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A B S T R A C T

Fractographic analyses are performed in two fixed dental prosthetic reconstructions made

of ZrO2 frameworks covered by a veneering ceramic that fractured during function in the

mouth. Processing histories, material properties, recovered broken parts and replicas of

the fracture surface were used, along with fractographic markings to determine fracture

origins and cause of failure. A shell-like fracture pattern was found common for both cases,

although different factors were identified to be involved in each fracture event. Internal

thermal residual stresses and occlusal surface defects from localized contact overloading

were found to precipitate the fracture in Case 1, whereas extreme occlusal surface damage

from sliding chewing contact was determinant in the fracture of Case 2. The interface

between the veneering ceramic and the ZrO2 framework was unaffected by the fractures.

� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Until the end of the last century most fixed dental prosthetic reconstructions were based on metal alloys, which could be
sinter-covered with a veneering ceramic (usually a silicate glass reinforced with feldspar, leucite or other crystals). That
scenario changed with the ingress of glass-infiltrated alumina ceramics in the late 90s for use as framework, and later with
the possibility to machine these out of green bodies of zirconium dioxide (ZrO2), alumina-ZrO2-glass composites or pure
alumina. Due to the reputation of ZrO2 as a high-toughness high-strength ceramic, it absorbs today a large fraction of
treatment demands requiring short- and long-span structural reinforcement, with high clinical success rates regarding
frameworks [1].

The down side to ZrO2-based dental constructs was first recognized in 2006–2007, when results from the earliest clinical
trials reported on the high fracture incidences of the overlying veneering ceramic after only a few months in service [2,3]. The
numbers were high compared to conventional metal–ceramic systems [4], with more severe clinical consequences often
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leading to complete restoration replacement [5]. Thorough fractographic analysis of dental ceramic fracture cases are rare
[5–9], and for zirconia almost inexistent [5].

First speculations implicated the quality of the interface between the framework and the veneering material. Today, the
current scientific opinion supports the theory that thermal-induced residual stresses are responsible for the acceleration of
fracture in veneered-ZrO2 prostheses. Such stresses also develop in metal–ceramic structures, for which bench-cooling
protocols were made routine in order to put the veneering material under compression. Inadvertently, laboratories kept the
same practice for all-ceramic systems, disregarding the low thermal conductivity of ceramic materials and its implications.
Thereby, temperature differences during cooling can reach 100–140 8C within the veneer thickness when ZrO2 is used as the
substrate, in contrast to 20–90 8C for metal–ceramic systems [6]. A residual stress gradient then develops during
solidification due to the inability of the glass to relax at the pace of the rapid cooling rate. To minimize residual stress build-
up, current recommendations advocate slow-cooling protocols and the use of veneering materials with matching
Fig. 1. (A) Palatal view of the clinical situation of Case 1. A fracture of the veneer material of the veneer-ZrO2 crown of element 17 is outlined in red. A whitish

area on the fracture surface indicates that the underlying ZrO2 framework might have been exposed. A crack can be seen running through the palatal surface

connecting the to the cervical margin of the crown. (B) Palatal view of the gold-sputtered replica from an in situ impression (A). With a lateral illumination

reflections allow for the convex fracture surface to be distinguished. A crack (A) can be seen running from broken surface and connecting with the palatal

(cervical) margin. Images (A) and (B) are oriented as in reality, following the position of teeth in the upper arch. The following SEM images are presented in

particular orientations for a better understanding of the fractographic analysis.
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coefficients of thermal expansion (CTE) to the ZrO2 framework. Unfortunately, dental ceramic manufacturers were slow in
adjusting the CTEs of their products, which derived from the ones used for veneering metals. Today the market still offers
material combinations presenting CTE mismatches as high as 2 ppm/8C.

The purpose of this research paper is to describe two veneering ceramic fractures over ZrO2 framework dental prostheses,
which resulted in convex fracture surfaces and shell-like veneer fragments. Background data was gathered regarding
material specifications and processing histories. Full fractographic analyses were performed in retrieved fragments and/or
replicas taken in situ in order to determine the fracture origins and possible causes of failure.

2. Background

2.1. Case 1: single crown

The clinical appearance of the first case is shown in Fig. 1a. Both shown elements are single veneered-ZrO2 crowns from
the first and second upper right molars (FDI numbering system: #16, #17). In crown #17, the fracture of the veneering
ceramic can be observed involving the palatal cusp and extending towards the approximal mesial ridge. The fragment was
not recovered. A crack is visible emanating from the palatal periphery of the fracture surface and running towards the
cervical margin. On the fractured surface the whitish appearance is the underlying zirconia framework, but SEM is needed to
determine if zirconia is exposed. The convexity of the fracture surface is better seen from the optical images of the gold-
sputtered replica (Fig. 1b).

Information received from the dentist dates the installation of the prosthetic work to February 13, 2007, approx. 32
months before the fracture event (October 20, 2009). The ceramic crown had been luted to the abutment tooth with a glass-
ionomer cement (Ketac Cem, 3M ESPE, Seefeld, Germany), and the antagonist element consisted of an implant-supported all-
ceramic single crown, which had been in service during the whole period. Consultation of the manufacturing laboratory
archives revealed that the core material was a ZrO2 (Yttria-stabilized Tetragonal Zirconia Polycrystals, 3Y-TZP) machined in a
presintered state from a Kavo ZS Disc (Kavo, Biberach, Germany) having a CTE of 10.5 ppm/8C. The veneering ceramic was
leucite-based (Creation Zi-CT, Willi Geller, Meiningen, Austria) having a CTE of 8.6 ppm/8C, and applied using the layering
technique. The furnace used to sinter the veneering ceramic was an Austromat 3001 (Dekema, Freilassing, Germany) which
has a bottom-up lift system. No special slow-cooling protocol was employed during the final sintering step.

At the dentist session, the teeth were clean with air-water spray, dried and an impression was taken from the semi-arch
with a polyvinylsiloxane material (Panasil, Kettenbach, Germany). The impression was poured with a high-accuracy
polyurethan material (AlphaDie Top, Schütz Dental, Germany) for the production of replicas [7]. After 24 h the replicas were
analyzed under a stereomicroscope (STEMI SV6, Zeiss, Germany), sputter-coated and observed in a scanning electron
microscope (SEM) (Leitz ISI SR50, Akashi, Japan).
Fig. 2. (A) SEM image of the occlusal view of the fractured crown. Boxes B and C are magnifications. Defect 1 located at the periphery of the occlusal surface

and the palatal wall represents the fracture origin (C). Hackle lines (B) indicate that the fracture propagated from the left to the right. Concentric arrest lines

on the opposite side reveal that the failure origin is located in the region of the Defect 1. A magnification of this area (C) reveals that the arrest lines are

connected to Defect 1, the failure origin. An arrested thin crack can be observed on the base of Defect 1. Nearby this site, reshaping markings and substantial

surface damage from abrasive occlusal wear are seen. ‘‘dcp’’ stands for ‘‘direction of crack propagation’’.
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2.2. Case 2: 5-unit bridge

The second case deals also with a shell-like fracture of the veneering ceramic of the last abutment tooth (#25) of a ZrO2-
based 5-unit Fixed Dental Prosthesis (FDP) (i.e. bridge) that extended from the left first incisor (#21) to the second premolar
(#25) (elements #22 and #24 are pontics). Fig. 5 shows the clinical situation of crown #25, where the entire veneering
ceramic of the buccal cusp has been lost, along with additional fracture of the ceramic from the buccal surface up to the
cervical margin of the restoration.

Retrieval of information from the dentist and the manufacturing laboratory revealed that the FDP consisted of a 3Y-TZP
framework (Lava Frame; CTE = 10.5 ppm/8C, 3 M ESPE, Seefeld, Germany) layered with a leucite-based veneering ceramic
from the same manufacturer (Lava Ceram) with close matching CTE (10.2 ppm/8C). It had been luted adhesively with a self-
adhesive methacrylate-based resin cement (RelyX Unicem, 3M ESPE) on October 1, 2006, having as antagonist a lithium
disilicate ceramic crown (e.max CAD, Ivoclar-Vivadent, Liechtenstein) cemented adhesively over a natural tooth abutment.
The fracture occurred after 24 months of intra-oral use (Dec. 8, 2008) during normal bite function, as reported by the patient,
who recovered the fragment and brought it to the dentist the following day. At that session an impression was taken with a
polyvinylsiloxane (Express Penta, 3M ESPE) for the production of replicas (Alpha Die Top) before removal of the entire bridge
for replacement. Fragment and replica were analyzed in the light microscope and in the SEM.

3. Fractographic analysis

3.1. Case 1: single crown

The fracture surface provided markings that were used to trace back the fracture origin, from initiation, propagation to
the final break off. Wake hackle (Fig. 2) emanating from pores or microstructures of the veneering ceramic are indicative of
Fig. 3. (A) SEM image of the palatal view of the crown. (B) A magnification of Defect 1 shows that the crack at its base has arrested in the direction of the

fracture surface but also propagated in the opposite direction from the edge of Defect 1 towards the cervical margin of the crown. Water droplets emerging

from this crack are seen. These droplets could be replicated due to the low polymerization rate of the polyvinylsiloxane impression material. A line scan of

the crack origin was made using a optical profilometer and measured to 158 mm in depth.
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the direction of crack propagation and were used to locate the origin of the fracture at the midline of the palatal surface
where two major surface damages (Defects 1 and 2) were found (Figs. 2 and 3). Working backwards from the occlusal and
approximal fracture borders, a zone of concentric arrest lines (Fig. 2) delimitates an elliptical region connected to Defect 1
which was the site of fracture origin. The fracture propagated along the occlusal surface along the black arrows (Fig. 2). A
compression curl (e.g. a compression lip) visible on the occlusal palato-mesial surface (Fig. 2a) is a result of flexural stress and
indicates the end of the fracture event. Adjacent to Defect 1, distinctive signs of contact abrasion can be distinguished, which
suggests that the fracture origin was circumscribed within a zone of active occlusal contact loading. A scan of Defect 1 was
made using a non-contact white-light optical profilometer (CyberSCAN CT 100, Cyber Technologies, Ingolstadt, Germany)
and measured to have a depth of 158 mm (Fig. 3). At the deepest region of Defect 1 a thin crack is observed (Fig. 3), which
extended tortuously along the palatal surface (Fig. 4), where it got wider (10 mm) towards the cervical region of the crown.
There, a surface scan revealed a 20 mm surface step (unevenness). The presence of fracture markings, pores and
microstructural features over the whole fracture surface indicates that no exposure of the ZrO2 framework had taken place,
and a thin layer of the veneering material remained bonded to its surface.
Fig. 4. SEM image of the crack on the palatal surface. The crack connects the origin to the cervical margin. The tortuous crack path suggests that the crack

originally grew from inside-out at the palatal side. Towards the cervical margin the crack generates a vertical surface step (unevenness) measured to 20 mm

height and a horizontal width opening of 10 mm.



Fig. 5. (A) Buccal view of the clinical condition of Case 2 in occlusion. The fixed prosthesis in the maxilla is a veneered-ZrO2 5-unit bridge with elements 21,

23 and 25 as abutments, and elements 22 and 24 as pontics (unsupported elements). The fracture occurred in element 25 and involved its buccal cusp and

the entire buccal surface reaching the cervical margin. (B) Magnification of elements 24 and 25. The impressions were taken to produce a replica of the

fracture surface.
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3.2. Case 2: 5-unit bridge (FDP)

The fracture origin was simple to determine from the semi-circular arrest lines that converged to a contact area at the
occlusal surface of the recovered fragment (Fig. 6). In this occlusal surface sector a great deal of abrasion is evident (Figs. 7
and 8) showing surface microcracking, with substantial ceramic loss and cracking around the origin (Figs. 7c,d and 8b).
Sintering defects were also found on the abraded surface (Fig. 7). At the distal edge of the fragment, partial cone cracks were
found on the abraded occlusal surface (Fig. 7), a distinct feature of sliding contact damage. A cross-section of the fragment
(not shown) revealed numerous competing cracks extending up to 200 mm from the surface into the bulk of the veneer. The
array of arrest lines that developed close to the origin and later after the crack went past the occlusal buccal outer surface of
the ZrO2 framework, could be indicative of fatigue fracture. The arrest lines that developed inwards from the origin point
showed a change in orientation (from the normal loading direction) at around �1.5 mm in depth (arrest lines (1) in Figs. 6
Fig. 6. (A) The recovered fragment was gold-sputtered for SEM analysis. Arrest lines and hackle lines can be distinguished on the fracture surface. Inset

shows a lateral view of the fragment under the stereomicroscope before sputtering. (B) SEM image of the fracture surface of the fragment. Two sets of arrest

lines are outlined in white. Arrest lines (1) developed under the fracture origin towards the veneering ceramic bulk and show the change in crack orientation

due to an oblique loading component. Arrest lines (2) were formed as the crack grew around the convexity of the ZrO2 framework structure. ‘‘dcp’’ stands for

‘‘direction of crack propagation’’.



Fig. 7. (A) SEM image of the occlusal view of the veneering ceramic recovered fragment. On the occlusal surface a large area of abrasive contact wear covers

the surface. On the right-hand side of the image cracking of the edge and partial cone cracks are visible as part of a contact damage that included sliding and

friction. (B) Magnification of an area of the abraded occlusal surface, showing severe wear damage and a sintering defect. (C and D) View from the fracture

surface where the fracture origin is located. A large surface contact damage defect is associated with the fracture origin. ‘‘dcp’’ stands for ‘‘direction of crack

propagation’’.
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and 8a,b), indicating an oblique occlusal loading component. Wake hackle formed from pores often connected subsequent
arrest lines (Fig. 8). These markings suggest that a thin layer of the veneering ceramic remained attached to the ZrO2 surface
as seen from the replicated surface (Fig. 8a).

4. Causes of failure and discussion

The prostheses in Cases 1 and 2 are veneered-ZrO2 systems showing a similar fractographic pattern (shell-like type),
although the cause of failure was different for each of them. In Case 1, a veneering material with extremely low CTE was used
to cover the ZrO2 framework, creating a high CTE mismatch of 1.9 ppm/8C. A rough estimation of the residual stresses sv that
develop in the veneering layer after cooling can be calculated from the general thermal stress equation if a uniform
solidification across the veneering ceramic layer is assumed:

sv ¼
Ev

1 � nv
ðav � aiÞDT (1)

where Ev is the elastic modulus of the veneering ceramic (65 GPa), nv its Poisson’s ratio (0.21) [8], av and ai the CTEs of
respectively the veneering ceramic and the ZrO2 framework, and DT is the temperature difference between the glass
transition temperature Tg and room temperature (25 8C) for both veneering ceramics: 600 8C for Creation Zi-CT (Case 1) and
565 8C for Lava Ceram (Case 2). The above values of E and n are typical for dental veneering ceramic materials and were



Fig. 8. (A) SEM image of the occlusal side of the replica, showing the two sets of arrest lines that can be matched to the fragment in (B). A substantial area of

abrasion is also present on the occlusal surface of the replica. (B) Occlusal and fracture surface view of the fragment. (C and D) Magnifications show the

Arrest lines (1) in detail, where wake hackle and other fractographic markings can be seen.
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assumed to be the same for both Cases 1 and 2. Values of sv give thus �89 MPa and �13 MPa for the veneering ceramic layers
in Case 1 and in Case 2, respectively. More accurate solutions for flat geometries that consider thickness ratio, deflections and
bending effects can be found elsewhere [9–11], but require values of the curvature of the substrate. Once the cooling across
the veneer thickness is not uniform and a great temperature gradient takes place, such compressive stresses are restricted to
the interface region, the last region of the veneer to solidify. This zone resists crack propagation and remains attached to the
framework, as observed in Cases 1 and 2. Because the sum of stresses in the system must be zero, tensile stresses are
generated and redistributed to the framework and to the surface half of the veneering ceramic adjacent to the zone under
compression. These tensile stresses are somewhat proportional to the above-calculated values, that is, higher for high CTE
mismatch combinations. Fast-cooling (employed for the work in Case 1, but not known for Case 2) just aggravates this
scenario [12]. This phenomenon has been observed in a previous study [13] and was implicated in the acceleration of
fracture of veneered-ZrO2 crowns under cyclic contact loading [14], leading also to shell-like fractures in vitro [15].

Residual stresses may have accelerated the fracture in Case 1, but the cause of fracture initiation was the deep sharp
surface damage (Defect 1) located within an occlusal contact area. The concentration of wear damage around the fracture
origin and absent in other regions also point to a possible overloading of the fractured cusp. Using the measured crack size a

(158 mm), and the fracture toughness Kc value (�1.0 MPa Hm for a typical dental veneering ceramic), the stress at fracture sf

can be estimated using the basic fracture mechanics relation:

s f ¼
Kc

Y
ffiffiffi

a
p (2)

where Y is a geometrical factor mainly dependent on the geometry of the crack (here, due to the uncertainty regarding the
shape of the initial crack we took an arbitrary value of 1.3, a similar factor for semi-circular surface cracks [16]). sf gives
61 MPa, which is lower than the average strength of most dental veneering ceramics (70–100 MPa) [8,17], suggesting the
presence of tensile stresses in it. The 20 mm surface step on the palatal surface (Fig. 4) was caused by strain release due to
cracking and is a reinforcing indication of the presence of high thermal stresses in the veneer layer in Case 1. It is uncertain if
this crack was the primary crack event, but its unusual tortuous path on the palatal side (Fig. 4) suggests that the crack first
grew inward from Defect 1 and subsequently outward to the surface (towards the cervical margin). Other aggravating factors
such as the implant-supported crown serving as antagonist may have expedited the fracture due to the absence of the
damping effect of the natural periodontal ligament.

In Case 2, a pre-existent defect was not identified (although sintering defects were found on the surface), and the critical
crack leading to failure was a result of extensive surface contact damage and high contact pressure. On the occlusal surface
the wear pattern and the partial cone cracks indicate that severe sliding contact loading took place. This gives rise to a
tangential loading component and shear stresses acting at the advancing crack. According to the dentist, the patient
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presented severe bruxism habits, a parafunction condition that leads to the patient grinding its teeth for long periods under
high muscular tension and pressure forces exercised. Grinding has a large sliding component that creates friction, which
magnifies tensile contact stresses. Surface damage was present all over the patient’s remaining teeth and prosthetic works.
In this Case, the CTE mismatch was low, so no weakening of the veneer material took place, and failure was due to accelerated
fatigue contact loading.

5. Conclusions and recommendations

From the analyses of both cases we can conclude that the pre-existent surface defect in association with localized contact
overloading and possible thermal residual stresses were found to precipitate the fracture in Case 1, whereas extreme occlusal
surface damage from sliding chewing contact was determinant in the fracture of Case 2. From that we can draw some clinical
considerations and recommendations:
(1) F
or veneered-ZrO2 dental prosthetic restorations, the matching of CTEs is essential in order to minimize detrimental
stresses in the veneering ceramic;
(2) S
low-cooling protocols should be employed during the last firing to prevent escalation of thermal stresses;

(3) B
efore installation, dental prosthetic works should be judiciously inspected under magnification for surface defects

created during manufacturing;

(4) O
cclusal contacts have to be carefully adjusted intra-orally in order to avoid possible overloading or contacts near the

outer periphery from where loss due to chipping of the veneering ceramic can easily occur;

(5) D
espite the high-strength ZrO2 framework, the brittle overlaying glass–ceramic is subject to surface damage when

exposed to contact loads. Extreme loading scenarios will accelerate surface damage and failure of the material;

(6) B
ruxism should be considered as a contra-indication for veneered all-ceramic fixed dental prostheses.
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