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Abstract Bonded composite cutting tools has been introduced to enhance surface finish and reduce

cutting forces. The main objective of the current study is to assess factors that influence the thermal

stresses developed in adhesively bonded carbide tip face milling cutters using numerical analysis.

Both plain, copper filled adhesives, dry and coolant factors are considered in current study. It is

found that thermal stresses developed in bonded carbide tip face milling cutter decrease tremen-

dously with applying cutting coolant and little effect was reported when adding copper filler to

adhesive.
ª 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

The majority of modern cutting tools are complex structures
comprising a hard, wear resistant cutting inserts which are sup-
ported by a shank or holder generally manufactured from low

or medium alloy steel. The insert, with which the actual cutting
operation takes place, is generally kept as small as possible in
order to reduce the cost and may be made in a variety of hard

materials, commonly cemented carbide at different grades.
Brazing and mechanical clamping are the common mounting
methods on the tool holder (Schwartz, 1979; Al-Samhan,
78657.
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2004; Alsamhan and Darwish, 2003; Darwish and Al-Samhan,
2004a; Darwish and Al-Samhan, 2004b; Darwish and Davies,

1989a; Darwish and Davies, 1989b; Kilik et al., 1990; Davies
and Darwish, 1991; Darwish et al., 1991; Maekawa et al.,
1996; Darwish, 2000a; Darwish, 2000b; Alsamhan and

Darwish, 2005; Darwish and S.M., 2004).
When cemented carbide inserts are brazed, micro-fissures

are often developed due to the high temperature of the brazing

operation. The proportion of rejects in brazing due to cracks in
cemented carbide inserts often reach 10–20% (Darwish and
Davies, 1989a). Mechanical clamped cutting inserts does not
always ensure a contact stiffness that is sufficiently high to pre-

vent vibrations usually developed in cutting operation. When
tool manufacturing technology is converted from brazed to
bonding, the advantages expected are reduction in scrapped in-

serts due to the lower temperature necessary during assembly,
hence, less skilled labor is required and also improved tool
quality and surface finish due to the high damping of adhesive

layers (Darwish and Davies, 1989a; Darwish, 2000a; Darwish,
2000b).

The main problem with bonded tools is the heat flow in tool
holder which is restrained due to low thermal conductivity of

the adhesive material. Different researchers investigate the
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Figure 1 General layout of the bonded carbide tip face milling cutter with general overall dimensions.
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heat flow in bonded tools and suggest different solution for
this problem. Darwish and Davies (1989b) investigate the heat

flow through bonded and brazed single point metal cutting
tools when turning a cylinder pipe using experimental (thermo-
Figure 2 Experimental set-up used to measure the chip-tool

interface temperature and cutting forces of the bonded carbide-tip

face milling cutter (Darwish and Alsamha, 2004).
couple and infra-red camera) and numerical techniques. High
temperature concentration were reported at the tool-chip inter-

face for bonded cutting tools when compared with brazed
tools, they recommend that cutting fluids should always be
used with bonded tools to increase the heat dissipation. Later

Davies and Darwish (1991) study different techniques to in-
crease the heat dissipation of the bonded single point cutting
tools by using adhesive with atomized copper powder fillers

to increase the thermal conductivity of adhesives. They found
that the effect of coolant on the temperature distribution is
more pronounced than the effect of copper powder mixed with
adhesive. They reported that the cutting fluids always to be

used with bonded tools whether or not a metallic powder is
mixed with the adhesive.

The concentrated high temperature of bonded-cutting tool

may result in destabilization in the micro-structure of ma-
chined workpieces, especially if the workpiece material is sen-
sitive to temperature changes like Duralumin material.

Darwish, Niaz and Ghaneya (Darwish et al., 1991), machined
Duralumin with both bonded and brazed single point tools.
The correlation between cutting temperature, microhardness

and photomicrographs reveals that phase stability of Duralu-
min is always maintained with bonded cutting tools. Finally,
they reported that bonded tools are safe for machining temper-
ature-sensitive heat treatable alloys.



Thermal-stresses in carbide-tip bonded face milling cutters 87
Machining of difficult-to-cut metals with bonded tools like

nickel-based supperalloy is studied by Darwish (2000b), his
work demonstrates the favorable effect of bonded tools on sur-
face roughness when compared with mechanically clamped
tools.

The aim of the present study is to assess the effect of differ-
ent factors that improve the heat dissipation in bonded carbide
tip of a face milling cutter on thermal stresses (thermo-

mechanical stresses) developed during cutting. A standard
one inch face milling cutter with two adhesively bonded trian-
gle inserts, type TPG321, is modeled as bonded carbide tip face

cutter, where the finite-element technique used in current
study. The investigated factors covers, using two type of adhe-
sive materials, plain adhesive and copper filled adhesive mate-
Figure 3 Assign thermal boundary and constrain conditions on

Table 1 Material constituents and properties of bonded carbide tip

Cutter Components Material Density

(kg/m3 · 10�6)

Specific heat

(J/kg �C)
The

con

(W

Cutter Shank

and holder

Steel 7870 458.48 35.3

Cutting edge

(TPG321)

Carbide 19,300 458.48 110

Adhesive Plain type 1300 1667.2 1.06

Adhesive Copper power

fill 30%

1500 1667.2 1.81
rial. Dry cutting and cutting with coolant factors are also

included in current study.

2. Solid model development

The art of the finite-element analysis lies in the representation
of a real structure and with its loading conditions, after
importing the solid CAD system, by a mathematical model,

which can be analyzed by numerical software in computer
hardware. One factor affecting the result accuracy is the simi-
larity between geometry of the real structure and the loading

conditions considered in the finite-element model. In the cur-
rent study, CATIA Ver. 5 software was used to develop the so-
lid model of the composite carbide tip bonded face milling
the FE model of the bonded carbide tip face milling cutter.

s face milling cutter.

rmal

ductivity

/m �C)

Thermal expansion

coefficient

(m/m �C · 10�6)

Young’s

modulus

(Pa)

Poisson’s

ratio

Yield strength

(N/mm2)

12.1 2e11 0.3 282

.0 4.0 6.3e11 0.22 21,000

60.0 2.5e9 0.38 103.6

60.0 2.5e9 0.38 103.6
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cutter. Fig. 1, shows the actual photo of the milling cutter with

R8 shank having three cutting edges. This type of cutters
manufactured with one, two, three up to five cutting edges
having same TPG321 carbide inserts, furthermore, milling cut-
ter diameter increases with increase of number of cutting

edges.
In the current study, CAD model was developed for face

milling cutter with two bonded cutting inserts (see Fig. 1).

The figure shows also the exploded drawing for the bonded
milling cutter assembly. As illustrated in the figure, the bonded
face milling cutter consists of two cutting edges with insert type

TPG321, two adhesive layers 0.25 mm thickness each (0.5 mm
total thickness) and milling cutter shank holder namely R8
shank type. It is worth noting that this type of milling cutters

are standard type face milling cutter with mechanical clamped
inserts, where modification was introduced in the CAD model
after removing the mechanical clamping unit. Fig. 1, shows the
general overall dimensions of the bonded milling cutter. As

illustrated in the figure, the cutter has overall all length of
136.55 mm (5–3/80 0) by 25.4 mm (100) diameter. Furthermore,
the two triangle cutting inserts (TPG321) are mounted with
Figure 4 Finite-element mesh generation for the FE m
90� setting angle (see Fig. 2) this enable to mill straight right

angle cutting edge including facing operation.

3. Finite-element model development and assigned boundary

conditions

Finite-element (FE) mesh considered in the current study is
developed using GID pre-processing program (GID, 2001) after

importing the solid model developed by CATIA software (CA-
TIA). The finite-element (FE) computational was carried out
using Tochnog FE program (Tochnog, 2001). Finally, post-

processing the FE results was carried using GID program
(GID, 2001).

The GID program is widely used for generating data files

and results visualization in a number of linear and non-linear
problems in thermal and structure engineering mechanics,
using finite-element method. Tochnog (Tochnog, 2001) is ex-

plicit-implicit FE program that can be used in the analysis of
structure, thermal, elastic or elastic-plastic engineering prob-
lems. Tochnog FE program and GID program are both run
under Linux operating system.
Fine mesh modeled 
for carbide tip and 
adhesive layer as 
well as carbide tip 
set. 

odel of the bonded carbide tip face milling cutter.



Figure 5 FE results monitored along adhesive mid-layer and through the two bonded lines having carbide edge setting angles of 90 and

150 degrees, and along bonding line through carbide thickness direction.

Figure 6 Temperature distribution along the bonding line have 90 degrees carbide tip setting angle (for dry cutting, cutting with coolant

and cutting with coolant and copper powder fill adhesive).
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In the beginning, solid model is imported from CATIA and

then a data file of the FE model is generated by the GID pro-
gram and next completed using a text editor. Followed, Toch-
nog FE module is called and executed using the generated data
file. Finally visualization of the FE results performed using the

GID program through the output files obtained by the Toch-
nog FE program.

The following assumptions and boundary conditions were

considered throughout the developed FE model:

� The problem is three-dimensions FE model.

� The adhesive layer is isotropic, i.e. stresses on the micro-
scale, such as those caused by flaws is the adhesive, were
neglected (in case of incorporation of adhesive layer) (Dar-

wish and Davies, 1989b).
Figure 7 Temperature distribution along the bonding line have 150 d

and cutting with coolant and with copper powder fill adhesive.

Figure 8 Temperature distribution along the bonding line through in

plain and copper powder filled adhesives).
� The far end of the tool shank is assumed to be at room tem-

perature.
� Elastic–plastic FE analysis considered in current study.

During the data file development, GID program demand
material properties for the composite bonded face milling cut-
ter constituents. Table 1, shows the material constituents and
properties of the bonded carbide tip face milling cutter as-

signed to FE model. This cover tool holder and shank, cutting
inserts, plain adhesive and a copper powder fill adhesive (30%)
(Davies and Darwish, 1991).

The tool-chip temperature was taken to be 313 �C based on
actual measurements by the author (Darwish and Alsamha,
2004) when face milling mild steel block of (80 · 40 · 25 mm)

on vertical milling machine. Where temperature measurement
is conducted using infra-red camera instruments (Omega mod-
egrees carbide tip setting angle for dry cutting, cutting with coolant

sert thickness direction (for dry cutting, cutting with coolant using
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el) mounted on milling bed. The cutting conditions associated

with the measured temperature were as follows: a cutting speed
of 1.32 m/s, feed rate of 1.66 mm/s and depth of cut 2 mm.
Also, cutting forces was reported during the experiment work
and it was found 1200 N was the cutting force. Fig. 2 shows

the block diagram of the utilized experimental set-up. For
more accurate FE results, it is decided to consider actual tem-
perature of 500 �C in FE model development.

Because there is a significant dependence of the physical
properties of water (taken as a coolant in this work) on tem-
perature, the bonded milling cutter was considered to be three

different surfaces and the heat transfer coefficients was calcu-
lated separately (force convection model) for each surface as
a function of its mean temperature (Davies and Darwish,

1991). For example, a solid temperature of 500 �C was as-
signed on the insert tip of area 1.66 mm (feed) by 2 mm
Figure 10 Thermal stress distributions along bonding line have 90 de

and cutting with coolant and copper powder fill adhesive.

Figure 9 Von-Misses and normal stress distributions along mil-bon

operation.
(depth), see Fig. 3. Fig. 3 shows also the assigned thermal

and constrain boundary conditions on the FE model of the
bonded insert face milling cutter.

A tetrahedral element type is used in the FE mesh genera-
tion where 144355 nodes and 100283 elements were used.

Fig. 4 shows the developed FE mesh for the face milling cutter
model. As illustrated in the figure, fine elements were assigned
in the adhesive layers and in the carbide tip set.
4. Finite-element results and discussion

4.1. Finite-element results for the thermal FE model

It was decided to monitor the FE results along the three edges
of the carbide tip located toward the cutting insert nose, fur-
grees carbide tip setting angle for dry cutting, cutting with coolant

ding line for 90 degree carbide tip setting angle for dry-cutting
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thermore, the monitored FE results are considered along the

mid-layer of the bonded lines. These three edges are shown
in Fig. 5, the first edge has 90 degree setting angle that provides
side milling cut, while the second edge has 150 degree setting
angle that produce face milling cut. Finally, the third edge

along insert thickness direction.
Figs. 6–8 show the predicted temperature distributions

along mid-layer of adhesive for 90 degrees setting angle, 150

degree setting angle and through insert thickness direction.
Furthermore, these FE results were reported for both cases,
dry cut and cutting with coolant operations (plain and copper

powered filled adhesives).
Figure 11 Thermal stress distributions along bonding line have 150 d

and cutting with coolant with copper powder fill adhesive.

Figure 12 Thermal stress distributions along bonding line for dry c

powder fill adhesive and along carbide tip thickness direction.
From Figs. 6–8, it is clearly observed that cutting with cool-

ant decreases the predicted temperature by 33–40%. Further-
more, little variation in temperate reduction were reported
for copper power fill adhesive compare to the plain adhesive.

4.2. Predicted thermal stresses in the carbide tip bonded face
cutter FE model

Fig. 9 shows the predicted Von-Miss and normal stress distri-
butions for dry-cut and along the mid-layer of adhesive at the
carbide edge having 90-degree setting angle. It is clearly ob-

served that normal stresses are lower when compared with
egrees carbide tip setting angle for dry cutting, cutting with coolant

utting, cutting with coolant and cutting with coolant with copper



Figure 13 Predicted peak thermal stresses through the 90 and 150 degree setting angle edges, and through the insert thickness direction

(for dry cutting, cutting with coolant with and without copper powder filled adhesives).
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Von-Misses stress. For this reason, it is decided rely on the
Von-Misses stress as thermal stress for our further study.

Figs. 10–12, show the predicted thermal stress distributions
along the mid-layer of adhesive of carbide edge having 90, 150

degrees insert setting angles and along insert edge-thickness,
respectively. These three figures, are shown for dry cutting
and cutting with coolant (plain and copper filled adhesives).

From three figures, it is clearly observed the thermal stresses
are concentrated near the cutting edges and in the area of
tool-chip interface. Fig. 13, shows the plot of peak thermal

stresses developed at the mid-layer of adhesive through 90,
150 degree carbide edge setting angles and through the carbide
thickness edge direction, see Fig. 5. From Fig. 13, it is observed
the peak thermal stress is more higher along insert thickness

direction compare to former cases. This can be attributed to
the location that it is more closer to the tool-chip interface
area. Also, it is observed the thermal stress is tremendously de-

creases when applying coolant. For example, the peak thermal
stress decreases from 60.9 MPA to 39 MPa (35%) when cool-
ant was applied, see Fig. 13.

The effect of adding copper powder as a filler on the adhe-
sive material also shown in Figs. 10–13. From these figures It is
can be observed, for both plain adhesive and copper powder

filled adhesive, a decrease in thermal stresses is reported com-
pare to dry cutting cooperation. However, a little variation on
thermal stress is reported with the case of copper powder filled
adhesives. This results also confirmed with the results obtained

by Davies and Darwish (1991).

5. Conclusions

� Thermal stresses are concentrated near the chip-tool inter-

face area for the case of bonded tools.
� The thermal stresses developed in bonded carbide tip face
milling cutter decrease tremendously with applying cutting
coolant.

� The thermal stresses developed in bonded carbide tip face
milling cutter are effected by cutting conditions e.g. dry cut-
ting and cutting with coolant.
� Cutting fluid is important factor in dissipating the devel-
oped heat during cutting in case of bonding tools.
� Adding copper powder fill in adhesive layer has a lower

effect factor in dissipating the developed heat during
bonded tool cutting compared to plain adhesive.
� In current case, the predicted thermal stresses in adhesive
material are within elastic range. The stress may becomes

residual when adding cutting force to the FE model.
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