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Abstract

In this study, a least-squares quadratic B-spline +nite element method for calculating the numerical solutions
of the one-dimensional Burgers-like equations with appropriate boundary and initial conditions is presented.
Three test problems have been studied to demonstrate the accuracy of the present method. Results obtained
by the method have been compared with the exact solution of each problem and are found to be in good
agreement with each other. A Fourier stability analysis of the method is also investigated.
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1. Introduction

The one-dimensional Burgers’ equation

Ut + UUx = �Uxx; a¡x¡b; t ¿ 0; (1)

where �¿ 0 is the coe?cient of kinematic and the subscripts x and t denote di@erentiation, plays a
major role in the study of nonlinear waves since it is used as a mathematical model in turbulence
problems, in the theory of shock waves and in continuous stochastic processes [7].

Eq. (1), which was +rst introduced by Bateman [3] and later treated by Burgers [5] and after whom
such an equation widely referred to as Burgers’ equation, is one of a few well-known nonlinear
partial di@erential equations, which have been solved analytically for a restricted set of arbitrary
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initial conditions [7,11]. Benton and Platzman [4] surveyed exact solutions of the one-dimensional
Burgers-like equations. In many cases, these solutions involve in+nite series which may converge
very slowly for small values of �¿ 0 [14]. However, various numerical techniques specially based on
+nite di@erence, +nite element and boundary element methods have been applied to solve numerically
Eq. (1) under the following boundary conditions:

U (a; t) = f1(t); t ¿ 0;

U (b; t) = f2(t); t ¿ 0;
(2)

and the initial condition:

U (x; 0) = g(x); a¡x¡b; (3)

where f1(t); f2(t) and g(x) are the prescribed functions of the variables.
In order to solve the Burgers’ equation numerically, Varoglu and Finn [22] used a new +nite

element method based on a weighted residual formulation, Caldwell and Smith [6] +nite di@erence
and cubic spline +nite element methods, Evans and Abdullah [8] alternating group explicit methods,
Kakuda and Tosaka [12] the generalized boundary element approach, Ali et al. [2] a cubic B-spline
+nite element method based on a collocation formulation, Nguyen and Rynen [17] a linear space-time
+nite element method based on a least-squares approach, Mittal and Singhal [15,16] a technique of
+nitely reproducing nonlinearities to get a system of nonlinear di@erential equations, which are
solved by a Runge–Kutta–Chebyshev method. Gardner et al. [9] used a Petrov–Galerkin method by
a quadratic B-spline spatial +nite elements, and they also used a least-squares technique using linear
space-time +nite elements in [10]. LOzis and LOzdes [19] used a direct variational method to generate
an approximation solution in the form of a sequence solution. Recently, Kutluay et al. [13] proposed
the exact-explicit +nite di@erence method to the Burgers-like problems to obtain numerical solutions
of adequate accuracy. More recently, Abd-el-Malek and El-Mansi [1] have used the group-theoretic
methods for calculating the solution of Burgers’ equation with appropriate boundary and initial
conditions.

In this paper, we have applied a least-squares quadratic B-spline +nite element method based on
the work of Nguyen and Reynen [18] to the Burgers’ equation (1) with a set of boundary and
initial conditions given by Eqs. (2) and (3) to obtain its numerical solutions. The second-order
Burgers’ equation is reduced to a pentadiagonal matrix system by applying the classical weighted
residual method over the +nite elements, which can be solved by a variant of Thomas algo-
rithm, together with an iteration process at each time step. In order to demonstrate the accu-
racy of the present method and make a comparison of numerical solutions with exact ones, we
have chosen three test problems given in the following section so that each of them has an exact
solution.

2. Statement of problems

We consider the Burgers’ equation (1) with the boundary conditions U (a; t) =U (b; t) = 0 and the
initial condition U (x; 0) = g(x) for a +nite interval a6 x6 b.
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Problem (a). We +rst take Eq. (1) with the homogeneous boundary conditions

U (0; t) = 0; t ¿ 0;

U (1; t) = 0; t ¿ 0; (4)

and the initial condition

U (x; 0) = sin(�x); 0¡x¡ 1:

The (exact) Fourier series solution of this problem given by Cole [7] is

U (x; t) = 2��
∑∞

n=1 an exp(−n2�2�t)n sin(n�x)
a0 +

∑∞
n=1 an exp(−n2�2�t)cos(n�x)

; (5)

where the Fourier coe?cients are

a0 =
∫ 1

0
exp{−(2��)−1[1 − cos(�x)]} dx;

an = 2
∫ 1

0
exp{−(2��)−1[1 − cos(�x)]}cos(n�x) dx (n = 1; 2; 3; : : :):

Problem (b). We secondly consider Eq. (1) with the boundary conditions given by Eq. (4) and the
initial condition for this problem is

U (x; 0) = 4x(1 − x); 0¡x¡ 1:

The exact solution of this problem is given by Eq. (5), but in this case the Fourier coe?cients
are

a0 =
∫ 1

0
exp{−x2(3�)−1(3 − 2x)} dx;

an = 2
∫ 1

0
exp{−x2(3�)−1(3 − 2x)}cos(n�x) dx (n = 1; 2; 3; : : :):

Problem (c). As our last test problem, consider Eq. (1) with the boundary conditions

U (a; t) = 0; t ¿ 0;

U (b; t) = 0; t ¿ 0;

and the initial condition at time t = 1 given by

U (x; 1) =
x

1 + exp[ 1
4�(x

2 − 1
4 )]

:

This problem has an exact solution of form [17]

U (x; t) =
x=t

1 + (t=t0)1=2 exp(x2=4�t)
; t¿ 1;

where t0 = exp(1=8�).
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3. Method of solution

The +nite interval [a; b] is partitioned into N +nite elements of equal length h by the nodes
xi (i= 0; 1; 2; : : : ; N ) such that a= x0 ¡x1 ¡x2 ¡ · · ·¡xN = b and h(≡ Ox) = xi− xi−1 = (b− a)=N .

The quadratic B-splines �m (m = −1; 0; : : : ; N ) which form a basis over the interval [a; b] are
de+ned by the relationships [20]

�m(x) =
1
h2




(xm+2 − x)2 − 3(xm+1 − x)2 + 3(xm − x)2; [xm−1; xm];

(xm+2 − x)2 − 3(xm+1 − x)2; [xm; xm+1];

(xm+2 − x)2; [xm+1; xm+2];

0; otherwise:

(6)

Each +nite element [xm; xm+1] is covered by three quadratic B-splines since each quadratic B-spline
covers three elements. In each element, using the local coordinate transformation

x = xm + �Ox; 06 �6 1;

t = �Ot; 06 �6 1; (7)

Eq. (6) leads to the quadratic B-spline shape functions having representations over the element
[xm; xm+1] as

�m−1

�m

�m+1

=




(1 − �)2;

1 + 2�− 2�2; 06 �6 1;

�2;

(8)

where Ot(≡ k) is the time step.
We seek the approximation UN (x; t) to the solution U (x; t), which uses these quadratic B-splines

as trial functions [18]

UN (�; �) =
m+1∑

j=m−1

�j(�)(�j + �O�j): (9)

Applying the least-squares approach to Eq. (1) in time and space leads to the integral equation

�
∫ t

0

∫ b

a
(Ut + UUx − �Uxx)2 dx dt = 0: (10)

Using the transformation (7), Eq. (10) becomes

�
∫ 1

0

∫ 1

0

(
U� + Û

Ot
Ox

U� − �
Ot

Ox2 U��

)2

d� d� = 0; (11)
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where Û is taken to be a constant over the element [xm; xm+1] to simplify the integral. From the
variational principle, Eq. (11) can be written as

∫ 1

0

∫ 1

0
[U� + �U� − �U��]�[U� + �U� − �U��] d� d� = 0; (12)

where � = Û (Ot=Ox) and � = �(Ot=Ox2).
The nodal values and their +rst derivatives at the knot xm are given in terms of the parameters

�m by

Um = U (xm) = �m−1 + �m; (13)

U ′
m = U ′(xm) =

2
Ox

(�m − �m−1); (14)

where “ ′ ” denotes di@erentiation with respect to �.
In Eq. (12), the term �[U� + �U� − �U��] can be considered as a weighting function w. The

variation of U given by Eq. (9) over the element [xm; xm+1] is

�Ue =
∑

�j(�)�O�j:

Hence, weighting functions wi can be obtained as

wi = �i + ���′
i − ���′′

i ; i = m− 1; m; m + 1: (15)

Substitution of Eq. (15) into Eq. (12), we obtain the least-squares space-time weak formulation

∫ 1

0

∫ 1

0
(U� + �U� − �U��)(�i + ���′

i − ���′′
i ) d� d� = 0; (16)

which can also be regarded as a Petrov–Galerkin method with weighting functions wi given by
Eq. (15).

Substituting expression (9) in Eq. (16), with some manipulation, leads to

m+1∑
j=m−1

{∫ 1

0

[
�i�j +

�
2

(�i�′
j + �′

i�j) +
(
�2

3
+ �

)
�′
i�

′
j −

��
3

(�′
i�

′′
j + �′′

i �
′
j)

+
�2

2
�′′
i �

′′
j

]
d�− �

2
(�i�′

j + �′
i�j)

∣∣∣∣
1

0

}
O�j +

m+1∑
j=m−1

{∫ 1

0

[
��i�′

j +
(
�2

2
+ �

)
�′
i�

′
j

−��
2

(�′
i�

′′
j + �′′

i �
′
j) +

�2

2
�′′
i �

′′
j

]
d�− ��i�′

j

∣∣∣∣
1

0

}
�j = 0;
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which can also be written in matrix form as
m+1∑

j=m−1

{
Ae +

�
2

(Be + (Be)T) +
(
�2

3
+ �

)
Ce − ��

3
(De + (De)T)

+
�2

3
Ee − �

2
(�i�′

j + �′
i�j)

∣∣∣∣
1

0

}
O�e +

m+1∑
j=m−1

{
�Be +

(
�2

2
+ �

)
Ce

−��
2

(De + (De)T) +
�2

2
Ee − ��i�′

j

∣∣∣∣
1

0

}
�e = 0: (17)

In the above equation, �e = (�m−1; �m; �m+1) are the element parameters and Ae; Be; Ce; De and
Ee are the element matrices which are to be determined by Eq. (8) as follows:

Aeij =
∫ 1

0
�i�j d� =

1
30




6 13 1

13 54 13

1 13 6


 ; Beij =

∫ 1

0
�i�′

j d� =
1
6



−3 2 1

−8 0 8

−1 −2 3


 ;

Ce
ij =

∫ 1

0
�′
i�

′
j d� =

2
3




2 −1 −1

−1 2 −1

−1 −1 2


 ; De

ij =
∫ 1

0
�′
i�

′′
j d� = 2



−1 2 −1

0 0 0

1 −2 1


 ;

Eeij =
∫ 1

0
�′′
i �

′′
j d� = 4




1 −2 1

−2 4 −2

1 −2 1


 :

Combining together the contributions from all elements, Eq. (17) leads to the system of equations[
A +

�
2

(B + BT) +
(
�2

3
+ �

)
C − ��

3
(D + DT) +

�2

3
E − �

2
(�i�′

j + �′
i�j)

∣∣∣∣
1

0

]
O�

+

[
�B +

(
�2

2
+ �

)
C − ��

2
(D + DT) +

�2

2
E − ��i�′

j

∣∣∣∣
1

0

]
� = 0; (18)

where �=(�−1; �0; : : : ; �N )T; �=(Ot=Ox)(�j−1 +�j) and A; B; C; D and E are assembling matrices
which are derived from the element matrices Ae; Be; Ce; De and Ee, respectively.

Identifying � = �n; O� = �n+1 − �n and using in Eq. (18), we obtain the (N + 2) × (N + 2)
pentadiagonal matrix system[

A +
�
2

(B + BT) +
(
�2

3
+ �

)
C − ��

3
(D + DT) +

�2

3
E − �

2
(�i�′

j + �′
i�j)

∣∣∣∣
1

0

]
�n+1

=

[
A +

�
2

(BT − B) − �2

6
C +

��
6

(D + DT) − �2

6
E +

�
2

(�i�′
j − �′

i�j)
∣∣∣∣
1

0

]
�n: (19)
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Using the boundary conditions (2) in system (19) leads to an N ×N matrix system which can be
solved by the Thomas algorithm. Two or three inner iterations are applied to �n?=�n+ 1

2 (�n−�n−1)
at each time in order to improve the accuracy.

Utilising relations UN (xi; 0) = U (xi; 0); (i = 0; 1; : : : ; N ) together with an extra condition, which
can be obtained as U ′(x0; 0) =U ′

N (x0; 0) since the +rst derivative of the approximate initial condition
shall agree with that of the exact initial condition, initial vector �0 can be determined from the
matrix equation



−1 1

1 1

1 1

. . .

1 1







�0
−1

�0
0

...

�0
N−1

�0
N




=




U ′(x0; 0)

U (x0; 0)

...

U (xN−1; 0)

U (xN ; 0)



;

which can be solved using a variant of the Thomas algorithm. Hence, the approximate solution
function U (x; t) can be recovered from �n using Eqs. (13) and (14) if required.

3.1. Stability analysis

A typical member of Eq. (19) in terms of the nodal parameters �nm is

�1�n+1
m−2 + �2�n+1

m−1 + �3�n+1
m + �2�n+1

m+1 + �1�n+1
m+2

=�4�nm−2 + �5�nm−1 + �6�nm + �7�nm+1 + �8�nm+2; (20)

where

�1 =
1

30
− 2

3

(
�2

3
+ �

)
+

4�2

3
; �2 =

26
30

− 4
3

(
�2

3
+ �

)
− 16�2

3
;

�3 =
66
30

+ 4
(
�2

3
+ �

)
+ 8�2; �4 =

1
30

+
�
6

+
�2

9
− 2�2

3
;

�5 =
26
30

+
5�
3

+
2�2

9
+

8�2

3
; �6 =

66
30

− 2�2

3
− 4�2;

�7 =
26
30

− 5�
3

+
2�2

9
+

8�2

3
; �8 =

1
30

− �
6

+
�2

9
− 2�2

3
:

For stability analysis it is convenient to use the Fourier method (see, e.g., [21]). Substituting the
Fourier mode �nm = %nei&mh; (i =

√−1) into scheme (20) gives the growth factor % of the form

% =
a + ib
c

;

where

a = (�4 + �8)cos(2&h) + (�5 + �7)cos(&h) + �6;

b = (�8 − �4)sin(2&h) + (�7 − �5)sin(&h)
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Table 1
Comparison of results at tf = 0:1 for � = 1, k = 0:00001 and various mesh sizes

Numerical Exact

x h = 0:1 h = 0:05 h = 0:025 h = 0:0125 h = 0:00625

0.1 0.11132 0.11051 0.11003 0.10978 0.10965 0.10954
0.2 0.21293 0.21141 0.21060 0.21019 0.20998 0.20979
0.3 0.29572 0.29386 0.29288 0.29238 0.29213 0.29190
0.4 0.35203 0.35004 0.34899 0.34845 0.34818 0.34792
0.5 0.37575 0.37375 0.37267 0.37212 0.37185 0.37158
0.6 0.36317 0.36122 0.36015 0.35960 0.35932 0.35905
0.7 0.31380 0.31198 0.31096 0.31044 0.31017 0.30991
0.8 0.23110 0.22958 0.22872 0.22827 0.22805 0.22782
0.9 0.12259 0.12177 0.12125 0.12097 0.12083 0.12069

‖e‖1 0.012165 0.006941 0.003651 0.001858 0.000928

and

c = 2�1 cos(2&h) + 2�2 cos(&h) + �3:

For the stability, % must be satis+ed the inequality |%|6 1 which is mathematically equivalent to
|a+ ib|2 −|c|26 0. By virtue of any algebraic package programme, it is seen that |a+ ib|2 −|c|26 0
for �¿ 0 and �¿ 0. So, scheme (20) is unconditionally stable.

4. Numerical result and conclusions

All calculations were performed in double precision arithmetic on a Pentium 4 processor using
Microsoft Fortran Compiler. The least-squares quadratic B-spline solution of the Burgers’ equation
leads to pentadiagonal matrix system, which is solved easily by using the Thomas algorithm.

In order to show how good the numerical solutions of the above problems in comparison with
the exact ones, we shall use the weighted 1-norm ‖e‖1 de+ned by

‖e‖1 =
1
N

N−1∑
i=1

∣∣∣∣U (xi; tj) − Ui;j

U (xi; tj)

∣∣∣∣ ; e = [e1; e2; : : : ; eN−1]T:

Tables 1 and 2 display the numerical solutions of problem (a) for di@erent values of mesh sizes
and viscosity coe?cients, respectively. It is observed that the numerical solutions are seen to be
satisfactorily in agreement with the exact ones, and exhibit the expected convergence as the grid
size h is re+ned.

The numerical solutions of problem (b) obtained by the present method have been compared with
the exact solution in Table 3 for � = 1:0; 0:1; 0:01 with h = 0:0125 and k = 0:0001 at times from
tf = 0:4 to 3.0. Again, good agreement with exact values is evident, as is convergence.

The numerical solutions of problem (c) are given in Table 4 for �=0:5, [a; b]=[0; 8] with h=0:05
and k = 0:0001 at tf = 1:5; 3:0 and 4.5. The agreement between our numerical results and the exact
solution is satisfactorily good. Since both solutions hit each other after x = 5:0, they are not given
in Table 4.
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Table 2
Comparison of results at di@erent times for � = 1:0; 0:1 and 0.01 with h = 0:0125 and k = 0:0001

� = 1:0 � = 0:1 � = 0:01

x tf Numerical Exact Numerical Exact Numerical Exact

0.25 0.4 0.01359 0.01357 0.31215 0.30889 0.34819 0.34191
0.6 0.00189 0.00189 0.24360 0.24074 0.27536 0.26896
0.8 0.00026 0.00026 0.19815 0.19568 0.22752 0.22148
1.0 0.00004 0.00004 0.16473 0.16256 0.19375 0.18819
3.0 0.00000 0.00000 0.02771 0.02720 0.07754 0.07511

0.50 0.4 0.01927 0.01924 0.57293 0.56963 0.66543 0.66071
0.6 0.00268 0.00267 0.45088 0.44721 0.53525 0.52942
0.8 0.00037 0.00037 0.36286 0.35924 0.44526 0.43914
1.0 0.00005 0.00005 0.29532 0.29192 0.38047 0.37442
3.0 0.00000 0.00000 0.04097 0.04021 0.15362 0.15018

0.75 0.4 0.01365 0.01363 0.63038 0.62544 0.91201 0.91026
0.6 0.00189 0.00189 0.49268 0.48721 0.77132 0.76724
0.8 0.00026 0.00026 0.37912 0.37392 0.65254 0.64740
1.0 0.00004 0.00004 0.29204 0.28747 0.56157 0.55605
3.0 0.00000 0.00000 0.03038 0.02977 0.22874 0.22481

Table 3
Comparison of results at di@erent times for � = 1:0; 0:1 and 0.01 with h = 0:0125 and k = 0:0001

� = 1:0 � = 0:1 � = 0:01

x tf Numerical Exact Numerical Exact Numerical Exact

0.25 0.4 0.01403 0.01400 0.32091 0.31752 0.36911 0.36226
0.6 0.00195 0.00195 0.24910 0.24614 0.28905 0.28204
0.8 0.00027 0.00027 0.20211 0.19956 0.23703 0.23045
1.0 0.00004 0.00004 0.16782 0.16560 0.20069 0.19469
3.0 0.00000 0.00000 0.02828 0.02776 0.07865 0.07613

0.50 0.4 0.01988 0.01985 0.58788 0.58454 0.68818 0.68368
0.6 0.00276 0.00276 0.46174 0.45798 0.55425 0.54832
0.8 0.00038 0.00038 0.37111 0.36740 0.46011 0.45371
1.0 0.00005 0.00005 0.30183 0.29834 0.39206 0.38568
3.0 0.00000 0.00000 0.04185 0.04107 0.15576 0.15218

0.75 0.4 0.01409 0.01407 0.65054 0.64562 0.92194 0.92050
0.6 0.00195 0.00195 0.50825 0.50268 0.78676 0.78299
0.8 0.00027 0.00027 0.39068 0.38534 0.66777 0.66272
1.0 0.00004 0.00004 0.30057 0.29586 0.57491 0.56932
3.0 0.00000 0.00000 0.03106 0.03044 0.23183 0.22774
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Table 4
Comparison of results at di@erent times for � = 0:5 and [a; b] = [0; 8] with h = 0:05 and k = 0:0001

tf = 1:5 tf = 3:0 tf = 4:5

x Numerical Exact Numerical Exact Numerical Exact

0.5 0.15398 0.15327 0.06468 0.06426 0.03825 0.03799
1.0 0.26634 0.26577 0.11942 0.11880 0.07231 0.07187
1.5 0.30451 0.30412 0.15576 0.15509 0.09847 0.09793
2.0 0.26190 0.26142 0.16832 0.16762 0.11399 0.11339
2.5 0.17268 0.17217 0.15699 0.15630 0.11761 0.11698
3.0 0.08839 0.08807 0.12803 0.12738 0.11011 0.10949
3.5 0.03594 0.03582 0.09185 0.09134 0.09425 0.09369
4.0 0.01189 0.01186 0.05834 0.05798 0.07409 0.07361
4.5 0.00325 0.00325 0.03305 0.03284 0.05367 0.05330
5.0 0.00074 0.00074 0.01684 0.01674 0.03597 0.03572

Fig. 1. Solutions at di@erent times for � = 0:001; h = 0:005; k = 0:125.

It is known that the exact solutions for �¡ 0:01 fail because of the slow convergence of the
in+nite series (see, e.g., [14]). Therefore, these results are not compared to the exact solutions.
Nevertheless, in order to show how good the numerical predictions of the problems (a) and (b) for
�¡ 0:01 exhibit the correct physical behaviour of problem we give the graphs in Figs. 1 and 2,
which show the numerical solutions at di@erent times for � = 0:001 with k = 0:125 and h = 0:005.

Fig. 3 illustrates the numerical and exact solutions of problem (c) at di@erent values of t for
� = 0:005 with h = 0:012 and k = 0:05. Both solutions of the problem are drawn on the same
diagram, but curves cannot be distinguishable since they are very close to each other.
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Fig. 2. Solutions at di@erent times for � = 0:001; h = 0:005; k = 0:125.

Fig. 3. Solutions at di@erent times for � = 0:005; h = 0:012; k = 0:05.

In this paper, a numerical method based on the least-squares +nite element method using quadratic
B-splines as trial functions has been presented to +nd numerical solutions of Burgers-like equations
with a set of boundary and initial conditions. It is known that the use of higher order of B-splines in
the numerical methods provides least errors theoretically. However, the use of higher-order B-spline
functions increases computational complexity. For instance, if the cubic B-splines were used in place
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of the quadratic ones, the second-order Burgers’ equation considered in this study would reduce to
a septadiagonal matrix system which is rather expensive computationally.

We conclude that a least-squares quadratic B-spline +nite element method is capable of solving
Burgers-like equations since it produces reasonably good results, even for small values of viscosity.
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