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1. THE PROBLEM 

The following problem was posed by T. J. Rivlin [I]: Let %? stand for the 
space of continuous real valued functions on the interval [0, I]; let Ej(f) 
represent the Chebyshev degree of approximation tofby algebraic polynomials 
of degreej. Characterize the n-tuples {pO,pI,. . .,pn-i} of algebraic polynomials 
pj, where degpj = j, which have the property that there is a function f E %? 
such that 

Ej(f) = Ilf- Pjll (1) 

forj=0,1,2 ,..., n - 1, the norm on the right side being the uniform norm. 
In this note we prove the following related 

TKEOREM. Given polynomials pm and p,,, 0 < m c n, there is a function f E V 
which satisjies (1) for the integers j = m and j = n if and only if the polynomial 
p,, -pm changes sign at least m + 1 times in [0, 11. 

The linear case m = 0, n = 1 was proved by Deutsch, Morris and Singer in 
[2]. Our only excuse for reproving this case is that our proof is very short. 
The necessity of the condition in the theorem was stated and proved by 
Rivlin [I]. 

2. PROOF OF THE CASE m = 0, n = 1 

To verify the sufficiency of the condition let us consider polynomialsp,(x) = c 
andp,(x)=ax+b (a#O) such that at+b=cforsome t,O<t<l.Thenthe 
equality 

3Pdt - 3 + PI0 + @I = c 
holds for each number 6, and we fix a 6 such that 0 < 6 < min {t, 1 - t>. Let us 
suppose that a > 0 and put 

a = max (la + b - cl, lb - cl>. 
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Iffg 9 is the piecewise linear function with vertices 

(O,c-cf) (t-8,c-cd) (t+8,c+cx) (l,j9&+8)), 

(see Fig. l), then (1) is easily seen to hold for j = 0,l. The desiredfin case 
a < 0 is obtained from the above construction by the substitution x = I - y. 

The necessity of the asserted sign change is demonstrated as follows: let a 
functionfE 59 and polynomialsp,,p, satisfy (1). If we put 

g.i=f-Pj Ci = 0, 11, 

then it is an elementary observation that 

maxg,+ming,=Q (j= 0,1>, 

PP-~ U 

ot-8 t tts 1 

FIG. 1. 

where the maximum and minimum are taken over [O, IJ If, say, g, > g, on 
(0, l), then maxgl > maxg2 and ming, > mingz, so that 

maxgl + ming, > maxg, + ming,. 

ut this implies that (2) fails to be true for g, or g,. Clearly, one arrives at the 
same conclusion if g, > g, on (0,l) and the necessity of the sign change is 
hereby proved. 

3. PROOFOFTHE CASE~=O,~> 1 

Let g,(xO) = c for some point 0 < x0 < 1. Then there are points 0 < x1 < 
x0 < xI? < 1 such that 

$bz(Xl> + Pn(X2N = c; 

we may assume without loss of generality that p,(xz) > c. 
polynomials 
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satisfying 

Let 
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3bn-(4 +Pn+(dI =P*W 

and fix points 

k= 
1 
nS3 ifnisodd, 
nt4 ifniseven, 

x1 = u1 < u2 < t.42 < . . . < uk-1 < u, = x2 

(see Fig. 2). The function 

g(x) = 

k 
U2j-l4X~U2j,j=1,2,...,2 

(4) 
u2j+l - x p,‘(x) + x - u2”i 

u2j+l - u2j 
_ u2JP.-t4 

u2.i+l ’ 

U,j~X~U,j+,,j=1,2,...,~-1) 

which is defined and continuous on the interval [x,,x2], is best approximated in 
the class of all n-degree algebraic polynomials by pn(x). This follows from the 
facts that 

PntU2j--I) -td”2j-d =PntU2j-1) -Pn-tU2j-1) =PntxJ + lIPnIl - C 

( j=l,2 ,..., i 
1 

, 

Pnt"2j> - &2j) =PnC”2j) - Pn+@Zj) = -[PAXI) + lIPnIl - cl 

( j=1,2 ,..., 5-l 
1 

, 

and 
IlIT -P.ll =PnW + lIPnIl - c, 

as shown by a simple calculation. We let 
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Then 
llf-PAI = l/g -Al 

so that &(f) = ]lf---~~l/. To see that E,(t) = i/f- cl/ we observe from (3) that 

fh) =p,-(4 = c - lIPA 
f(k) =Pn+k?) = c + llP/A 

and a routine calculation shows that 

-Ml G.fb) - c G lIPnil (0 < x < 1). 
Necessity is proved just as in the previous case. 

/I 
/ 

u 

” 3 "2k"Zk+l '2 

Fw.2. 

4. PROOFOFTHECASE~Z>~,IZ> 1 

Consider arbitrary polynomials pm and pa, with 1 G m < n, such that 
pn -pm changes sign at least m + 1 times in [O, 11. Then there are points 

0 < t1< t2 < . . . < t,,, < 1 

such that pm(fj) =pn(tj) for j = 1,2,. . .,M + 1. Letting to = 0 and tm+z = 4, 
we put 

"j = max IP&) --~&4l~ 
tj<X<tjt1 

a=~min(a,,cq ,... ,c+~), 

P = max CIIPA lid>. 
Suppose p,(x) > p,(x) for t, G x G t2 and consider the polynomials 

Pn-(4 = PA4 - P, 

PiI’ = P”(X) + P, 

Pm-(x> = Pm(4 - a - 6, 

Pm+(“) =P,W 6 x + p* 
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Then each of the polynomials pn- -pin- and pn’ -pm+ also changes sign at 
least m + 1 times in [0, 11. Thus, there are m + 2 points xj, 

such that 

and 

Xj < tj < Xj+l, j=1,2 ,..., m+l, 

Pm-&f-d = Pn-h-d 

Pm+hJ = Pn+c%!J 

(5) 

(6) 

for all admitted values of k. The point x2 can be so chosen that 

Pm-($ G PnW -c Pn’W G P’(x>, (x1 < x < x2). 

On the interval [x1,x2] the situation is now similar to that in Case 3. Thus, let 
g be defined as in (4). Thenp, is its best approximation in the class of algebraic 
polynomials of degree IZ. 

Put for each x E [0, I], 

Then 

4-W = fnax i~~-C4 P~-W, 

4+(x) = min ~P~+@),P~+(X)I. 

4-(x*&,) = Pm-hk-1) = Pn-h-l)> 

4+h) = Pm+(%) = Pit+(&) 

(see (5) and (6)). In a manner similar to that in Case 3 we construct a function 
f E V such that 

q-(x) ax> G q+w, (7) 

“f-G4 = g(x) for x1 G x < x2, (8) 

f(XZk--l) = q-@2d 

“m2k) = 4+(x2!%). 
(9) 

The conditions (7) and (8) guarantee thatp, is also the best approximation off 
by algebraic polynomials of degree ~1. Conditions (7) and (9) show that the 
best approximation to f from among the algebraic polynomials of degree m 
is p,,,: the calculations justifying this conclusion are routine and therefore 
omitted here. 

For the necessity of the asserted sign changes we refer this time to Rivlin’s 
proof in [I]. 
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