehydrated column B. The assay was initiated by
adding 400 μl of buffer B with 1–5 μM 86Rb+. 50 μl aliquots of the
radioactive mixture were taken at indicated time points, and
extraliposomal 86Rb+ removed by passage over a 0.5 ml Dowex
cation exchange column in the NMGH+ form. Samples were mixed
with scintillation fluid and counted in a liquid scintillation counter.

2.4. Statistical analysis

Statistical analysis of the data was performed using a standard
two-sample Student's t-test assuming unequal variances of the two
data sets. Statistical significance was determined using a two-tailed
distribution assumption and was set at 5% level (pb0.05). The fitting
of the curves was done using Origin software.

3. Results

3.1. Binding of [3H]Cholesterol to purified His-KirBac1.1

Earlier studies have shown that direct cholesterol binding assays
can be performed by solubilizing cholesterol in a detergent and then
incubating cholesterol detergent mixture with purified His-tagged
proteins that allow separation of free and bound cholesterol by
affinity chromatography [30–33]. Using the same strategy, we show
here that cholesterol solubilized in CHAPS binds to KirBac1.1 protein
and is eluted with the protein from the Ni-NTA agarose affinity
column. A typical [3H]cholesterol elution profile (Fig. 1A) consists of
two clear peaks: the first peak corresponds to the unbound
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Fig. 1. [3H]-cholesterol–KirtBac1.1 elution profiles. A: Typical elution profiles of [3H]-
cholesterol with and without 1.5 μg His6-KirBac1.1 protein from Ni-NTA-agarose affinity
column. The unbound cholesterol appears in fractions 1–4 and cholesterol bound to the
KirBac1.1 protein appears in fractions 5–7 after the addition of imidazole-HCl. B: Total
amount of bound cholesterol eluted with the imidazole buffer (fractions 5–7) in the
presence of 1.5 μg His6-KirBac1.1, denaturedHis6-KirBac1.1 protein orHis6-SMD. The data
are normalized to the amount of total cholesterol eluted with KirBac1.1. Data represent
means±SE, *pb0.05, at least 3 independent experiments.
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Fig. 2. Time course of [3H]-cholesterol binding to His6-KirBac1.1. Total amount of bound
cholesterol eluted with KirBac1.1 at different time points. Each assay contained 200nM
[3H]-cholesterol and 1.5 μg of His6-KirBac1.1. The experiment was performed at 37 °C.
All data points represent means±S.E, at least 3 independent experiments.
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cholesterol that is washed off with an excess of Tris–HCl buffer until
the level of unbound cholesterol was practically zero (fractions 1–4 of
the elution profile), then the protein with the bound cholesterol is
eluted with 0.25 M imidazole (fractions 5–7). As expected, in the
absence of the protein only one peak is observed with [3H]cholesterol
found almost exclusively in the unbound fractions (lower curve).
Similarly, no binding was observed when KirBac1.1 was denatured by
boiling (Fig. 1B). However, since denaturing of KirBac1.1 interferes
with its ability to bind to the affinity column, we also tested whether
under these experimental conditions cholesterol binds to an unre-
lated His-tagged protein Sphingomyelinase D (SMD). Fig. 1B shows
that no significant binding was observed for the SMD protein.
Significant KirBac1.1 cholesterol binding was also observed when
cholesterol was dissolved in Fos-Choline 13 (not shown).

The time–course of cholesterol binding toKirBac1.1 protein is shown
in Fig. 2. As was demonstrated in earlier studies for other cholesterol-
binding proteins [30], the equilibrium for [3H]cholesterol–KirBac1.1
binding was achieved after approximately 2 h.When the exposure was
prolonged to 12 h, however, the binding was decreased, most likely
because of partial denaturation of the channel protein at 37 °C. The rest
of the experiments, therefore, were performed using CHAPS as
cholesterol delivery system and the protein was incubated with [3H]
cholesterol for 2 h to allow the system to reach an equilibrium. Fig. 3
shows that, as expected, an increase in the amount of KirBac1.1 protein
is linearly proportional to the amount of cholesterol being found in the
bound form. In this series of experiments, increasing amounts of
KirBac1.1 (0.45–3 μg) were incubated with the same amount of [3H]
cholesterol (200 nM). A series of typical [3H]cholesterol elution profiles
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obtained with the increasing amount of the protein is shown in Fig. 3A.
The total amount of [3H]cholesterol found in the bound form as a
function of protein concentration is shown in Fig. 3B.
3.2. Saturability and competition

Next, we tested whether cholesterol binding to KirBac1.1 saturates
with increasing concentration of the ligand. In the first series of these
experiments, cholesterol concentration was varied between 50 and
600 nM, a range that was shown earlier to have saturable binding for
SCAP1 protein [30] but no saturation was observed in this range for
KirBac1.1 protein (not shown). However, at higher cholesterol
concentrations (100 μM–1.3 mM), cholesterol–KirBac1.1 dose response
was clearly saturable with the KD value of 390 μM, as is apparent both
from the saturation isotherm of cholesterol binding and from the
linearization of the data shown as Scatchard plot (Fig. 4A). We also
estimated the stoichiometry between cholesterol and the protein but
the molar ratio of cholesterol to the protein was unrealistically high
(60:1 mol/mol). The most likely explanation for this observation is that
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determinations.
since cholesterol has to be dissolved in a detergent, it interacts with a
protein as micelle rather than as an individual molecule and it is
impossible to completely get rid of any traceamounts of thedetergent in
the system.The estimatedmolar ratio, therefore, is unlikely to reflect the
true molar ratio between cholesterol and the protein. Furthermore, the
value of the Kdmay also be overestimated because of the sameproblem.
These experiments were performed by adding tracer amounts of [3H]
cholesterol to unlabeled cholesterol in 1:1000 ratio. In all the
experiments, the measurements were performed with and without
KirBac1.1 proteins for all cholesterol concentrations and the blank
values have been subtracted. Furthermore, we also tested whether any
detectable amounts of phospholipids could be found in the purified
protein preparation used in these experiments using gas–liquid
chromatography but no phospholipids were detected (not shown).
The high KD value suggests that most likely cholesterol interacts with
the channel protein by weak hydrophobic association.

Furthermore, Fig. 4B shows that unlabeled cholesterol competes
with [3H]cholesterol for binding to KirBac1.1 protein. In these
experiments, KirBac1.1 protein was incubated with a constant amount
of [3H]cholesterol (200nM) and increasing amounts of unlabeled
cholesterol. As expected, the amount [3H]cholesterol–KirBac1.1 binding
decreases significantly and goes practically to zero, as the concentration
of unlabeled cholesterol increases. It was surprising, however, that
relatively low levels of cold cholesterol compete efficiently with
radioactive cholesterol even though there supposed to be sufficient
binding sites available. This observation, however, was very robust and
consistent through all the experiments. One possibility would be that
the Kd is overestimated, as suggested above. To examine the sterol
specificity of this effect, we tested three sterols: epicholesterol, a chiral
isomer of cholesterol thatwas also shown to suppress KirBac1.1 activity
but to a lesser degree than cholesterol and two other sterols, 5-
Androsten 3β-17β-diol and 25-hydroxycholesterol that do not have
significant effect on KirBac1.1 activity [29]. As described above, all the
experiments were performed with blank controls. These experiments
show that there is significant difference in the ability of the three sterols
to compete with cholesterol for KirBac1.1 binding: epicholesterol was
similar to cholesterol, 25-hydroxycholesterolwas a significantlyweaker
competitor and 5-Androsten 3β-17β-diol did not compete with
cholesterol at all. Since epicholesterol efficiently competed with
cholesterol for the channel binding, it suggests that epicholesterol also
binds to the KirBac1.1 proteins, which is not completely unexpected
since epicholesterolwas shownearlier to suppress channel activity even
though to a lesser degree than cholesterol. A weaker competition of 25-
hydroxycholesterol suggests that it may also bind to the channels to
some degree but clearly significantly less than cholesterol. A lack of any
competition between [3H]cholesterol and 5-Androsten 3β-17β-diol
indicates that the latter does not bind to KirBac1.1 protein.

3.3. Direct binding is required for cholesterol-induced suppression of
KirBac1.1 channels

To determinewhether inhibition of cholesterol binding abrogates its
inhibitory effect on KirBac1.1 function, we used trifluoperazine, a
cationic amphiphilic compound that was shown to inhibit cholesterol
binding to SCAP1 [30]. Here we show that, similarly to its effect on
cholesterol–SCAP1 binding, trifluoperazine also significantly inhibits
cholesterol binding to KirBac1.1 channels in a dose dependent way
(Fig. 5A). However, the inhibitory effect of trifluoperazine on choles-
terol–KirBac1.1 binding was observed at significantly higher concen-
trations than its effect on cholesterol–SCAP1 binding. Specifically,
whereas the inhibitory effect on KirBac1.1 cholesterol binding was
observed only at concentrations of at least 100 μM, significant inhibition
of cholesterol–SCAP1 binding was observed already at 5 μM [30]. It is
interesting tonote, though, that affinityof KirBac1.1 to cholesterol is also
significantly lower than that of SCAP1. Thus, there is a correlation
between the affinity of these proteins to cholesterol and to the inhibitor.
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Finally, we tested whether addition of trifluoperazine results in
recovery of KirBac1.1 function from cholesterol-induced suppression.
To address this question, we compared the activity of KirBac1.1
channels in the presence and in the absence of the inhibitor using a
functional assay described in our previous studies [27–29]. Briefly,
KirBac1.1 protein is incorporated into POPE: POPG (3:1) liposomes
and the activity of the channels is quantified by the flux of 86Rb+ from
the external medium into the liposomes through the channel pore.
Liposomes that have no protein are used as controls. In a typical
experiment, liposomes with and without the protein are exposed to
86Rb+ in the external medium at time 0 and the uptake is monitored
over time. Maximal uptake is measured after the addition of a K+

ionophore, valinomycin. Fig. 5B shows that KirBac1.1-mediated 86Rb+

flux was not affected by trifluoperazine alone indicating that the
channels are fully functional. Most importantly, we show here that
addition of trifluoperazine (600 μM) that significantly inhibits
cholesterol–KirBac1.1 binding fully abrogates its inhibitory effect on
the channel activity.
4. Discussion

A key question in elucidating the mechanisms that underlie
cholesterol-induced regulation of ion channels is to determine
whether the effect of cholesterol is mediated by direct binding to
the channel proteins or whether it is mediated by changing the
physical properties of the lipid bilayer. Earlier studies suggested that
cholesterol regulates Kir channels through specific sterol–protein
interactions based on differential effects of an array of sterols on the
channel function [16,29,34] but direct binding of cholesterol to the
channel has not been demonstrated. In this study, we show that
cholesterol binds to purified KirBac1.1 channels and that cholesterol–
KirBac1.1 binding is essential for the inhibitory effect of cholesterol on
channel activity. Thus, this study provides the first evidence of the
direct interaction between cholesterol and an ion channel protein.

Cholesterol binding has been demonstrated so far for only a handful
of proteins, such as SCAP1 and NPC1 [30,31,33]. The main constraint in
establishing an in vitro cholesterol binding essay, particularly for
membrane proteins, is delivering cholesterol to the protein in a
solubilized form without disrupting the binding ability of the protein
[30]. Indeed, most major organic solvents, including ethanol and
chloroform, were shown to interfere with specific sterol–protein
interactions of membrane proteins [30]. This problem was resolved
for Scap1 and NPC1 proteins by solubilizing cholesterol in detergent
micelles of either Fos-Choline 13 or Nonidet P-40 [30–32]. In this study,
we used the same approach but our first choice of the detergent was
CHAPS because we have already shown previously that cholesterol can
be efficiently solubilized in 0.1% CHAPS and that at this concentration
CHAPS does not affect neither KirBac1.1 function nor its sensitivity to
cholesterol when incorporated into liposomes [29]. Here, we show that
when solubilized in CHAPS, cholesterol binds to KirBac1.1 protein in a
highly reproducible way indicating that the binding properties of
KirBac1.1 are retained. Furthermore, multiple lines of evidence indicate
that cholesterol interacts with KirBac1.1 directly: (i) the binding is
clearly saturable; (ii) non-radioactive cholesterol efficiently competes
with [3H]cholesterol for binding,whereas 5-Androsten 3β-17β-diol and
25-hydroxycholesterol, two sterols that do not affect KirBac1.1 function
[29] show no or only partial competition with [3H]cholesterol for
binding; (iii) finally, cholesterol–KirBac1.1 binding can be abrogated by
the same drug that inhibits cholesterol binding to SCAP1 [30]. Taken
together, these observations provide strong evidence for direct
cholesterol–KirBac1.1 binding.

We also show here, however, that there is no significant difference
between cholesterol and epicholesterol in their ability to compete for
KirBac1.1 indicating that both cholesterol and epicholesterol bind to
the channel protein. Interestingly, Radhakrishnan et al. [30] also
showed that epicholesterol can bind to a sterol-sensing domain of
SCAP, a protein that controls the transport and proteolytic activation
of sterol regulatory element, even though the affinity of epicholesterol
to SCAP was lower than that of cholesterol. Furthermore, our previous
studies showed that epicholesterol also inhibits KirBac channels
although to a lesser degree than cholesterol [29]. Our observations
raise an important question about the interpretation of differential
effects of cholesterol chiral analogs on the channel activity. The most
common interpretation is that if chiral analogs of cholesterol have
differential effects on protein function, it means that cholesterol binds
to the protein whereas its analog does not. However, in most cases,
this conclusion is not tested directly because the binding data is
unavailable. Our current observations suggest an alternative possi-
bility that chiral analogs may bind to the channel protein but fail to
elicit the inhibitory effect. This conclusion is fully consistent with our
earlier studies showing that partial substitution of cholesterol with
epicholesterol enhanced Kir currents in endothelial cells [16], leading
us to propose a hypothesis that epicholesterol competes with
cholesterol for a binding site in Kir2 channel protein but does not
induce an inhibitory effect. Similarly, we propose here that while both
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cholesterol and epicholesterol bind to KirBac1.1 protein, only
cholesterol induces channel conformation that decreases channel
activity. In terms of the nature of cholesterol–KirBac1.1 interaction,
our observations suggest that cholesterol interacts with the channels
by hydrophobic associations that are not sensitive to the position of
the hydroxyl group which constitutes the difference between
cholesterol and epicholesterol. More specifically, we propose that
multiple cholesterol molecules interact with the hydrophobic regions
of the channel to suppress channel activity. More studies are needed
to elucidate the mechanism of this effect.

Most importantly, a full recovery of KirBac1.1 function from
cholesterol-induced inhibition by TFP, a drug that inhibits cholesterol–
KirBac1.1 binding, indicates that cholesterol binding to the KirBac1.1
protein is essential for the inhibitory effect. Furthermore, while it is
known that TFP is a highly lipophilic drug that easily interacts with
membrane lipids [35–37], our observations show that addition of TFP to
liposomes containing no cholesterol has no effect on KirBac1.1 activity.
We conclude, therefore, that the effect of TFP is to prevent cholesterol
from binding and suppressing KirBac1.1 channels. These observations
are also fully consistent with our previous studies showing that there is
no correlation between the effects of different sterols on KirBac1.1
function and changes in membrane fluidity, as assayed by fluorescence
anisotropy of two membrane dyes, DPH and TMA-DPH [29]. In the
earlier study, however, itwas not possible to exclude the possibility that
the general estimate of global membrane fluidity may not reflect local
changes in lipid packing, membrane elastic properties or in bilayer
width, which might be more important determinants of ion channel
function thanmembrane fluidity [10,11,38]. This concern is alleviated in
the present study.

Finally, high sequence similarity between KirBac1.1 and mam-
malian Kir channels suggests that KirBac1.1 may be used as a model
to study the mechanisms that regulate eukaryotic Kirs. Indeed, we
have previously demonstrated that KirBac1.1 channels exhibit many
of the same key properties as eukaryotic Kir channels, including
sensitivity to a regulatory phospholipid phosphatidylinositol 4,5-
biphosphate and cholesterol [27–29,39]. The current observations
provide the basis for identifying cholesterol binding sites of Kir
channels in the future studies.
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