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Our starting point has been a recent clarification of the role of semiholonomic contact
elements in the theory of submanifolds of Cartan geometries, Kolář and Vitolo (2010)
[5]. We deduce some further properties of the iterated contact elements by using the
general concept of contact (n, F )-element for a regular subcategory F of the category
of nonholonomic r-jets. Special attention is paid to the incidence relation of contact F -
elements of different dimensions.

© 2011 Elsevier B.V. All rights reserved.

The nonholonomic and semiholonomic jets, introduced by C. Ehresmann [2], play in interesting role in various branches
of differential geometry, see [7] for a survey. In [5], R. Vitolo and the author studied the semiholonomic and nonholonomic
contact elements and pointed out that the semiholonomic ones can be used, in a remarkable way, in the theory of sub-
manifolds of Cartan geometries [1,8]. The main aim of the present paper is to clarify some geometric phenomena from [5].
That is why we introduce the general concept of special type of nonholonomic contact elements and deduce their basic
properties.

We start with the simplest type of nonholonomic jets, namely the iterated [r, s]-jets. The results from Section 1 fre-
quently play the role of lemmas in the next research. In Section 2, we describe how [r, s]-jets generate the iterated contact
elements. Then we recall the Ehresmann’s idea of the category J̃ r of nonholonomic r-jets. In Section 3 we introduce the
concept of regular subcategory F ⊂ J̃ r . To our present knowledge, this is the most appropriate approach to the concept
of special type of nonholonomic jets, that we attacked from another point of view in [3]. The contact elements of type F
are studied in Section 4. In particular, the relation (19) testifies that our general construction has a reasonable geometrical
meaning. In the last section we clarify that the incidence relation among the holonomic contact elements can be extended
to each type of the nonholonomic ones. Finally, we present an example showing that the incidence relation is preserved
under the absolute contact differentiation over submanifolds of Cartan geometries, [5].

All manifolds and maps are assumed to be infinitely differentiable. Unless otherwise specified, we use the terminology
and notation from the book [6].

1. Nonholonomic [r, s]-jets

Consider a fibered manifold p : Y → M and write J r Y for its r-th jet prolongation. The nonholonomic [r, s]-jet prolonga-
tion of Y is defined by
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J r,sY = J s( J r Y → M
)
. (1)

If Y is the product M × N → M , the elements of J r,s(M × N → M) =: J r,s(M, N) are called nonholonomic [r, s]-jets of M
into N . The canonical injection J r+sY ↪→ J r,sY is of the form

jr+s
x σ �→ js

x

(
jrσ

)
. (2)

In particular, J r+s(M, N) ↪→ J r,s(M, N). For s = 0, we have J r,0(M, N) = J r(M, N).
The composition of nonholonomic [r, s]-jets is introduced as follows. Consider X ∈ J r,s

x (M, N)y , X = js
x F , F : M →

J r(M, N) and Z ∈ J r,s
y (N, Q )z , Z = js

y G , G : N → J r(N, Q ). Write f = β ◦ F : M → N , where β is the target jet projec-
tion. Then we can construct the composition G( f (u)) ◦ F (u) of holonomic r-jets, u ∈ M , and we define

Z ◦ X := js
x

(
G
(

f (u)
) ◦ F (u)

) ∈ J r,s
x (M, Q )z. (3)

This composition is associative. Indeed, if W ∈ J r,s
z (Q , P )w , W = js

z H , H : Q → J r(Q , P ) and g = β ◦ G : N → Q , then the
associativity of the composition of holonomic r-jets implies

Z ◦ (Y ◦ X) = js
x

(
H

(
g
(

f (u)
)) ◦ (

G
(

f (u)
) ◦ F (u)

))

= js
x

((
H

(
g
(

f (u)
)) ◦ G

(
f (u)

)) ◦ F (u)
) = (Z ◦ Y ) ◦ X .

By (2), Er+s
x,M = jr+s

x idM is the unit at x ∈ M .
Write β1 : J r,sY → J r Y for the target jet projection. The target projection β : J r Y → Y is extended into a map β2 :=

J sβ : J r,sY → J sY . In the product case, both β1 and β2 preserve the jet composition, i.e. β1(Z ◦ X) = β1 Z ◦ β1 X and
β2(Z ◦ X) = β2 Z ◦ β2 X with the classical composition of holonomic jets on the right-hand sides.

Proposition 1. X ∈ J r,s
x (M, N)y is invertible, iff both β1 X ∈ J r

x(M, N)y and β2 X ∈ J s
x(M, N)y are invertible.

Proof. We have X = js
x F (u). Since β1 X = F (x) is invertible, we can locally construct F −1(u). Since β2 X = js

x f is invertible,
there exists locally the inverse map f̃ of f . Then

X̃ := js
y

(
F −1 ◦ f̃

) ∈ J r,s
y (N, M)x

satisfies X̃ ◦ X = Er+s
x,M and X ◦ X̃ = Er+s

y,N . �
Definition 1. An element X ∈ J r,s

x (M, N)y is called regular, if there exists Z ∈ J r,s
y (N, M)x such that Z ◦ X = Er+s

x,M .

For s = 0, this reduces to the well known fact that regular r-jets of M into N coincide with r-jets of immersions. Clearly,
if X1 and X2 are composable regular [r, s]-jets, then X2 ◦ X1 is regular as well.

Proposition 2. X is regular, iff both β1 X and β2 X are regular.

Proof. It is a direct modification of the proof of Proposition 1. �
In the holonomic case, one defines

Lr
m,n = J r

0

(
R

m,R
n)

0 and Lr =
⋃

m,n

Lr
m,n,

[6]. Then Lr is a category over N × N with respect to the composition of jets. We have a left action of Gr
m × Gr

n on Lr
m,n ,

X �→ h ◦ X ◦ g−1, g ∈ Gr
m, h ∈ Gr

n, X ∈ Lr
m,n.

Clearly, Lr is a skeleton of the category J r of r-jets in that sense that J r(M, N) coincides with the associated bundle

J r(M, N) = (
P r M × P r N

)[
Lr

m,n

]
, (4)

m = dim M , n = dim N , and the composition in Lr induces the composition of r-jets by

{v, w, Z} ◦ {u, v, X} = {u, w, Z ◦ X}, (5)

u ∈ P r
xM , v ∈ P r

y N , w ∈ P r
z Q , X ∈ Lr

m,n , Z ∈ Lr
n,p , p = dim Q .
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Quite similarly, we write

Lr,s
m,n = J r,s

0

(
R

m,R
n)

0 and Lr,s =
⋃

m,n

Lr,s
m,n. (6)

This is a category over N × N. The jet composition defines a left action of Gr+s
m × Gr+s

n on Lr,s
m,n , J r,s(M, N) coincides with

the associated bundle

J r,s(M, N) = (
P r+s M × P r+s N

)[
Lr,s

m,n

]
(7)

and (5) holds even in this case. The following assertion describes Lr,s in terms of Lr .

Proposition 3. We have Lr,s
m,n = Ls

m,n × T s
m Lr

m,n with the composition

Z ◦ X = (
Z1 ◦ X1, T s

m�r
m,n,p(Z2 ◦ X1, X2)

)
, (8)

where �r
m,n,p : Lr

n,p × Lr
m,n → Lr

m,p is the composition in Lr , X = (X1, X2) ∈ Lr,s
m,n and Z = (Z1, Z2) ∈ Lr,s

n,p .

Proof. Consider the canonical identification J r(Rm,R
n) = R

m × Lr
m,n × R

n defined by the translations on R
m and R

n . Hence
a section F : R

m → J r(Rm,R
n) is identified with a pair of maps f1 : R

m → R
n , f2 : R

m → Lr
m,n , so that X = js

0 F is identified
with ( js

0 f1, js
0 f2) ∈ Ls

m,n × T s
m Lr

m,n . Then (3) implies (8). �
In the case r = s, we can define the bundle of semiholonomic [r, r]-jets of M into N by

J̄ r,r(M, N) = {
X ∈ J r,r(M, N); β1 X = β2 X

}
. (9)

Clearly, J̄ r,r is a subcategory of J r,r .

2. Iterated contact elements

Let N ⊂ M be an n-submanifold. If ψ : R
n → N is a local parametrization of N , ψ(0) = x, then X = jr

0ψ is a regular
(n, r)-velocity on M . The set

kr
xN := X ◦ Gr

n (10)

depends on N only and is called the r-th contact element of N at x. The bundle of all contact (n, r)-elements on M is
denoted by K r

n M , [6]. So (10) can be expressed as K r
n M = reg T r

n M/Gr
n . We write k : reg T r

n M → K r
n M for the factor projection.

If f : M → Q is an immersion, then K r
n f : K r

n M → K r
n Q is defined by

K r
n f

(
X ◦ Gr

n

) = T r
n f (X) ◦ Gr

n.

Hence K r
n is a functor on the category of all immersions.

In the case of p : Y → M , we write tr T r
nY ⊂ reg T r

nY for the subset of all X = jr
0ϕ such that jr

0(p ◦ ϕ) ∈ reg T r
n M . Further,

we define tr K r
nY ⊂ K r

nY as the subset of all elements whose underlying n-plane is transversal to the fibers. In both cases,
we obtain an open and dense subset. Clearly, X ∈ tr T r

nY if and only if k(X) ∈ tr K r
nY . Further, we write γ1 : K s

n(K r
n M) → K r

n M
for the bundle projection. Analogously to Section 1, we define

γ2 : tr K s
n

(
K r

n M → M
) → K s

n M.

Having in mind the coming Section 3, we introduce

K r,s
n M := tr K s

n

(
K r

n M → M
)
.

Further, we define Gr,s
n = inv J r,s

0 (Rn,R
n)0 ⊂ Gr+s

n . (Using (8), one verifies directly Gr,s
n = W s

nGr
n in the notation from [6].)

Proposition 4. We have K r,s
n M = reg T r,s

n M/Gr,s
n .

Proof. By Proposition 2, we have reg T r,s
n M ≈ tr T s

n(reg T r
n M). Every X ∈ K s

n(K r
n M) is of the form

k
(

js
0k

(
ϕ(u)

))
, ϕ : R

n → reg T r
n M,

so that js
0ϕ ∈ reg T s

n(reg T r
n M). We have X ∈ tr K s

n(K r
n M) if and only if js

0ϕ ∈ tr T s
n(reg T r

n M).
Assume X ∈ tr K s

n(K r
n M) and consider another ψ(v) : R

n → reg T r
n M such that

k
(

js (kψ(v)
)) = k

(
js (kϕ(u)

))
. (11)
0 0
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By locality, we may assume M = R
m . Then reg T r

nR
m = R

m × reg Lr
n,m , so that ϕ = (ϕ1,ϕ2), ψ = (ψ1,ψ2), ϕ1,ψ1 : R

n → R
m ,

ϕ2,ψ2 : R
n → reg Lr

n,m . Since k( js
0ϕ1) = k( js

0ψ1), there exists an origin preserving diffeomorphism f : R
n → R

n such that

js
0ψ1 = js

0(ϕ1 ◦ f ). (12)

Then (11) is equivalent to js
0ψ2 = js

0(ϕ2 ◦ f ). Hence there is a map g : R
n → Gr

n such that

js
0

(
ψ2(u)

) = js
0

(
ϕ2

(
f (u)

) ◦ g(u)
)
. (13)

We have ( js
0 f , js

0 g) ∈ Gs
n × T s

nGr
n = Gr,s

n and (12) and (13) correspond to the action of Gr,s
n on reg T r,s

n R
m determined by

(8). �
In the semiholonomic case, we define

K̄ r,r
n M = {

X ∈ tr K r
n

(
K r

n M
); γ1(X) = γ2(X)

}
.

Then Proposition 4 implies

K̄ r,r
n M = reg T̄ r,r

n M/Ḡr,r
n , (14)

where T̄ r,r
n M = J̄ r,r

0 (Rn, M) and Ḡr,r
n = inv J̄ r,r

0 (Rn,R
n)0.

3. The general concept of r-jet category

The bundle of nonholonomic r-jets of M into N is defined by the iteration

J̃ r(M, N) = J 1( J̃ r−1(M, N) → M
)
, J̃ 1(M, N) = J 1(M, N).

The composition Z ◦ X ∈ J̃ r
x(M, Q )z of X = j1

x F ∈ J̃ r
x(M, N)y and Z = j1

y G ∈ J̃ r
y(N, Q )z is defined by (3) with s = 1 and

with the composition of nonholonomic (r − 1)-jets on the right-hand side. Thus we obtain the category J̃ r of nonholonomic
r-jets, [2,4]. In particular, J 1,1 = J̃ 2. Modifying (2), we find a canonical inclusion J r,s ↪→ J̃ r+s . Clearly, we have

J̃ r(M, N × Q ) = J̃ r(M, N) ×M J̃ r(M, Q ).

Analogously to Section 1, we write

L̃r
m,n = J̃ r

0

(
R

m,R
n)

0 and L̃r =
⋃

m,n

L̃r
m,n.

Then L̃r is the skeleton of J̃ r in the fiber sense, i.e.

J̃ r(M, N) = (
P r M × P r N

)[
L̃r

m,n

]

and the composition in L̃r determines the composition of nonholonomic r-jets analogously to (5).
There exist r canonical projections

ϕr
i : J̃ r(M, N) → J 1(M, N), i = 1, . . . , r.

By induction, we have r − 1 projections ϕr−1
k : J̃ r−1(M, N) → J 1(M, N), k = 1, . . . , r − 1. Consider the target jet projection

βr−1 : J̃ r(M, N) → J̃ r−1(M, N). Then we set

ϕr
k = ϕr−1

k ◦ βr−1 and ϕr
r

(
j1
x F

) = j1
x(β ◦ F ) ∈ J 1(M, N).

A direct modification of Definition 1 yields the concept of regular nonholonomic r-jet. Using Propositions 1, 2 and the
induction, we deduce

Proposition 5. X ∈ J̃ r(M, N) is regular or invertible, iff all 1-jets ϕr
i (X) ∈ J 1(M, N), i = 1, . . . , r, are regular or invertible, respec-

tively.

The following definition represents a reasonable approach to the concept of special type of nonholonomic r-jets.

Definition 2. A regular subcategory F ⊂ J̃ r is a rule transforming every pair (M, N) of manifolds into a fibered submanifold
F (M, N) ⊂ J̃ r(M, N) such that

(i) J r(M, N) ⊂ F (M, N) is a fibered submanifold,
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(ii) if X ∈ F (M, N)y and Z ∈ F y(N, Q ), then Z ◦ X ∈ F (M, Q ),
(iii) if X ∈ Fx(M, N)y is regular in J̃ r , then there exists Z ∈ F y(N, M)x such that Z ◦ X = Er

x,M ,
(iv) F (M, N × Q ) = F (M, N) ×M F (M, Q ).

We also say that F is a nonholonomic r-jet category.
(iii) implies directly that if X ∈ F (M, N) is invertible in J̃ r , then X−1 ∈ F (N, M).
Consider an integer s. One verifies easily that the rule

(M, N) �→ J s(F (M, N) → M
) ⊂ J̃ r+s(M, N)

defines a nonholonomic (r + s)-jet category, that is called the s-th jet prolongation of F .
We define

G F
n = inv F0

(
R

n,R
n)

0.

This is a Lie subgroup of G̃r
n = inv J̃ r

0(R
n,R

n)0. Analogously to Section 1, we write

L F
m,n = F0

(
R

m,R
n)

0, L F =
⋃

m,n

L F
m,n.

Then L F is a skeleton of the category F in the fiber sense. In the case of J s F , we find, analogously to Section 1,

L J s F
m,n = Ls

m,n × T s
m L F

m,n (15)

and the composition in L J s F is described by (8) with �r
m,n,p replaced by the composition map L F

n,p × L F
m,n → L F

m,p .
We introduce the functor of (n, F )-velocities by

T F
n M = F0

(
R

n, M
)
, T F

n f (X) = (
jr
x f

) ◦ X,

f : M → N , X ∈ F0(R
n, M)x . This is a bundle functor on M f . Every W ∈ L F

m,n determines a natural transformation T F
n → T F

m
by

X �→ X ◦ W , X ∈ T F
n M.

By (iv), every functor T F
n preserves products.

Remark 1. In [3], we studied a concept equivalent to F under the name “total r-jet functor” and we characterized it in terms
of Weil algebras.

An important example of F is the category J̄ r of semiholonomic r-jets. For r = 2, we have J̄ 2 = J̄ 1,1; for the general case
we refer to [5] or [2, p. 361].

4. Contact (n, F )-elements

We define

K F
n M = reg T F

n M/G F
n .

Every X ∈ (reg T F
n M)x induces r underlying regular elements of T 1

n M . Each of them determines an n-plane in Tx M . Take
an (m − n)-plane Q ⊂ Tx M transversal to all of them and choose a local coordinate system R

n × R
m−n on M such that

Q = TxR
m−n . Then T F

n M is locally identified with T F
n R

n × T F
n R

m−n and X = (X1, X2). By Proposition 5, X1 is regular. Using
translations on R

n , we find reg T F
n R

n = R
n × G F

n . Hence locally reg T F
n M = R

n × G F
n × T F

n R
m−n . This introduces a manifold

structure on the factor space reg T F
n M/G F

n .

Definition 3. K F
n M is called the bundle of contact (n, F )-elements on M .

Proposition 6. reg T F
n M is a principal bundle over K F

n M with structure group G F
n .

Proof. It remains to discuss X , W ∈ reg T F
n M and U , V ∈ G F

n satisfying X ◦ U = W , X ◦ V = W . Since X is regular, there
exists Z ∈ F (M,R

n)0 such that Z ◦ X = Er
0,Rn . Hence U = Z ◦ W = V . �

For every immersion f : M → Q , we define K F
n f : K F

n M → K F
n Q by
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K F
n f

(
X ◦ G F

n

) = T F
n f (X) ◦ G F

n .

Then K F
n is a functor on the category of all immersions.

The contact elements determined by the s-th jet prolongation J s F are closely related with the construction of iterated
contact elements. A direct modification of the proof of Proposition 4 yields the following assertion.

Proposition 7. We have K J s F
n M = tr K s

n(K F
n M → M).

The iteration of K 1
n leads to the iterated Grassmann bundles. In [5], we defined

K̃ r
n M = K 1

n

(
K̃ r−1

n M
)
, tr K̃ r

n M = tr K 1
n

(
tr K̃ r−1

n M → M
)
. (16)

The repeated application of Proposition 7 yields

K J̃ r

n M = tr K̃ r
n M. (17)

In [5], we presented a direct definition of the bundle K̄ r
n M of semiholonomic contact (n, r)-elements on M . In the case

r = 2, we have K̄ 1,1
n M = K̄ 2

n M . Formula (3) from [5] implies

K̄ r
n M = K J̄ r

n M, (18)

so that both approaches coincide.
Consider another regular subcategory H ⊂ J̃ r . Writing F ⊂ H we always assume F (M, N) ⊂ H(M, N) is a fibered sub-

manifold for every M , N . Hence we have

T F
n M ⊂ T H

n M, G F
n ⊂ G H

n .

Then the rule

X ◦ G F
n �→ X ◦ G H

n , X ∈ T F
n M

defines an injection K F
n M → K H

n M . In particular, J r ⊂ F ⊂ J̃ r yields a remarkable formula

K r
n M ⊂ K F

n M ⊂ tr K̃ r
n M. (19)

5. The incidence relation for contact elements

In the classical situation, a p-submanifold P ⊂ M is said to have r-th order contact with an n-submanifold N ⊂ M at a
common point x, p � n, if there exists a p-submanifold P̄ ⊂ N such that kr

x P = kr
x P̄ . This can be formalized in the following

way.

Definition 4. We say that two contact elements Q = X ◦ Gr
p ∈ (K r

p M)x and S = Z ◦ Gr
n ∈ (K r

n M)x are incident, and we write
Q εS , if there exists W ∈ reg Lr

p,n such that Z ◦ W = X .

This concept can be directly extended to arbitrary F . For Q = X ◦ G F
p ∈ (K F

p M)x and S = Z ◦ G F
n ∈ (K F

n M)x , Q εS means

that there exists W ∈ reg L F
p,n such that Z ◦ W = X . One verifies directly that ε is a transitive relation.

Example. Consider a Cartan space S(M) = (P ,Γ, E, s), [5]. The absolute contact (n, r)-differentiation introduced in [5] is a
map

Γ r
n : K r

n M →
⋃

x∈M

(
K̄ r

n(Ex)
)

s(x).

Analyzing the constructions from [5], we deduce: If Q ∈ (K r
p M)x and S ∈ (K r

n M)x are incident, then the absolute contact

differentials Γ r
p (Q ) ∈ (K̄ r

p(Ex))s(x) and Γ r
n (S) ∈ (K̄ r

n(Ex))s(x) are incident in the semiholonomic sense.
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