Generalizing the Recursion Relationship for the Partition Function

Jiuzhao Hua*

School of Mathematics, University of New South Wales, Sydney 2052, Australia

Communicated by George Andrews

Received November 13, 1996

The known recursion relationship for the partition function \(p(n) \) which represents the number of partitions of the positive integer \(n \) is exhibited as the limit as \(q \to \infty \) in one identity and as the case 1 substituted for \(q \) in a second formula that arise from a matrix problem over the field of \(q \) elements. Such identities can be further generalized. © 1997 Academic Press

1. INTRODUCTION

The partition function \(p(n) \) is determined by the following identity:

\[
1 + \sum_{n=1}^{\infty} p(n) t^n = \prod_{n=1}^{\infty} (1 - t^n)^{-1}.
\]

Differentiation of this followed by multiplication by \(t \) yields

\[
p(n) = \frac{1}{n} \sum_{r=1}^{n} \sigma(r) p(n - r),
\]

where \(\sigma(r) \) represents the sum of divisors of \(r \).

In this paper we write \(\lambda \vdash n \) to denote “\(\lambda \) is a partition of \(n \)” \(\lambda \vdash n \) to denote the largest part of \(\lambda \), and set \(n = |\lambda| \). For positive integer \(r \), let \(\psi_r(q) \) denote the polynomial \((1 - q)(1 - q^2)\cdots(1 - q^r)\) and set \(\psi_0(q) = 1 \). Given a partition \(\mu = (1^n 2^\cdot \cdot \cdot) \), we let \(\beta_\mu(q) = \prod_{r \geq 1} \psi_{\mu_r}(q) \), and define

\[
P_\mu(n, q) = \sum_{\mu \vdash n} \frac{1}{\beta_\mu(q^{-1})}.
\]

* Research supported by Australian Research Council Small Grant S150343.

0097-3165/97 $25.00

Copyright © 1997 by Academic Press

All rights of reproduction in any form reserved.
Thus $\lim_{q \to \infty} P_1(n, q) = p(n)$. Likewise we define

$$H_1(n, q) = \sum_{d|n} \frac{1}{d} 1 - q^d,$$

thus $\lim_{q \to \infty} H_1(n, q) = \sum_{d|n} n/d = \sigma(n)$.

Two generalizations of formula (1) are given in this paper. One is the following:

$$P_1(n, q) = \frac{1}{n} \sum_{r=1}^n H_1(r, q) P_1(n-r, q),$$

which turns out to be formula (1) when $q \to \infty$. The other is

$$M_1(n, q) = \sum_{r=1}^n E_1(r, q) M_1(n-r, q),$$

where $M_1(n, q) = \sum_{i=0}^n q^{i^2}$, $E_1(n, q) = \sum_{d|n} dq^{d^2}$. It turns out to be formula (1) when q is substituted by 1. More general functions $P_g(n, q)$, $H_g(n, q)$, $M_g(n, q)$ and $E_g(n, q)$ for $g \geq 1$ are introduced later, and satisfy similar formulae.

2. THE MATRIX PROBLEM

Let g be a fixed non-negative integer, q a prime power, F_q the field of q elements, \overline{F}_q the algebraic closure of F_q. Let n be any positive integer, G_n be the general linear group of degree n over F_q, and C_n be a subset of G_n containing one element from each conjugacy class of G_n. Let $M_g(n, q)$ denote the number of classes of ordered g-tuples of $n \times n$ matrices over F_q up to simultaneous similarity. In this context the Molien-Burnside orbit counting formula becomes:

$$M_g(n, q) = \frac{1}{|G_n|} \sum_{\gamma \in G_n} |X_{\gamma}|^g = \sum_{\gamma \in C_n} |X_{\gamma}|^g,$$

where $X_{\gamma} = \{ x \in M_g(F_q) \mid \gamma x \gamma^{-1} = x \}$, $Z_{\gamma} = \{ x \in G_n \mid \gamma x \gamma^{-1} = x \}$.

Let Φ denote the set of all irreducible monic polynomials in t over F_q, other than t, and let P denote the set of partitions of positive integers. For each $f \in \Phi$, let $d(f)$ denote the degree of f, $J(f)$ denote the companion matrix of f (see Macdonald [4], page 140), and for $m \geq 1$ let $J_m(f)$ denote the Jordan block matrix consisting of m^2 block $d(f) \times d(f)$ matrices with $J(f)$ in each diagonal block. For any partition $\pi = (1^{n_1} 2^{n_2} \cdots) \in P$, let

$$J(f, \pi) = J_1(f)^{n_1} \oplus J_2(f)^{n_2} \oplus \cdots.$$
This is a diagonal block matrix with \(n_i \) copies of \(J_i(f) \) in the diagonal. Then any element of \(G_n \) has Jordan canonical form as follows:

\[
J(f_1, \pi_1) \oplus J(f_2, \pi_2) \oplus \cdots \oplus J(f_k, \pi_k),
\]

with \(\sum_{i=1}^k d(f_i) |\pi_i| = n \), where \(f_1, \ldots, f_k \) are distinct polynomials from \(\Phi \), and where \(\pi_1, \ldots, \pi_k \in \mathcal{P} \), \(k \) is some positive integer.

Let \(\mathbb{N} \) denote the set of positive integers. Given a partition \(\mu = (\mu_1, \mu_2, \ldots) \) with \(\mu_1 \geq \mu_2 \geq \cdots \), we define \(n(\mu) = \sum_{i \geq 1} (i-1) \mu_i \).

Lemma 1. Given a partition \(\mu = (1^{n_1}2^{n_2}\cdots k^{n_k}), k \in \mathbb{N} \), there holds:

\[
\sum_{j=1}^k \sum_{i=1}^k n_i n_j \min(i, j) = |\mu| + 2n(\mu).
\]

Proof. Let \(\mu' = (\mu_1', \mu_2', \ldots) \) be the conjugate partition of \(\mu \), then \(\mu_i' = \sum_{j \geq 1} n_j \). Moreover \(n(\mu) = \sum_{i \geq 1} (\binom{i}{2}) \) (Macdonald [4], page 3).

\[
2n(\mu) = 2 \left(\binom{n_1 + n_2 + \cdots + n_k}{2} + 2 \binom{n_2 + n_3 + \cdots + n_k}{2} + \cdots + 2 \binom{n_k}{2} \right)
= (n_1 + n_2 + \cdots + n_k)(n_1 + n_2 + \cdots + n_k - 1)
+ (n_2 + n_3 + \cdots + n_k)(n_2 + n_3 + \cdots + n_k - 1) + \cdots + n_k(n_k - 1)
= n_1(n_1 + n_2 + n_3 + \cdots + n_k) + n_2(n_1 + 2n_2 + 2n_3 + \cdots + 2n_k)
+ \cdots + n_k(n_1 + 2n_2 + 3n_3 + \cdots + kn_k)
= \sum_{i=1}^k \sum_{j=1}^k n_i n_j \min(i, j) - |\mu|.
\]

Lemma 2. For any \(f \in \Phi \) with \(d(f) = d \), \(\mu = (1^{n_1}2^{n_2}\cdots k^{n_k}) \in \mathcal{P} \), the following formulae hold:

\[
|Z_{J_1, f, \mu}| = q^{d|\mu| + 2n(\mu)} b^d q^{-d},
\]

\[
|X_{J_1, f, \mu}| = q^{d|\mu| + 2n(\mu)}.
\]

Proof. The first formula is given by Macdonald ([4], page 139). The second is proved as follows.

Let \(A = F_q[x] \), \(\hat{A} = A \otimes_{F_q} \hat{F}_q \). Given any \(m \times m \) matrix \(x \) over \(F_q \), we define an \(A \)-module structure on \(F_q^m \) by \(x \cdot v = xv \) for \(v \in F_q^m \). Let \(V_n \) denote this module, and define \(\hat{V}_n = V_n \otimes_{F_q} \hat{F}_q \). Obviously, \(X_{J_1, f, \mu} = \text{End}_A(V_{J_1, f, \mu}) \).

Note that \(\text{End}_A(V_{J_1, f, \mu}) \) is a finite dimensional vector space over \(F_q \), which...
has the same dimension as $\text{End}_A(\tilde{P}_{J(f, \mu)})$ over \tilde{F}_q. This reduces the calculation to the corresponding calculation over the field \tilde{F}_q. Since $J(f, \mu) = J_1(f, \mu) \oplus J_2(f, \mu) \oplus \cdots$, it follows that $\tilde{P}_{J(f, \mu)} \cong \tilde{P}_{J_1(f, \mu)} \oplus \tilde{P}_{J_2(f, \mu)} \oplus \cdots$. Therefore,

$$\text{End}_A(\tilde{P}_{J(f, \mu)}) \cong \bigoplus_{i,j \geq 1} \text{Hom}_A(\tilde{P}_{J_1(f, \mu)}, \tilde{P}_{J_2(f, \mu)})$$

The classical theorem that any finite field is separable implies that for any irreducible monic polynomial $f(t)$ in $F_q[t]$ there is an invertible matrix X with entries in F_q such that $XJ(f(t))X^{-1}$ is diagonal with distinct diagonal entries $\lambda_1, \ldots, \lambda_d$. Here $f(t) = \prod_{i=1}^d (t - \lambda_i)$. Thus $J(f)$ is similar over F_q to $J(\lambda_1, i) \oplus \cdots \oplus J(\lambda_d, i)$, where $J(\lambda, i)$ represents the Jordan normal form. Therefore,

$$\text{Hom}_A(\tilde{P}_{J_1(f, \mu)}, \tilde{P}_{J_2(f, \mu)}) \cong \bigoplus_{i,j \geq 1} \text{Hom}_A(\tilde{P}_{J_1(f, \mu)}, \tilde{P}_{J_2(f, \mu)}) \cong \bigoplus_{i,j \geq 1} \text{Hom}_A(\tilde{P}_{J_1(f, \mu)}, \tilde{P}_{J_2(f, \mu)}) \cong \bigoplus_{i,j \geq 1} \text{Hom}_A(\tilde{P}_{J_1(f, \mu)}, \tilde{P}_{J_2(f, \mu)})$$

An elementary calculation with matrices reveals that

$$\dim_{F_q} \text{Hom}_A(\tilde{P}_{J_1, i}, \tilde{P}_{J_2, j}) = \min(i, j).$$

Thus

$$\dim_{F_q} X_{J(f, \mu)} = \sum_{i \geq 1} \sum_{j \geq 1} n_in_j \dim_{F_q} \text{Hom}_A(\tilde{P}_{J_1(f, \mu)}, \tilde{P}_{J_2(f, \mu)}) = \sum_{i \geq 1} \sum_{j \geq 1} n_in_j \min(i, j)d = d||\mu| + 2n(\mu)|| \quad \text{by Lemma 1}.\] Finally, $|X_{J(f, \mu)}| = q^d||\mu| + 2n(\mu)||$. Note that these formulae depend only on the degree of f.\]

Now we let $P_\mu(0, q) = 1$. For $n \geq 1$, we define

$$P_\mu(n, q) = \sum_{\mu \geq n} \frac{q^{(\mu - 1)\mu + 2n(\mu)}}{h_\mu(q^{-1})}.$$
Theorem 3. The generating function of $M_\epsilon(n, q)$ ($n \geq 0$) can be factorized as follows:

$$1 + \sum_{n=1}^{\infty} M_\epsilon(n, q) t^n = \prod_{d=1}^{\infty} \left(1 + \sum_{j=1}^{\infty} P(d, q^d) t^d \right)^{\phi(d)},$$

where t is an indeterminate, and where $\phi(d)$ denotes the number of polynomials in Φ which have degree d. Note that exceptionally $\phi(1) = q - 1$.

Proof.

$$1 + \sum_{n=1}^{\infty} M_\epsilon(n, q) t^n = 1 + \sum_{n=1}^{\infty} \sum_{\pi \in C_n} \frac{|X_{\pi}|}{|Z_{\pi}|} t^n$$

where the summation is over $f \in \Phi$, which are distinct,

$$= 1 + \sum_{n=1}^{\infty} \sum_{f_1, \ldots, f_k \in \Phi} \frac{|X_{f_1, \ldots, f_k}|}{|Z_{f_1, \ldots, f_k}|} t^n \prod_{i=1}^{k} (d(f_i) | \pi_i|)$$

where the summation is over $f \in \Phi$, which are distinct,

$$= \prod_{f \in \Phi} \left(1 + \sum_{\pi \in \Phi} \frac{|X_{f, \pi}|}{|Z_{f, \pi}|} t^n \right)^{\phi(|f|)}$$

(by Lemma 2)

$$= \prod_{d=1}^{\infty} \left(1 + \sum_{j=1}^{\infty} P(d, q^d) t^d \right)^{\phi(d)} .$$

Let $M = (M_1, \ldots, M_g)$ be an ordered g-tuple of $n \times n$ matrices over F_q. Recall that M is said to be decomposable over F_q if there exists an invertible $n \times n$ matrix X with entries in F_q such that

$$(X M_1 X^{-1}, \ldots, X M_g X^{-1}) = \left(\begin{array}{cc} A_1 & 0 \\ 0 & B_1 \end{array} \right), \ldots, \left(\begin{array}{cc} A_g & 0 \\ 0 & B_g \end{array} \right) ,$$
and A_1, \ldots, A_s are square matrices with the same degree. Otherwise M is said to be indecomposable over F_q. Now, let $I_g(n, q)$ denote the number of classes of indecomposable ordered g-tuples of $n \times n$ matrices over F_q up to simultaneous similarity. The Krull–Schmidt Theorem states that every g-tuple of $n \times n$ matrices over a field can be written as a direct sum of indecomposable g-tuples in a unique way up to order. Thus

$$1 + \sum_{n=1}^{\infty} M_g(n, q) t^n = \prod_{i=1}^{\infty} (1 - t)^{-l_i(i, q)}.$$

Then, by Theorem 3,

$$\prod_{d=1}^{\infty} \left(1 + \sum_{j=1}^{\infty} P_g(j, q^d) t^{dj} \right)^{\phi_d(q)} = \prod_{i=1}^{\infty} (1 - t)^{l_i(i, q)}.$$

This implies upon taking logarithms:

$$\sum_{d=1}^{\infty} \phi_d(q) \log \left(1 + \sum_{j=1}^{\infty} P_g(j, q^d) t^{dj} \right) = \sum_{i=1}^{\infty} I_g(i, q) \log \frac{1}{1-t}.$$

Now, we define

$$\log m_g(q, t) = \log \left(1 + \sum_{j=1}^{\infty} P_g(j, q) t^j \right).$$

Note that the constant term of $\log m_g(q, t)$ is 0. Therefore,

$$\log \left(1 + \sum_{n=1}^{\infty} M_g(n, q) t^n \right) = \sum_{i=1}^{\infty} I_g(i, q) \log \frac{1}{1-t} = \sum_{d=1}^{\infty} \phi_d(q) \log \log m_g(q^d, t^d).$$

(2)

For $i \geq 1$, we define $H_g(i, q)$ by

$$\log \left(1 + \sum_{j=1}^{\infty} P_g(j, q) t^j \right) = \sum_{i=1}^{\infty} \frac{1}{i} H_g(i, q) t^i;$$

and define $E_g(i, q)$ by

$$\log \left(1 + \sum_{j=1}^{\infty} M_g(j, q) t^j \right) = \sum_{i=1}^{\infty} \frac{1}{i} E_g(i, q) t^i.$$

Thus, identity (2) implies that

$$E_g(n, q) = \sum_{r \mid n} r \phi_r(q) H_g \left(\frac{1}{r}, q^r \right).$$
LEMMA 4.

\[I_g(n, q) = \frac{1}{n} \sum_{d|n} \mu(d) E_g \left(\frac{n}{d}, q \right), \]

where \(\mu \) is the classical Möbius function.

Proof.

\[
\begin{align*}
\sum_{i=1}^{\infty} \frac{1}{i} E_g(i, q) t^i &= \sum_{i=1}^{\infty} I_g(i, q) \log \frac{1}{1-t^i} \\
&= \sum_{i=1}^{\infty} I_g(i, q) \sum_{j=1}^{\infty} \frac{1}{j} t^i \\
&= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{1}{j} I_g(i, q) t^i.
\end{align*}
\]

By comparing the coefficients of \(t^n \) on both sides, we have

\[I_g(n, q) = \sum_{d|n} \frac{1}{d} I_g \left(\frac{n}{d}, q \right). \]

It follows that

\[E_g(n, q) = \sum_{d|n} n I_g \left(\frac{n}{d}, q \right) = \sum_{d|n} d I_g(d, q). \]

Möbius inversion of this shows that

\[I_g(n, q) = \frac{1}{n} \sum_{d|n} \mu(d) E_g \left(\frac{n}{d}, q \right). \]

Let \(A_g(n, q) \) denote the number of classes of absolutely indecomposable ordered \(g \)-tuples of \(n \times n \) matrices over \(F_q \) up to simultaneous similarity. Recall that an ordered \(g \)-tuple is said to be absolutely indecomposable if it remains indecomposable when the field is extended to \(F_q \).

THEOREM 5. (Kac) \(I_g(n, q) \) and \(A_g(n, q) \) are linked by the following formulae:

\[
\begin{align*}
I_g(n, q) &= \sum_{d|n} \frac{1}{d} \sum_{r|d} \mu \left(\frac{d}{r} \right) A_g \left(\frac{n}{d}, q^r \right), \\
A_g(n, q) &= \sum_{d|n} \frac{1}{d} \sum_{r|d} \mu(r) I_g \left(\frac{n}{d}, q^r \right).
\end{align*}
\]
Proof. The first identity is given by Kac ([2], page 91), and can be found in Le Bruyn ([3] page 153). The second is the M"obius inverse of the first.

The following simple identity is needed below in dealing with double summations over divisors of integers:

$$\sum_{d \mid n} \sum_{r \mid n} f(d, r) = \sum_{r \mid n} \sum_{d \mid n/r} f(d, r) = \sum_{r \mid n} \sum_{d \mid n/r} \left(\frac{n}{r} \right).$$

The following is a known formula modified in the case $n = 1$:

$$\phi_n(q) = \frac{1}{n} \sum_{d \mid n} \mu(d)(q^{nd} - 1).$$

The M"obius inverse of this amounts to the following formula:

$$\sum_{d \mid n} \mu(d) \phi_{n,d}(q^n) = \mu(n)(q - 1).$$

Lemma 6.

$$A_q(n, q) = \frac{1}{n} \sum_{d \mid n} \mu(d) E_q \left(\frac{n}{d}, q^n \right).$$

Proof.

$$A_q(n, q) = \sum_{d \mid n} \frac{1}{d} \sum_{r \mid d} \mu(r) E_q \left(\frac{n}{d}, q^n \right)$$

$$= \sum_{d \mid n} \frac{1}{d} \sum_{r \mid d} \mu(r) \frac{d}{n} \sum_{s \mid n/d} \mu \left(\frac{n}{ds} \right) E_q(s, q^n) \quad \text{(by Lemma 4)}$$

$$= \frac{1}{n} \sum_{r \mid n} \sum_{d \mid r} \sum_{s \mid n/d} \mu(r) \mu \left(\frac{n}{ds} \right) E_q(s, q^n)$$

$$= \frac{1}{n} \sum_{r \mid n} \sum_{s \mid n/r} \sum_{d \mid n/rs} \mu(r) \mu \left(\frac{n}{rd} \right) E_q(s, q^n)$$

$$= \frac{1}{n} \sum_{r \mid n} \sum_{s \mid n/r} E_q(s, q^n) \sum_{d \mid n/rs} \mu \left(\frac{n}{rd} \right)$$

$$= \frac{1}{n} \sum_{r \mid n} \mu(r) E_q \left(\frac{n}{r}, q^n \right). \quad \Box$$
Theorem 7.

\[A_g(n, q) = \frac{q - 1}{n} \sum_{d|n} \mu(d) H_e \left(\frac{n}{d}, q^d \right). \]

Proof.

\[A_g(n, q) = \frac{1}{n} \sum_{d|n} \mu(d) E_
u \left(\frac{n}{d}, q^d \right) \quad \text{(by Lemma 6)} \]

\[= \frac{1}{n} \sum_{d|n} \mu(d) \sum_{r|n/d} \phi_r(q^d) H_e \left(\frac{n}{d}, q^d \right) \]

\[= \frac{1}{n} \sum_{r|n} \sum_{d|r} \mu(d) \frac{n}{dr} \phi_{r,d}(q^d) H_e (r, q^{nd}) \]

\[= \frac{1}{n} \sum_{r|n} \sum_{d|r} \mu(d) \frac{r}{dr} \phi_{r,d}(q^d) H_e \left(\frac{n}{r}, q^r \right) \]

\[= \frac{q - 1}{n} \sum_{r|n} \mu(r) H_e \left(\frac{n}{r}, q^r \right) \quad \text{(by (3)).} \]

Remark. For fixed \(n \) and \(g \) the functions \(M_g(n, q) \), \(I_g(n, q) \), \(A_g(n, q) \) of \(q \) are evidently rational functions of \(q \). As they take integer values for all integers \(q \) that are powers of primes, these functions are polynomial functions of \(q \) with rational coefficients. They have been calculated in various cases by Diane Maclagan and the author. The polynomials \(A_g(n, q) \) appear to have non-negative integer coefficients while \(I_g(n, q) \) do not. This can be viewed as extra support for Kac’s conjecture. More detail about Kac’s conjecture can be found in Le Bruyn [3].

3. RECURRENCE FORMULAE

In this section we prove the main results of this paper.

Proposition 8. \(P_g(n, q) \) and \(M_g(n, q) \) satisfy the following recursion formulae:

\[P_g(n, q) = \frac{1}{n} \sum_{r=1}^{n} H_g(r, q) P_g(n-r, q). \]

\[M_g(n, q) = \frac{1}{n} \sum_{r=1}^{n} E_g(r, q) M_g(n-r, q). \]
Proof. By the definition of $H_g(r, q)$, we have the following identity:

$$\log \left(\sum_{r=0}^{\infty} P_g(r, q)t^r \right) = \sum_{r=1}^{\infty} H_g(r, q)t^r/r.$$

Differentiate both sides respecting to t, we have

$$\frac{\sum_{r=1}^{\infty} rP_g(r, q)t^{r-1}}{\sum_{r=0}^{\infty} P_g(r, q)t^r} = \sum_{r=1}^{\infty} H_g(r, q)t^{r-1}.$$

Thus,

$$\sum_{r=1}^{\infty} rP_g(r, q)t^{r-1} = \left(\sum_{r=1}^{\infty} H_g(r, q)t^{r-1} \right) \left(\sum_{r=0}^{\infty} P_g(r, q)t^r \right).$$

By comparing the coefficients of t^{r-1} on both sides, we get

$$nP_g(n, q) = \sum_{r=1}^{n} H_g(r, q) P_g(n-r, q).$$

Thus the first recursion formula has been established.

As $\log(\sum_{r=\geq 0} M_g(r, q)t^r) = \sum_{r=1} E_g(r, q)t^r/r$, the second identity can be proved similarly.

Proposition 9. The functions $H_1(n, q)$, $P_1(n, q)$, $E_1(n, q)$ and $M_1(n, q)$ have the forms specified in the introduction.

Proof. Let $g=1$. By the Jordan Normal Form Theorem, the classes of $n \times n$ of matrices over \mathbb{F}_q under conjugation are in one-one correspondence with Jordan normal forms $J(\lambda, n)$, where $\lambda \in \mathbb{F}_q$. As a consequence, $A_1(n, q) = q$ for all $n \geq 1$.

The Möbius inverse of Theorem 7 with $g=1$ now amounts to

$$H_1(n, q) = \sum_{d \mid n} \mu(n/d) q^d q^{d-1} = \sum_{d \mid n} \frac{1}{d-1} q^{n-d}.$$

By the definition of $P_1(n, q)$ in Section 2, $P_1(n, q)$ has the form as required.

Möbius inversion of Lemma 6 shows that $E_1(n, q) = \sum_{d \mid n} d A_1(d, q) q^{d-1}$, so $E_1(n, q) = \sum_{d \mid n} dq^{n-d}$.
Let $R_i(n, q) = \sum_{\lambda \vdash n} q^{\lambda(i)}$. Note that $\sum_{\lambda \vdash n} q^{\lambda(i)} = \sum_{\lambda \vdash n} q^{\lambda'}$, where λ' is the partition conjugate to λ. Also note that $l(\lambda')$ is equal to the number of parts of λ. We claim that $M_i(n, q) = R_i(n, q)$. In fact,

$$1 + \sum_{n=1}^{\infty} R_i(n, q) t^n = 1 + \sum_{\lambda \vdash n} q^{\lambda(i)} t^n$$

$$= 1 + \sum_{\lambda \vdash n, \lambda' \vdash n} q^{\lambda(i)} t^{\lambda(i)}$$

$$= 1 + \sum_{\lambda \vdash n, \lambda' \vdash n} (q t^i)^{n_1} (q t^i)^{n_2} (q t^i)^{n_3} \ldots$$

$$= \prod_{i=1}^{\infty} \left(1 + \sum_{j=1}^{\infty} (q t^i)^{j}\right)$$

$$= \prod_{i=1}^{\infty} \frac{1}{1 - q t^i}.$$

Thus, taking logarithms on both sides implies

$$\log \left(1 + \sum_{n=1}^{\infty} R_i(n, q) t^n\right) = \sum_{i=1}^{\infty} \log \frac{1}{1 - q t^i}$$

$$= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{1}{j} (q t^i)^{j}$$

$$= \sum_{n=1}^{\infty} \left(\sum_{d|n} \frac{d}{n} q^{n/d}\right) t^n$$

$$= \sum_{n=1}^{\infty} E_i(n, q) t^n/n.$$

Therefore, $\log(1 + \sum_{n=1}^{\infty} R_i(n, q) t^n) = \log(1 + \sum_{n=1}^{\infty} M_i(n, q) t^n)$. It follows that $M_i(n, q) = R_i(n, q) = \sum_{\lambda \vdash n} q^{\lambda(i)}$, for all $n \geq 1$.

Corollary 10.

$$1 + \sum_{n=1}^{\infty} M_i(n, q) t^n = \prod_{n=1}^{\infty} \frac{1}{1 - q t^n}.$$

Remark. Le Bruyn mentioned analogous characteristic 0 results due to H. Kraft and D. Peterson in [3]. More precisely, if C is an algebraically closed field of characteristic 0, and $R_{\text{iso}}(S_1, n|\lambda)$ denotes the isomorphism classes of n-dimensional representations of $C[x]$ whose root-multiplicity-partition is conjugate to λ (see Le Bruyn [3], page 144), then $R_{\text{iso}}(S_1, n|\lambda)$
is in a natural way an affine space of dimension equal to \(l(\lambda) \). This can be translated into the following identity:

\[
1 + \sum_{n=1}^{\infty} \sum_{\lambda \vdash n} s^{-\dim R^{n}(S, n(\lambda))} t^n = \prod_{n=1}^{\infty} \frac{1}{1 - t^n}.
\]

The rest of this section is devoted to the algebraic interpretation of Corollary 10. Let \(F \) be any field, \(M_n(F) \) be the set of all \(n \times n \) matrices over \(F \), \(GL_n(F) \) be the general linear group. \(GL_n(F) \) acts on \(M_n(F) \) by conjugation, the orbit space is denoted by \(M_n(F)/GL_n(F) \). Let \(f \) be a monic polynomial over \(F \), say \(f(t) = t^n - a_{m-1}t^{m-1} - \cdots - a_1 t - a_0 \), recall that the companion matrix \(J(f) \) of \(f \) is defined by:

\[
J(f) =
\begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
a_0 & a_1 & a_2 & \cdots & a_{m-1}
\end{bmatrix}
\]

By Theorem 24 (Birkhoff–Mac Lane [1], page 332), we know that any \(n \times n \) matrix \(M \) over \(F \) is similar over \(F \) to one and only one direct sum of companion matrices \(J(f_1) \oplus J(f_2) \oplus \cdots \oplus J(f_k) \), such that \(f_{i+1} \mid f_i \) for all \(i \leq k - 1 \), where \(f_i \) (\(i \geq 1 \)) are monic polynomials over \(F \). Note that \(\sum_{i=1}^{k} \deg f_i = n \), thus \(\lambda = (\deg f_1, \deg f_2, \ldots, \deg f_k) \) forms a partition of \(n \). We call \(\lambda \) the rational partition afforded by \(M \).

Theorem 11. Let \(Q_\lambda \) denote the set of all similarity classes whose rational partitions are \(\lambda \), then

\[
M_n(F)/GL_n(F) = \bigcup_{\lambda \vdash n} Q_\lambda,
\]

where the union is a disjoint union. \(Q_\lambda \) is in a natural way an affine space of dimensional equal to \(l(\lambda) \).

Proof. The first statement follows from the Rational Canonical Form Theorem.

Suppose \(\lambda = (\lambda_1, \ldots, \lambda_k) \). Let \(\mu_i = \lambda_i - \lambda_{i+1} \) for \(i \leq k - 1 \), and \(\mu_k = \lambda_k \). By the previous discussion, every \(M \in Q_\lambda \) is similar uniquely over \(F \) to \(J(f_1) \oplus J(f_2) \oplus \cdots \oplus J(f_k) \), where \(f_i \) is some monic polynomial of degree \(\lambda_i \) over \(F \), such that \(f_{i+1} \mid f_i \) for all \(i \leq k - 1 \). Now, let \(g_i = f_i/f_{i+1} \) for \(i \leq k - 1 \), and \(g_k = f_k \), then \(g_i \) is a monic polynomial of degree \(\mu_i \) over \(F \) for all \(i \geq 1 \). Note that \(g_i \) (\(1 \leq i \leq k \)) are uniquely determined by \(M \), and vice versa. Thus
the elements in \mathbb{Q}_1 are in one-one correspondence with the elements in the following set:

$$S = \{ (g_1, \ldots, g_k) \mid g_i \in \mathbb{F}[t] \text{ monic, } \deg g_i = \mu_i, \ 1 \leq i \leq k \}.$$

If we define $S_i = \{ g \mid g \in \mathbb{F}[t] \text{ monic, } \deg g = \mu_i \}$, then $S = \bigcap_{i=1}^{k} S_i$, where the product is the Cartesian product. It is trivial to prove that S_i is in a natural way isomorphic to the affine space \mathbb{F}^{μ_i}. Note that $\mu_1 + \cdots + \mu_k = \lambda_1 = l(\lambda)$, thus Q_1 is in a natural way isomorphic to the affine space $\mathbb{F}^{\lambda(\lambda)}$. Here “natural” means compatible with change of field.

ACKNOWLEDGMENTS

I am deeply grateful to my supervisor Dr. Peter Donovan for his careful supervision and enlightening discussion. Use has been made of a report written as a vacation project by Diane Maclagan (Christchurch, New Zealand) under the supervision of Dr. Donovan. I also thank Dr. Jie Du for his valuable suggestions and comments.

REFERENCES