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Abstract

Fibrous surface structures can improve the adhesion of objects to other surfaces. Animals, such as flies and geckos, take advan-

tage of this principle by developing ‘‘hairy’’ contact structures which ensure controlled and repeatable adhesion and detachment.

Mathematical models for fiber adhesion predict pronounced dependencies of contact performance on the geometry and the elastic

properties of the fibers. In this paper the limits of such contacts imposed by fiber strength, fiber condensation, compliance, and ideal

contact strength are modeled for spherical contact tips. Based on this, we introduce the concept of ‘‘adhesion design maps’’ which

visualize the predicted mechanical behavior. The maps are useful for understanding biological systems and for guiding experimen-

tation to achieve optimum artificial contacts.
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1. Introduction

Molecular adhesion of solid objects mediated by van

der Waals forces plays an important role in everyday life

and in several branches of technology. Examples are the

adhesion of sticky tapes to smooth surfaces [1], the grip
of racing car tires on the race course surface [2], silicon

wafer bonding [3] or the undesirable coagulation of

micro-objects in the packaging industry (referred to as

‘‘stiction’’) [4]. Common to all these cases is the forma-

tion of mechanical contact without chemical bonding

but with a defined minimum stress required for the sep-

aration of the objects. Making and breaking of the con-

tact is usually reversible and does not lead to permanent
changes in the objects involved. Nature makes use of

this phenomenon for rapidly releasable mechanical con-

tacts to unpredictable surfaces with random properties.
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A case in point is the adhesion of various animals, e.g.

beetles, flies, spiders, and geckos, to surfaces during

locomotion [5–11]. Recently, experimental evidence has

been found [12] that the adhesion of geckos relies indeed

on van der Waals forces. In beetles, flies and spiders,

these ‘‘molecular’’ forces at least contribute strongly
(but are reinforced by additional effects, such as the

secretion of oily fluids) [13–16]. The promise of transfer-

ring new insight gained on natural adhesion systems to

artificial contact devices has spurred much research

activity in this field in recent years [12,17–24].

In the hypothetical case of ideally matching, smooth

surfaces, van der Waals bonds can create separation

stresses (or ‘‘pull-off stresses’’) of appreciable magni-
tude. This theoretical contact strength is easily estimated

as

rth �
c
b

ð1Þ

Here c = c1 + c2 � c12 is the work of adhesion where c1
and c2 are the specific surface energies of the two bodies

in contact and c12 is the specific energy of the interface
ess under CC BY-NC-ND license. 
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Table 1

Symbols

Aapp apparent contact area (m2)

C numerical factor (–)

B length of surface interaction (m)

E Young�s modulus (N/m2)

E* reduced modulus (N/m2)

Eeff effective Young�s modulus (N/m2)

F area fraction of fibers (–)

L fiber length (m)

Pc pull-off force of a single contact (N)

R fiber radius (m)

Y numerical factor (–)

c work of adhesion (N/m)

c 0 work of adhesion between contact tips (N/m)

c1, c2 specific surface energies (N/m)

D half the inter-fiber distance (m)

k fiber aspect ratio (–)

m Poisson�s ratio (–)

rapp apparent contact strength (N/m2)

rc contact strength (N/m2)

rf axial fiber stress (N/m2)

rth theoretical contact strength (N/m)

Fig. 1. Scanning electron micrograph of the attachment system of the

fly Calliphora vicina.
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formed between them; b is the characteristic length of

surface interaction (see also Table 1 for symbols used

throughout the text). By choosing typical values (c =

50mJ/m2 and b = 2 · 10�10m), the theoretical pull-off

stress is found to be of order 200MPa. A similar value
is obtained by setting rth = E/10 where E is Young�s
modulus typical of van der Waals bonding (E � 2GPa)

[25].

Such high adhesion stresses are never encountered in

real systems, mainly for two reasons: the contacting sur-

faces never match perfectly, which lowers the area of true

contact and requires accommodating elastic deformation

of one or both solids [26,27]; and the contact between a
body of finite dimensions and an infinite half-space sets

up stress singularities at the edges which reduce the

pull-off force [28]. Applying conventional contact

mechanics, it has recently been shown that in such a

‘‘non-ideal’’ situation the pull-off force can be increased

by the principle of contact splitting [12,19,29]: many

small contacts are superior to one large contact of the

same total area of apparent contact. The shape of the
contact elements (called ‘‘tips’’ below) also influences

contact strength [21]. In addition, it is advantageous to

compensate for the roughness of the substrate by creat-

ing contact structures with high compliance, e.g. by plac-

ing the contact tips at the ends of fibers with high aspect

ratios. In the course of evolution, nature has repeatedly

developed such ‘‘hairy’’ attachment structures (Fig. 1).

Their size reflects in a quantitative way the principle of
contact splitting as heavier animals from different line-

ages display progressively finer contact tips [19].

Largely through ‘‘bio-inspiration’’ and trial and

error, artificial contact systems have recently been de-

signed in the laboratory [12,18,22,23,30,31]. However,
a thorough understanding of the adhesion of fiber struc-

tures is required for a more rational approach. Several

recent papers have treated different theoretical aspects

of the contact problem [20–22,24,32]. While these views

do not yet fully converge, it is apparent from these stud-

ies that the performance of an adhesive contact depends
critically on a multitude of parameters; the most impor-

tant are size and shape of the contact tips and the elastic

properties of the fibers and their tips. In this paper we

introduce the concept of an ‘‘adhesion design map’’

which delineates the mechanical limits of fiber contacts

according to our current understanding. The maps will

be discussed with reference to biological contact devices.

It will be proposed that they can be used as convenient
guidelines for improving contact strength in artificial

adhesion systems.
2. Mechanical limits of fiber contacts

Consider an adhesive structure consisting of parallel

fibers with radius R, length L and inter-fiber distance
2D (Fig. 2). The tip shape is assumed to be hemispherical

with radius R. The material properties, i.e. Young�s
modulus E of the fibers and their tips, are identical

and homogeneous. The substrate is ideally flat and has

infinite stiffness. We assume further that the Johnson–

Kendall–Roberts (JKR) theory [26] can be applied

[21]. The force Pc for pull-off of a single spherical tip

is then given by:

P c ¼ 3
2
pcR ð2Þ

The apparent contact strength rapp is defined as the pull-

off force divided by the apparent contact area Aapp:

rapp ¼
P c

Aapp

¼ 3f c
2R

ð3Þ



Fig. 2. Schematic of a fibrous attachment system in side view (a) and

in plan view (b). The fibers are cylindrical with length L, radius R, and

interfiber distance 2D. The aspect ratio k is defined as (L/2R). The

apparent contact area of a single fiber is shown as a shaded square.
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Here, f is the area fraction of fibers, which is given by

f ¼ R2p
Aapp

ð4Þ

Note that the contact strength scales inversely with tip

radius in accordance with the principle of contact split-

ting. However, progressive miniaturization of the con-

tact tips is limited by other mechanisms, as will now

be shown.
2.1. The limit of fiber fracture

For sufficiently fine contacts, the strength of the sys-

tem will eventually be determined by fracture of the

fibers. The axial stress rf in a fiber is limited by its the-

oretical fracture strength rf
th such that:

rf ¼
P c

R2p
6 rf

th ð5Þ

Inserting Eq. (2) gives a lower limit for the useful

fiber radius R:

R P
3c
2rf

th

� 15c
E

ð6Þ

where we have approximated the theoretical fracture

strength by E/10.

Thinner fibers than given by Eq. (6) result in fiber

fracture rather than contact detachment. As this failure

mechanism depends on the actual contact area, the

apparent fracture strength is then no longer affected by

contact splitting. It is therefore impractical to refine
the fibers beyond the radius given by Eq. (6).
2.2. The limit of ideal contact strength

The contact strength cannot exceed the ideal contact

strength transmitted through the actual contact area at

the instant of tensile instability. This condition can be

expressed as

rc ¼
P c

a2
cp

6 rth ð7Þ

where rc is the contact strength and rth, the ideal

strength of van der Waals bonds as given in Eq. (1).
The contact radius ac at the instant of pull-off (at

P = Pc) can be calculated from the JKR theory [26]:

ac ¼
9pcR2

8E�

� �1=3

ð8Þ

where E* is the reduced modulus of the fiber/substrate

system with the Young�s moduli E and Es and Poisson�s
numbers m and ms:

1

E� ¼
1� m2

E
þ 1� m2s

Es

ð9Þ

For an infinitely stiff substrate, as assumed here, the sec-

ond term in this equation vanishes. Combining Eqs. (2)

and (7)–(9) and solving for R yields:

R P
b3E2

Y c2
ð10Þ

where Y is a numerical factor

Y ¼ 3p2

8
ð1� m2Þ2 ð11Þ

which amounts to 3.06 (for m = 0.3).

Eq. (10) sets a lower bound on the fiber radius R,

which corresponds to an upper bound for Young�s mod-

ulus E. Although the modulus does not enter in the JKR

pull-off stress (Eq. (2)), it affects the limit of ideal contact
strength in the following way: stiff contact tips exhibit,

according to Eq. (8), smaller contacts at pull-off, which

leads to lower ideal pull-off forces.

For future reference it is convenient to express the

condition for constant apparent contact strength in the

regime outside that given by Eq. (10). Combining Eqs.

(1), (3), (4), (7) and (8) results in:

rapp ¼
f c5=3

4bE2=3R2=3
½9pð1� m2Þ
2=3 ð12Þ

Compared to Eq. (3), the beneficial effect of reducing the

tip radius R is now reduced. Note also that in this re-

gime the Young�s modulus E enters in the apparent con-

tact strength.

2.3. The limit of fiber condensation

When the adhesive forces between the contact tips

become stronger than the forces required to bend the



Fig. 3. Fiber condensation: (a) scanning electron micrograph of the hairy attachment system of the spider Aphonopelma seemanii showing

condensation of the contact tips; (b) schematic of fiber condensation.
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fibers, the fibers will tend to condensate as shown in Fig.

3. Several authors [20,22,33] have formulated a conden-

sation criterion. We adopt the approach of Sitti and

Fearing [22], who modeled the fibers as elastic beams
whose tips are attracted by a force F. The force required

to bend a fiber to a tip displacement D is

F ¼ 3pR4ED

4L3
ð13Þ

Equating this expression to the JKR pull-off force for

two spherical tips [26] results in the following criterion

for avoiding condensation:

R P
8c0hðf Þ1=2

E
k3 ð14Þ

where k is the aspect ratio of a fiber defined as (L/2R).

Here c 0 denotes the work of adhesion between two fiber

tips, which may differ numerically from c. The function

h(f) is given by:

1

hðf Þ ¼
ffiffiffiffiffiffi
p
4f

r
� 1

� �2

ð15Þ

The condition Eq. (14) not only contains the fiber radius

R, but additionally its aspect ratio k. It places an upper

bound on the aspect ratio to prevent fiber condensation,

which is detrimental as it counteracts the benefits of con-

tact splitting and impairs the adaptability of the contact

structure.

2.4. The limit of contact adaptability

In order to enable adhesion to rough surfaces, a

minimum elastic adaptability of the fiber structure is re-

quired. In addition, the energetics of contact formation
requires that the elastic strain energy stored in the struc-

ture during contact be smaller than the work of adhe-

sion [20]. These requirements can be met by setting an

upper limit on the ‘‘effective’’ modulus of the fiber struc-
ture. To avoid the buckling instability, we consider a

fiber array that meets the substrate at an angle and is

therefore stressed in a bending mode. We use Persson�s
result [20] for the effective modulus, which prescribes

an upper bound on the fiber modulus:

E < Eeff

4p
Cf

k2 ð16Þ

Here Eeff is an assumed value for the structural modulus

to ensure contact adaptability. C is a geometrical factor

of the order 10 [20]. Limiting the effective modulus to a

specific value, e.g. Eeff = 1MPa, places either an upper
bound on Young�s modulus of the fiber material or a

lower bound on the aspect ratio k. The choice of Eeff

is somewhat arbitrary and will depend e.g. on the rough-

ness of the substrate.
3. Introduction of adhesion design maps

The mathematical descriptions of the limiting condi-

tions for fibrous adhesion structures will now be visual-

ized graphically. For this purpose we introduce the

concept of an ‘‘adhesion design map’’. We first describe

the construction and the characteristics of these maps

and study their sensitivity to changes in the input

parameters. Then, the potential of the maps for predict-

ing the parameters of optimum contact structures will be
outlined. Finally, the design maps will be compared with

typical data for biological systems.



Fig. 5. Adhesion map with the same parameters as in Fig. 4 but

including the criteria of condensation (cyan lines) and adaptability

(green lines). The triangular target area delineates the allowed

parameter space for an adhesive structure with an aspect ratio k = 10

and a required apparent contact strength of at least 1kPa.
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3.1. Construction of the maps

The most fundamental fiber properties are their ra-

dius R and their Young�s modulus E. We propose a dou-

ble-logarithmic plot in R–E space. Values for other

input parameters, such as the work of adhesion c and
the fiber area fraction f, will be preset at specific values

for a given map. Fig. 4 displays a first map which illus-

trates the principle. Two limiting conditions are plotted

as heavy lines: the onset of fiber fracture corresponds to

a line of slope �1 (following Eq. (6)), whereas the crite-

rion of ideal contact strength follows a slope of 2 (Eq.

(10)). Contours of constant apparent contact strength

are shown as fine lines. According to the principle of
contact splitting (Eq. (3)), these lines conform to

increasing contact strength with decreasing tip radius.

The arrow marks the direction of increasing apparent

contact strength. Below the ‘‘fiber fracture’’ condition,

however, the contours are deflected vertically, because

here contact performance can no longer be improved

by contact splitting. Similarly, the contacts are weak-

ened below the ‘‘ideal contact strength’’ limit, which re-
sults in a reduced slope of the contours (slope �1

following Eq. (12)). As no or only a diminished gain is

predicted from contact sizes below the heavy lines in

Fig. 4, these regions should be avoided in the design

of artificial systems.

A full adhesion design map which includes all four

limiting conditions is depicted in Fig. 5. The ‘‘condensa-

tion’’ limit results in lines with the same slope as the
‘‘fiber fracture’’ limit; its absolute position however

shifts with the aspect ratio k and area fraction f (Eq.
Fig. 4. Partial adhesion design map for spherical tip shape. The

following parameters are assumed: c = 0.05J/m2, f = 10%, b = 0.2nm.

The criteria for fiber fracture (blue line) and ideal contact strength (red

line) are indicated. Thin lines are contours of equal apparent contact

strength. The arrow indicates the direction of increasing apparent

contact strength.
(14)). The ‘‘adaptability’’ criterion produces vertical
cut-offs also related to both parameters (Eq. (16)). Ful-

filling all of these requirements, including a minimum

apparent contact strength, results typically in a triangu-

lar target area (shaded in Fig. 5). The position of this tri-

angle shifts with the value of the aspect ratio (chosen

here as k = 10).

Figs. 6 and 7 show the dependence of the design maps

on the work of adhesion c and the area fraction f. A
reduction in work of adhesion (Fig. 6a) shifts the ‘‘fiber

fracture’’ criterion, the ‘‘ideal contact’’ strength and the

‘‘condensation criterion’’ to lower moduli. As the

‘‘adaptability’’ criterion remains unchanged the triangu-

lar target area shifts to smaller fiber radii with decreas-

ing work of adhesion. The converse is true for higher

work of adhesion (Fig. 6b).

Changing the area fraction f influences the ‘‘conden-
sation’’ and the ‘‘adaptability criterion’’ and the con-

tours of apparent contact strength. The ‘‘fiber

fracture’’ condition and the ‘‘ideal contact strength’’ re-

main unchanged (Fig. 7a and b). With decreasing area

fraction, the target triangle shifts to higher moduli and

smaller fiber radii. In Fig. 7b it has even transgressed

the ‘‘ideal contact strength’’ limit.
3.2. Prediction of optimum adhesive contacts

The adhesion design maps narrow down the useful

range of Young�s moduli for the fibers and tips to pro-

duce optimum contact. If only the two criteria ‘‘fiber

fracture’’ and ‘‘ideal contact strength’’ were to be con-

sidered (as in Fig. 4), the Young�s modulus should come



Fig. 6. Same as Fig. 5 but varying the work of adhesion: (a) c = 0.01J/

m2 and (b) c = 0.1J/m2. The broken line is a ‘‘conode’’ which links loci

of optimum contact strength for different fiber aspect ratios.

Fig. 7. Same as Fig. 5 but varying the area fraction of fibers: (a)

f = 25% and (b) f = 1%.
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to lie in the cusp formed by the two heavy lines, i.e. at

their intersection. This condition is expressed as:

bE ¼ ð15Y Þ1=3c
b

� 3:5
c
b

ð17Þ

It is interesting that this critical modulus is of the same

order of magnitude as the ideal contact strength given in

Eq. (1). Because of the comparatively weak van der
Waals bonding at the contact, this means that materials

for contact tips should also exhibit low modulus typical

of van der Waals-dominated or elastomeric (entropy-

dominated) materials.

Eq. (17) prescribes a critical tip radius given by

bR ¼ 152=3b

Y 2=3
� 4:2b ð18Þ

Using Eq. (3) and substituting Eq. (1) would then give

an apparent contact strength of
r̂app ¼
3Y 1=3

2� 152=3

� �
f c
b

� 0:35frth ð19Þ

For high area fractions f, an appreciable fraction of the

theoretical strength would therefore be expected. These

considerations are however in most cases hypothetical,

as the ‘‘condensation’’ and ‘‘adaptability’’ criteria will

intervene.
Among the two criteria ‘‘fiber strength’’ or ‘‘conden-

sation’’ (which show up as parallel lines in the dia-

grams), it is usually the ‘‘condensation’’ limit which is

the more stringent requirement. Comparing the tip radii

given in Eqs. (6) and (14) leads to the following condi-

tion for the condensation limit to lie above the fiber

strength limit:

k >
15c
8c0

� �1=3
1

hðf Þ1=6
ð20Þ
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For reasonable assumptions, this lower bound on the as-

pect ratio is usually fulfilled. Hence the condensation

limit will in most cases control how fine the fibers can

be made. This conclusion would however not be valid

if the strength of the fiber material were not equal to

the theoretical fracture strength as was assumed in the
derivation of Eq. (6).

We can now attempt to predict the requirements for

the ultimate fiber adhesion structure. Within the trian-

gular target areas shown in Figs. 5–7, the apparent con-

tact strength is maximized at their lower apex. When

this triangle is plotted for different aspect ratios k, these
apices come to lie on a straight line with slope 1/2. We

call this line, which is shown in Figs. 6–8, the ‘‘conode’’.
The ultimate limit for the apparent contact strength is

located at the intersection of the conode with the line

marking the ‘‘fiber fracture’’ limit. This ideal locus is

marked with a red circle in Fig. 8. Its position can be

mathematically found by requiring the criteria Eqs.

(6), (14) and (16) to coincide. This leads to the following

prediction for the optimum fiber tip radius:

Ropt ¼
C � 151=3

p
c1=3c02=3fhðf Þ1=3

Eeff

� 7:8c1=3c02=3fhðf Þ1=3

Eeff

ð21Þ

under the condition that this value does not lie below bR
given by Eq. (18). The corresponding Young�s modulus

is given by:

Eopt ¼
152=3p
C

c
c0

� �2=3 Eeff

fhðf Þ1=3
� 1:9

c
c0

� �2=3 Eeff

fhðf Þ1=3

ð22Þ
Fig. 8. Same as Fig. 5, displaying the line which connects the optimum

loci for different aspect ratios k (‘‘conode’’, thick black line). The red

circle indicates the optimum solution.
under the condition that this value does not exceed bE
given by Eq. (17). Eqs. (21) and (22) also define an opti-

mum aspect ratio:

kopt ¼
151=3

2

c
c0

� �1=3
1

hðf Þ1=6
� 1:2

c
c0

� �1=3
1

hðf Þ1=6
ð23Þ

The ultimate apparent contact strength is obtained by

inserting Eq. (21) into Eq. (3):

ropt
app ¼

3p

2C151=3

� �
c
c0

� �2=3 Eeff

hðf Þ1=3
ð24Þ

under the condition that this value does not exceed Eq.

(19). It is interesting to note that the ultimate contact

strength is independent of c (for c = c 0) and depends lin-

early on Eeff. As expected, flat surfaces, for which large

values of the effective modulus can be allowed, will ena-

ble better attachment. It is rather counter-intuitive that
low values of h(f), i.e. low fiber fractions, favor attach-

ment. With reference to Fig. 7a and b, this may be ex-

plained as follows: for lower area fractions, the

‘‘adaptability’’ criterion moves to larger values of E

and the ‘‘condensation’’ criterion to smaller R values.

Hence their point of intersection, i.e. the triangle apex,

comes to lie at progressively smaller tip radii, which re-

sults in higher apparent contact forces. Because of the
cube-root dependence in Eq. (24), this effect is however

rather weak.

It is instructive to estimate the optimum numerical

values based on these equations. Assuming c = c 0 =

50mJ/m2, Eeff = 1MPa and f = 0.1 results in tip radii

of about 26nm and optimum Young�s moduli of about

28MPa (as is also seen in Fig. 8). Further optimum val-

ues for different values of c, E and f are listed in Table 2.
It is readily seen that the tip radius Ropt scales with the

work of adhesion c, which however has no effect on the

Young�s modulus Eopt or on the aspect ratio kopt. The

effective modulus Eeff determines the values of Eopt,

but again does not influence kopt. The tip radius Ropt

is inversely related to Eeff. The optimum aspect ratio kopt

depends mainly on the area fraction f, and lies between

about 1.1 (for f = 0.25) and 2.4 (for f = 0.01).
Finally, we address the question under which opti-

mum condition the conode passes through the cusp de-

fined by Eqs. (17)–(19). Combining these equations with

Eqs. (21)–(24) gives the following requirement:

cc02 ¼ 15p3

C3Y

� �
bEeff

f

� �3
1

hðf Þ ð25Þ

When this equation is fulfilled, the apparent contact
strength reaches its overall optimum given by Eq. (19).

It is readily seen that the contact parameters chosen

for Fig. 7b come close to this point. Fig. 9 shows the

dependence of the effective modulus on the area fraction

at the optimum defined by Eq. (25). The non-linear

dependence emphasizes the importance of surface



Table 2

Optimum contact parameters predicted according to Eqs. (17)–(24) (using c = c 0, C = 10, and b = 0.2nm)

c (J/m2) 0.05 0.05 0.05 0.01 0.01 0.05

Eeff (Mpa) 1 1 1 1 0.1 0.1

F 0.25 0.01 0.1 0.25 0.25 0.25

h(f) 1.8 0.016 0.31 1.68 1.68 1.68

kopt 1.1 2.4 1.5 1.1 1.1 1.1

Eopt (MPa) 6.4 750 28 6.4 0.6 0.6bE (MPa) 875 875 875 175 175 875

Ropt (nm) 120 1 26 23 2300 1200

r̂app (kPa) 21,875 875 8750 4375 4375 21,875

ropt
app (kPa) 160 750 280 160 16 16
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Fig. 9. The effective modulus Eeff vs. the area fraction f for the

optimum condition given in Eq. 25 for c = c 0 = 0.05J/m2 and b =

0.2nm.
Fig. 10. The parameter range for biological contact elements (flies,

beetles, spiders, and lizards), superimposed on the map of Fig. 5.
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roughness for the obtainable contact strength: smooth

surfaces allow high effective moduli, which require high

area fractions. The optimum apparent contact strength

then increases linearly with f.

3.3. First comparisons with biological adhesion systems

A preliminary attempt is made now to compare the
adhesion design maps with actual data of biological

attachment systems. In Fig. 10, the parameter range

for contact setae or spatulae in flies, beetles, spiders

and geckos is superimposed on the map of Fig. 8. The

tip radii were obtained by detailed microscopy, whereas

bulk values of Young�s modulus [34–36] were used. It is

striking that despite the simplifications made in the anal-

ysis leading to the maps, the comparison is quite prom-
ising. These biological attachment devices come to lie in

the optimum region if an aspect ratio of about 10 is as-

sumed. The quantitative agreement in apparent contact

strength is also quite astonishing: flies (which are located

close to the center of the region marked in Fig. 9) lie

near the contour for rapp = 10kPa; detailed analysis of

pulvillus (foot) area for many different fly families has
recently revealed that in order to sustain their body

weight on the ceiling, an apparent contact strength of
about 6kPa is necessary [37].

One discrepancy is however worth noting: the aspect

ratios of biological systems (see Figs. 1 and 3a) greatly

exceed the ‘‘optimum’’ values predicted by Eq. (23). A

possible reason is that in our treatment the ‘‘condensa-

tion’’ criterion assumes more dominance than in reality.

The condensation limit could be shifted to smaller fiber

radii by introducing a gradient in modulus or in cross-
section along the fiber axis; higher values at the stem

of the fiber would make bending more difficult while

maintaining a low modulus at the tip would ensure that

the other adhesion criteria are still satisfied. Whether

natural systems take advantage of this effect, is currently

under investigation. Other reasons could lie in different

contact shapes or a stronger dominance of the ‘‘adapta-

bility’’ criterion.
Finally a word of caution is necessary. While further

quantitative conclusions may be tempting, it must be

remembered that the adhesion design maps as they stand

are based on severe simplifications. Like maps con-
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structed to display the mechanisms of deformation [38]

and of sintering [39], the present maps are not better than

the mathematical equations used to construct them. For

example, in this paper only spherical contact tips are

treated; other shapes will be the subject of a separate pub-

lication [40]. Also, additional effects that may complicate
the performance of biological contacts, e.g. oily secre-

tions, capillary and viscoelastic effects, have not been

considered. Further work along this line is in progress.
4. Conclusion

In this paper the mechanical limits of fibrous attach-
ment systems which rely on molecular van der Waals

forces have been discussed. Following contact mechan-

ics considerations, mathematical equations describing

limiting criteria for fiber fracture, ideal contact strength,

fiber condensation and fiber adaptability were estab-

lished. They were used as a basis for creating ‘‘adhesion

design maps’’. These maps allow the effects of contact

tip radius, Young�s modulus and aspect ratio on contact
strength to be visualized. Target areas can be defined

which should optimize contact strength. It has been

shown that the ultimate limit is achieved when all crite-

ria are simultaneously fulfilled. This condition can be ex-

pressed mathematically; it unambiguously defines the

optimum values of fiber radius, modulus and aspect

ratio for given values of work of adhesion, fiber area

fraction and fiber adaptability. A striking consequence
of the present analysis is that low fiber fractions lead to

better contact strength as it is then easier to circumvent

fiber condensation. When comparing the maps with bio-

logical adhesion systems, some preliminary conclusion

can be drawn. Caution must be exercised in quantitative

analysis due to the inherent simplifications and assump-

tions. However, the maps can serve a useful purpose in

better understanding biological attachment systems and
in guiding the design of artificial attachment structures.
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