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Abstract

An n × n sign pattern Sn is potentially nilpotent if there is a real matrix having sign pattern Sn

and characteristic polynomial xn. A new family of sign patterns Cn with a cycle of every even length is
introduced and shown to be potentially nilpotent by explicitly determining the entries of a nilpotent matrix
with sign pattern Cn. These nilpotent matrices are used together with a Jacobian argument to show that
Cn is spectrally arbitrary, i.e., there is a real matrix having sign pattern Cn and characteristic polynomial
xn +∑n

i=1(−1)iμix
n−i for any real μi . Some results and a conjecture on minimality of these spectrally

arbitrary sign patterns are given.
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1. Introduction

A real n × n matrix Yn = [yij ] has an associated digraph D(Yn) with vertices 1, 2, . . . , n

and an arc (i, j) from vertex i to vertex j if and only if yij /= 0. If yii /= 0, then the simple
cycle (i, i) of length 1 in D(Yn) is called a loop at vertex i, and its associated cycle product of
size 1 is yii . A simple cycle of length k � 2 (called a k-cycle) in D(Yn) is a sequence of arcs
(v1, v2), (v2, v3), . . . , (vk−1, vk), (vk, v1) with k distinct vertices, and its associated cycle product
of size k is (−1)k+1yv1v2yv2v3 . . . yvk−1vk

yvkv1 . A composite cycle of length k is a set of vertex
disjoint simple cycles with lengths summing to k. Its associated cycle product of size k is (−1)m

times the product of all matrix entries corresponding to these vertex disjoint cycles, where m is
the number of such cycles of even length. If the characteristic polynomial of Yn, det(xI − Yn), is
given by

pn(x) = xn − μ1x
n−1 + μ2x

n−2 − · · · + (−1)nμn, (1.1)

then it is well known that the coefficient μi of (−1)ixn−i for 1 � i � n in the characteristic
polynomial of Yn is the sum of all cycle products of size i (see, for example, [4]).

A fixed matrix Yn = [yij ] has an associated sign pattern (matrix) Sn = [sij ] with sij =
sgn(yij ) for all i, j , where sgn(yij ) = +, −, 0 according as yij is positive, negative, zero, respec-
tively. We denote by Q(Sn) the set of all real matrices with associated sign pattern Sn, thus
Yn ∈ Q(Sn). Also D(Sn) = D(Yn) and cycles in D(Sn) are defined as above for D(Yn). A
sign pattern Sn is a spectrally arbitrary pattern (SAP) if given any real monic polynomial pn(x)

of degree n, there exists a real matrix Yn ∈ Q(Sn) with characteristic polynomial pn(x). A sign
pattern Sn is potentially nilpotent if there exists a matrix Yn ∈ Q(Sn) that is nilpotent, i.e., the
characteristic polynomial of Yn is xn. If Sn is a SAP, then clearly Sn is potentially nilpotent, but
the converse is not necessarily true. However, Drew et al. [3] developed a methodology (based on
the implicit function theorem) of using a nilpotent matrix Yn to determine a spectrally arbitrary
pattern.

The first known family of spectrally arbitrary patterns (for all n � 2) was given in [7] and is
based on constructions using a Soules matrix. If Sn is a SAP, but no proper subpattern of Sn

is a SAP, then Sn is a minimal SAP. The first known families of minimal spectrally arbitrary
patterns were given in [1] by using the methodology of [3]. This was also used by Cavers and
Vander Meulen [2] to introduce other families of SAPs. More recently, all spectrally arbitrary
patterns with an associated star graph were determined in [6]. The characteristic polynomial of a
matrix with a star graph is relatively simple, and consequently the matrix entries can be explicitly
computed for any given characteristic polynomial. Results of [8] were used in [6] to characterize
all potentially nilpotent star patterns. Note that SAPs and potentially nilpotent patterns are studied
up to equivalence, i.e., transposition, negation, and permutation and signature similarity.

Here we introduce a new family of particular sign patterns Cn that have a cycle of every even
length (which we call even cycle sign patterns), and show that this family is spectrally arbitrary.
For n even, we prove that if D(Cn) has n loops and the product of entries corresponding to each
of the cycles of even length is negative, then Cn is a SAP. Although the characteristic polynomial
of Mn ∈ Q(Cn) is complicated, we use algebraic and graph theoretic techniques to find nilpotent
matrices with these sign patterns, and then use the methodology of [3] to demonstrate that the
pattern is spectrally arbitrary. When n = 2k + 1, the results and proofs are obtained from those
for n = 2k by requiring that D(C2k+1) has a Hamilton cycle and only 2k loops. Even cycle sign
patterns are motivated by the observation [2, Lemma 1.5] that if Sn allows any inertia, which
must be true if Sn is a SAP, then D(Sn) contains a 2-cycle with skj sjk < 0 for k /= j .
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In Section 2, we begin by finding nilpotent even cycle matrices Mn ∈ Q(Cn), firstly for n even
and then for n odd. In Section 3, we consider a Jacobian and show that it is nonzero, which allows
us to use the methodology of [3]. In Section 4, which contains our main results, we prove that Cn

is a SAP (with approximately 5n/2 nonzero entries) and identify a subpattern that is potentially
nilpotent (but not a SAP). We conclude with some results and a conjecture on minimality.

2. Nilpotent even cycle matrices

Throughout we restrict consideration to n × n matrices with n � 4 and having the following
structures depending on the parity of n. For n = 2k, let

M2k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 1
b2 a2 1
0 a3 1 0

b4 a4
. . .

... 0
. . . 1

0 a2k−1 1
b2k a2k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.1)

and for n = 2k + 1, let

M2k+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 1
b2 a2 1
0 a3 1 0

b4 a4
. . .

...
. . . 1

0 0 a2k−1 1
b2k a2k 1

b2k+1 a2k+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.2)

where bn /= 0 and all other variables are arbitrary. Note that both D(M2k) and D(M2k+1) have a
loop at each vertex j for which aj /= 0 and exactly one simple cycle of length 2i if b2i /= 0; the
corresponding cycle products are aj (for the loop at vertex j ) and −b2i (for the simple cycle of
length 2i). The digraph D(M2k+1) also has one simple cycle of length 2k + 1 with corresponding
cycle product b2k+1. Since all the simple cycles of D(Mn) have even length, except for loops and
(if n is odd) a Hamilton cycle, we call the matrices Mn even cycle matrices.

With respect to Mn in (2.1) and (2.2), let An,q = {n − q + 1, n − q + 2, . . . , n} for 1 � q � n.
For 1 � w � q, define

F(q, w) =
∑

B⊆An,q
|B|=w

∏
i∈B

ai,

i.e., F(q, w) is the sum of all products of w distinct entries az, where z ∈ An,q . Define F(q, 0) =
F(0, 0) = 1 and define F(q, w) = 0 if w > q.

We first consider the case that n is even. The coefficients of the characteristic polynomial (1.1)
of M2k in (2.1) can be specified in terms of the functions F(q, w) (see Lemma 2.1). If, for n = 2k,
we let

a2i−1 = 1 and a2i = −1 for 1 � i � k, (2.3)
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then the functions F(q, w) are easily computed (see Lemma 2.2) and this enables us to determine
a nilpotent matrix M2k (in Theorem 2.3).

With respect to D(M2k), the cycle products of size i are obtained from i loops, or from a simple
even cycle of length j � i and i − j loops that are disjoint from the j -cycle. These observations
give the following expressions for the coefficients of the characteristic polynomial of M2k .

Lemma 2.1. When k � 2 and n = 2k, the characteristic polynomial (1.1) of Mn has for 1 � r �
k,

μ2r = F(2k, 2r) −
r∑

i=1

b2iF (2k − 2i, 2r − 2i) (2.4)

and for 0 � r � k − 1,

μ2r+1 = F(2k, 2r + 1) −
r∑

i=1

b2iF (2k − 2i, 2r + 1 − 2i). (2.5)

The F functions in the above lemma are now computed by assigning values to the variables aj

as in (2.3).

Lemma 2.2. Let k � 2 and n = 2k. If (2.3) holds and 2 � p � k, then for r = 0, 1, . . . , p,

F (2p, 2r) = (−1)r
(

p

r

)
(2.6)

and

F(2p, 2r + 1) = 0. (2.7)

Proof. If (2.3) holds, then each product of entries az with z ∈ An,2p is ±1. Letting Bp = {i :
i is odd and i ∈ An,2p} and Cp = {i : i is even and i ∈ An,2p}, F(2p, w) is the number of sets
with w elements formed by taking an even number of elements from Cp (and the rest from Bp),
minus the number of sets with w elements formed by taking an odd number of elements from Cp

(and the rest from Bp). Thus,

F(2p, 2r) =
r∑

i=0

(
p

2i

)(
p

2r − 2i

)
−

r−1∑
i=0

(
p

2i + 1

)(
p

2r − (2i + 1)

)
. (2.8)

This can easily be seen by noting that each term in these summations is of the form

(
p

j

)(
p

�

)
,

where j elements are chosen from Cp and � elements are chosen from Bp to form a set of size
j + �. Note that j + � = 2r in (2.8).

The coefficient of t2r in the binomial expansion of (1 − t2)p is (−1)r
(

p

r

)
. Similarly, the

coefficient of t2r in the product of the binomial expansions of (1 − t)p and (1 + t)p is
2r∑

i=0

(−1)i
(

p

i

)(
p

2r − i

)
= F(2p, 2r)

by (2.8). Since (1 − t)p(1 + t)p = (1 − t2)p, they must have equal coefficients of t2r , thus

F(2p, 2r) = (−1)r
(

p

r

)
.
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By a similar argument as used for (2.8),

F(2p, 2r + 1) =
r∑

i=0

(
p

2r + 1 − (2i + 1)

)(
p

2i + 1

)

−
r∑

i=0

(
p

2i + 1

)(
p

2r + 1 − (2i + 1)

)
,

which is equal to 0. �

Theorem 2.3. Let k � 2 and n = 2k. If a2i−1 = 1 and a2i = −1 for 1 � i � k, then Mn is

nilpotent if and only if b2r = −
(

k

r

)
for 1 � r � k.

Proof. In the characteristic polynomial of Mn, by (2.5) and (2.7) it follows that μ2r+1 = 0 for
0 � r � k − 1. Then Mn is nilpotent if and only if μ2r = 0 for 1 � r � k. By (2.4) and (2.6),
this holds if and only if for 1 � r � k

b2r = F(2k, 2r) −
r−1∑
i=1

b2iF (2k − 2i, 2r − 2i)

= (−1)r
(

k

r

)
−

r−1∑
i=1

b2i (−1)r−i

(
k − i

r − i

)
. (2.9)

Now we show by induction on r that (2.9) gives b2r = −
(

k

r

)
. For r = 1, Eq. (2.9) gives

b2 = (−1)1
(

k

1

)
− 0 = −

(
k

1

)
, so the statement is true. Now assume that b2r = −

(
k

r

)
for all

r � u − 1. From (2.9) and the induction hypothesis,

b2u = (−1)u
(

k

0

)(
k

u

)
+

u−1∑
i=1

(−1)u−i

(
k

i

)(
k − i

u − i

)

=
u−1∑
i=0

(−1)u−i

(
k

i

)(
k − i

u − i

)

=
u−1∑
i=0

(−1)u−i

(
k

u

)(
u

i

)
=
(

k

u

)[
(−1)u

u∑
i=0

(−1)i
(

u

i

)
− 1

]
.

Note that
∑u

i=0(−1)i
(

u

i

)
= 0 since the binomial expansion (1 − t)u = ∑u

i=0

(
u

i

)
(−t)i

with t = 1 gives 0 = ∑u
i=0(−1)i

(
u

i

)
. Therefore b2u = −

(
k

u

)
and the statement follows by

induction. �



B.D. Bingham et al. / Linear Algebra and its Applications 421 (2007) 24–44 29

We now consider Mn when n is odd as in (2.2). For a specified main diagonal (that simplifies the
characteristic polynomial), a necessary condition for Mn to be nilpotent is given in the following
lemma, and a nilpotent matrix Mn is determined in Theorem 2.5.

Lemma 2.4. Let k � 2 and n = 2k + 1, and let Mn have exactly one av = 0 for 1 � v � n and
b2r /= 0 for all 1 � r � k. Suppose the nonzero ai alternate in value 1, −1, 1, −1, . . . , 1, −1. If
Mn is nilpotent, then either an−2 = 0 or an−1 = 0.

Proof. Considering the cycle products of size n, the constant term of the characteristic polynomial
of Mn is

k∑
r=1

⎛⎝b2r

n∏
j=2r+1

aj

⎞⎠− bn −
n∏

i=1

ai. (2.10)

Since an appears in each term except −bn, if an = 0 then (2.10) is −bn /= 0, and Mn is not
nilpotent.

Now suppose av = 0 for some fixed v with 1 � v � n − 3, and let

s =
{
v for v even
v + 1 for v odd.

Here s is the length of the shortest cycle of length at least 2 in D(Mn) on which vertex v lies,
and s is even with 2 � s � n − 3 and 2 � n − s − 1 � n − 3. The coefficient of xn−s−1 in the
characteristic polynomial of Mn with av = 0 is given by the sum of all cycle products of size
s + 1, i.e., by

F(2k + 1, s + 1) −
s−2

2∑
i=1

b2iF (2k + 1 − 2i, s + 1 − 2i) − bsσ, (2.11)

where

σ =
n∑

i=s+1

ai.

There are an odd number, namely n − s, of loops that are disjoint from the cycle of length s. The
sets An,q corresponding to each of the above F functions, respectively, are

A2k+1,2k+1, A2k+1,2k−1, A2k+1,2k−3, . . . , A2k+1,2k+1−(s−2).

By definition, each of these sets contains the index v such that av = 0. Each F function in
(2.11) is of the form F(2j + 1, w) for 2k + 1 − (s − 2) � 2j + 1 � 2k + 1 and w odd with
3 � w � s + 1, where the associated set A2k+1,2j+1 contains j indices z for which az = 1 and
j indices z for which az = −1. Thus its value is equal to F(2j, w) when (2.3) holds. Since
s + 1, s − 1, s − 3, . . . , 3 are all odd, by (2.7) all of the F functions in (2.11) are equal to 0 and
(2.11) reduces to −bsσ . The value of σ is clearly nonzero since it is the sum of an odd number
of variables with values from {1, −1}, therefore (2.11) is nonzero and Mn is not nilpotent.

Thus if Mn is nilpotent and exactly one av = 0, then v = n − 2 or n − 1. �

Theorem 2.5. Let k � 2 and n = 2k + 1. Suppose Mn has exactly one of an−2 and an−1 equal
to 0, and the nonzero ai alternate in value 1, −1, 1, −1, . . . , 1, −1. Then Mn is nilpotent if and

only if b2r = −
(

k

r

)
for 1 � r � k and b2k+1 = 1.
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Proof. Let M2k have characteristic polynomial (1.1) with (2.3) holding. Consider the charac-
teristic polynomial (1.1) of M2k+1 with μi replaced by μ̃i and where the ai are assigned as in
the theorem statement. For 1 � p � 2k, we claim that the sets of all cycle products of size p in
D(M2k+1) and D(M2k) are identical. This is true because:

(i) In D(M2k+1), the arc from vertex 2k + 1 to vertex 1 belongs to no cycle of length � 2k

(and thus b2k+1 does not occur in these cycle products).
(ii) Every cycle product of size p in D(M2k) and D(M2k+1) corresponds to either

(a) p loops (and each digraph has k loops with cycle product equal to 1 and k loops with
cycle product equal to −1), or

(b) one cycle of length 2r for 1 � r � k and p − 2r loops (and in each digraph, the cycles
of length 2r have the same cycle product and each is disjoint from 2k − 2r loops, k − r

of which have cycle product 1 and k − r of which have cycle product −1).

Thus it follows that μi = μ̃i for 1 � i � 2k (in terms of the b2r ). By Theorem 2.3, μi = μ̃i = 0

for 1 � i � 2k if and only if b2r = −
(

k

r

)
for 1 � r � k. The constant term μ̃n is the sum of

cycle products of size 2k + 1 as in (2.10). With the ai as assigned, the only such cycle products
are obtained from the (2k + 1)-cycle and from the composite cycle consisting of the loop at
vertex 2k + 1 and the 2k-cycle. These cycle products have values equal to b2k+1 and −a2k+1b2k ,
respectively. Thus, μ̃n = 0 if and only if

0 = −b2k+1 + a2k+1b2k, (2.12)

that is, if and only if b2k+1 = (−1)

[
−
(

k

k

)]
= 1. �

Remark 2.6. Theorems 2.3 and 2.5 give nilpotent matrices Mn for specific assignments of the aj

when n � 4. However, the proofs of both theorems can be adapted to show nilpotence for other
values of the main diagonal. When k � 2, n = 2k, a2i ∈ {1, −1} and a2i−1 = −a2i for 1 � i � k,

then Mn is nilpotent if and only if b2r = −
(

k

r

)
for 1 � r � k. When k � 2, n = 2k + 1, a2i ∈

{1, −1} and a2i−1 = −a2i for 1 � i � k − 1, if {a2k−1, a2k} = {1, 0} and a2k+1 = −1, then Mn

is nilpotent if and only if b2r = −
(

k

r

)
for 1 � r � k and b2k+1 = 1. However, in this latter

case if {a2k−1, a2k} = {−1, 0} and a2k+1 = 1, then b2r = −
(

k

r

)
for 1 � r � k and (2.12) gives

b2k+1 = −1 for nilpotence. Thus, from Mn we can find 2�n/2� nonequivalent potentially nilpotent
sign patterns.

3. Nonzero Jacobian

With a view to obtaining spectrally arbitrary patterns from Mn, we now consider a particular
Jacobian evaluated at values ai , bi obtained for a nilpotent matrix Mn. This enables us to use the
methodology of [3, Observation 10]; see also [1, Lemma 2.1]. We first consider the case that n is
even, i.e., n = 2k for k � 2. In Mn, set
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a2i = −1 for 1 � i � k. (3.1)

Certain entries of the matrix Dn, which is defined below in (3.6), are determined by differenti-
ating the coefficients of the characteristic polynomial μi with respect to the n remaining variables
a2i−1 and b2i ; see Lemmas 3.1, 3.2, 3.4, 3.6 and 3.7.

For 1 � j � k and for some odd � with n − 2j + 1 � � � n, define

Ãn,2j−1 ≡ An,2j\{�}.
For 1 � w � 2j − 1, define

F̃ (2j − 1, w) =
∑

B⊆Ãn,2j−1
|B|=w

∏
i∈B

ai,

i.e., F̃ (2j − 1, w) is equal to the sum of all products of w distinct entries az, where z ∈ Ãn,2j−1.
Define F̃ (2j − 1, 0) = 1 and define F̃ (2j − 1, w) = 0 if w > 2j − 1.

Lemma 3.1. If (2.3) holds, 0 � p � k − 1 and 0 � r � p, then

F̃ (2p + 1, 2r) = (−1)r
(

p

r

)
, (3.2)

and

F̃ (2p + 1, 2r + 1) = (−1)r+1
(

p

r

)
. (3.3)

Proof. If (2.3) holds, then each product of entries az with z ∈ Ãn,2p+1 is ±1. Letting B̃p =
{i : i is odd and i ∈ Ãn,2p+1} and C̃p+1 = {i : i is even and i ∈ Ãn,2p+1}, F̃ (2p + 1, w) is the
number of sets with w elements formed by taking an even number of elements from C̃p+1 (and
the rest from B̃p) minus the number of sets with w elements formed by taking an odd number of

elements from C̃p+1 (and the rest from B̃p). Note that |B̃p| = p and |C̃p+1| = p + 1. As in the

proof of Lemma 2.2, the expression for F̃ (2p + 1, w) is

F̃ (2p + 1, 2r) =
r∑

i=0

(
p

2i

)(
p + 1

2r − 2i

)
−

r−1∑
i=0

(
p

2i + 1

)(
p + 1

2r − (2i + 1)

)
.

Consider the binomial expansions

(1 + t)p =
p∑

i=0

(
p

i

)
t i and (1 − t)p+1 =

p+1∑
i=0

(−1)i
(

p + 1
i

)
t i .

The coefficient of t2r in (1 + t)p(1 − t)p+1 is

2r∑
i=0

(−1)i
(

p

i

)(
p + 1
2r − i

)
=

r∑
i=0

(
p

2i

)(
p + 1

2r − 2i

)
−

r−1∑
i=0

(
p

2i + 1

)(
p + 1

2r − (2i + 1)

)
,

which is F̃ (2p + 1, 2r). Also,

(1 + t)p(1 − t)p+1 = (1 − t)(1 − t2)p = (1 − t2)p − t (1 − t2)p.

The coefficient of t2r in (1 − t2)p − t (1 − t2)p is equal to the coefficient of t2r in (1 − t2)p since
−t (1 − t2)p has no even powers of t . Therefore, since



32 B.D. Bingham et al. / Linear Algebra and its Applications 421 (2007) 24–44

(1 − t2)p =
p∑

i=0

(−1)i
(

p

i

)
t2i ,

(3.2) follows.
For (3.3), observe that when F is defined with respect to An,2p+2, F̃ is defined with respect to

Ãn,2p+1 ≡ An,2p+2\{�}, and � is odd with n − 2p − 1 � � � n,

F(2p + 2, 2r + 1) = F̃ (2p + 1, 2r + 1) + a�F̃ (2p + 1, 2r).

By (2.7), F(2p + 2, 2r + 1) = 0, so −a�F̃ (2p + 1, 2r) = F̃ (2p + 1, 2r + 1). This implies

that F̃ (2p + 1, 2r + 1) = (−1)r+1
(

p

r

)
by (3.2), since a� = 1. �

Lemma 3.2. Let k � 2 and n = 2k. If (3.1) holds, then the derivatives of the coefficients in the
characteristic polynomial (1.1) of Mn are, for 1 � j � k, given by

�μ2r

�a2j−1
= F̃ (2k − 1, 2r − 1) −

r−1∑
i=1

b2i F̃ (2k − 1 − 2i, 2r − 1 − 2i)

when 2 � 2r � 2j and

�μ2r+1

�a2j−1
= F̃ (2k − 1, 2r) −

r∑
i=1

b2i F̃ (2k − 1 − 2i, 2r − 2i)

when 1 � 2r + 1 � 2j − 1.

Proof. Consider (2.4), in which all F(2p, w) are defined with respect to An,2p = {n − 2p +
1, n − 2p + 2, . . . , n} and (3.1) holds. For some fixed j with 1 � j � k, factor a2j−1 from this
expression to give

μ2r = a2j−1

(
F̃ (2k − 1, 2r − 1) −

r−1∑
i=1

b2i F̃ (2k − 1 − 2i, 2r − 1 − 2i)

)
+f (a1, a3, . . . , a2j−3, a2j+1, . . . , a2k−1, b2, b4, . . . , b2r ) (3.4)

if 2r � 2j , where each term F̃ (2p − 1, w) above is defined with respect to Ãn,2p−1 ≡ An,2p\{2j −
1}. That is, all such (nontrivial) terms F(2p, w) have 2j − 1 ∈ An,2p and thus can be expressed
as

F(2p, w) = a2j−1F̃ (2p − 1, w − 1)

+ f1(a2k−2p+1, a2k−2p+3, . . . , a2j−3, a2j+1, . . . , a2k−1),

where f1 is the sum of terms that do not include a2j−1 as a factor. Note that the product a2j−1b2i ,
for 1 � i � r − 1, occurs in (2.4) if and only if 2r � 2j (by the definition of F(2p, w)). Differ-
entiating (3.4) with respect to a2j−1 gives

�μ2r

�a2j−1
= F̃ (2k − 1, 2r − 1) −

r−1∑
i=1

b2i F̃ (2k − 1 − 2i, 2r − 1 − 2i)

as required.
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Similarly, (2.5) can be written as

μ2r+1 = a2j−1

(
F̃ (2k − 1, 2r) −

r∑
i=1

b2i F̃ (2k − 1 − 2i, 2r − 2i)

)
+ f (a1, a3, . . . , a2j−3, a2j+1, . . . , a2k−1, b2, b4, . . . , b2r ), (3.5)

if 2r + 1 � 2j − 1. Note that the product a2j−1b2i , for 1 � i � r , occurs in (2.5) if and only
if 2r + 1 � 2j − 1 (by the definition of F(2p, w)). Differentiating (3.5) with respect to a2j−1
gives

�μ2r+1

�a2j−1
= F̃ (2k − 1, 2r) −

r∑
i=1

b2i F̃ (2k − 1 − 2i, 2r − 2i)

as required. �

Lemma 3.3. If v � 0 and k � v + 1, then
v∑

u=0

(−1)u
(

v

u

)
1

k − u
= (−1)v

(k − v)

(
k

v

) .

The above identity (see [5, Identity 1.43]), which can be proven by induction, is used to prove the
following lemma. For k � 2 and n = 2k, define the n × n matrix Dn = [dij ] where for 1 � i � n,

dij = (−1)i
�μi

�a2j−1
and di,k+j = (−1)i

�μi

�b2j

for 1 � j � k. (3.6)

Lemma 3.4. Let k � 2, n = 2k, 1 � j � k and 1 � i � 2j. If (3.1) holds and dij is evaluated

with b2r = −
(

k

r

)
and a2r−1 = 1 for 1 � r � k, then dij = −1.

Proof. Fix j, 1 � j � k and fix i, 1 � i � 2j . If i is odd (i = 2g + 1), then by Lemma 3.2

�μ2g+1

�a2j−1
= F̃ (2k − 1, 2g) +

g∑
u=1

(
k

u

)
F̃ (2k − 1 − 2u, 2g − 2u).

Applying (3.2) gives

�μ2g+1

�a2j−1
= (−1)g

(
k − 1

g

)
+

g∑
u=1

(
k

u

)
(−1)g−u

(
k − 1 − u

g − u

)

=
g∑

u=0

(−1)g−u

(
k

u

)(
k − 1 − u

g − u

)

=
g∑

u=0

(−1)g−u k

k − u

(
k − 1

g

)(
g

u

)
(3.7)

= (−1)gk

(
k − 1

g

) g∑
u=0

(−1)u
1

k − u

(
g

u

)
.
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Using Lemma 3.3 with v as g gives

�μ2g+1

�a2j−1
=(−1)gk

(
k − 1

g

)
(−1)g

(k − g)

(
k

g

)
= k(k − 1)!

g!(k − 1 − g)!
g!(k − g)!
(k − g)k! = 1.

Recalling that dij = − �μi

�a2j−1
for i odd, d2g+1,j = −1 as required.

If i is even (i = 2g), then using Lemma 3.2 and applying (3.3) gives

�μ2g

�a2j−1
= F̃ (2k − 1, 2g − 1) +

g−1∑
u=1

(
k

u

)
F̃ (2k − 1 − 2u, 2g − 1 − 2u)

= (−1)g
(

k − 1
g − 1

)
+

g−1∑
u=1

(
k

u

)
(−1)g−u

(
k − 1 − u

g − 1 − u

)

=
g−1∑
u=0

(−1)g−u

(
k

u

)(
k − 1 − u

g − 1 − u

)

= −
g−1∑
u=0

(−1)g−1−u

(
k

u

)(
k − 1 − u

g − 1 − u

)
.

This is the negative of (3.7) with g replaced by g − 1. Recalling the definition in (3.6), a similar
argument to the i odd case gives d2g,j = −1 as required. �

The following identity established in the above proof is used in the proof of the next lemma.

Corollary 3.5. For k � 2 and 0 � g � k − 1,

g∑
u=0

(−1)g−u

(
k

u

)(
k − 1 − u

g − u

)
= 1.

Lemma 3.6. Let k � 2, n = 2k and 1 � j � k − 1. If (3.1) holds and d2j+1,j is evaluated with

b2r = −
(

k

r

)
and a2r−1 = 1 for 1 � r � k, then d2j+1,j � 1.

Proof. If the variables a2r−1 and b2r for 1 � r � k are not assigned values, then μ2j+1 has terms
containing the factors a2j−1bh for all h = 2, 4, . . . , 2j − 2 since such a factor occurs in some
cycle product of size 2j + 1. However, the factor a2j−1b2j occurs nowhere in μ2j+1 since the
cycle of length 2j and the loop at vertex 2j − 1 are not disjoint. Thus, analogous to (3.5), Eq.
(2.5) can be written as

μ2j+1 = a2j−1

⎛⎝F̃ (2k − 1, 2j) −
j−1∑
i=1

b2i F̃ (2k − 1 − 2i, 2j − 2i)

⎞⎠
+ f (a1, a3, . . . , a2j−3, a2j+1, . . . , a2k−1, b2, b4, . . . , b2j ).
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Differentiating with respect to a2j−1 gives

�μ2j+1

�a2j−1
= F̃ (2k − 1, 2j) −

j−1∑
i=1

b2i F̃ (2k − 1 − 2i, 2j − 2i).

Thus, if (3.1) holds, assigning a2r−1 = 1 and b2r = −
(

k

r

)
for 1 � r � k, application of (3.2)

gives

�μ2j+1

�a2j−1
= (−1)j

(
k − 1

j

)
+

j−1∑
i=1

(
k

i

)
(−1)j−i

(
k − 1 − i

j − i

)

=
⎡⎣ j∑

i=0

(−1)j−i

(
k

i

)(
k − 1 − i

j − i

)⎤⎦− (−1)0
(

k

j

)(
k − 1 − j

0

)
. (3.8)

Applying Corollary 3.5 to (3.8) gives

�μ2j+1

�a2j−1
= 1 −

(
k

j

)
, (3.9)

which implies that d2j+1,j =
(

k

j

)
− 1. Since

(
k

j

)
� 2 if 1 � j � k − 1 and k � 2, it follows

that d2j+1,j � 1. �

We now consider columns k + 1, k + 2, . . . , 2k of Dn, the entries of which are defined in terms
of derivatives with respect to b2j for j = 1, 2, . . . , k.

Lemma 3.7. Let Dn be defined as in (3.6) with k � 2 and n = 2k.

(i) If 1 � j � k and 1 � i � 2j − 1, then di,k+j = 0.

(ii) If 1 � j � k, then d2j,k+j = −1.

(iii) If (2.3) holds, 1 � j � k − 1 and i = 1, 3, . . . , 2k − 2j − 1, then d2j+i,k+j = 0.

Proof. Fix column k + j for 1 � j � k. The variable b2j does not appear in μ1, μ2, . . . , μ2j−1
since b2j occurs only in a cycle product of size at least 2j . Therefore di,k+j = 0 for i =
1, 2, . . . , 2j − 1, and (i) follows.

Fix column k + j for 1 � j � k. In μ2j , the variable b2j appears once with coefficient −1,

therefore
�μ2j

�b2j
= d2j,k+j = −1, and (ii) follows.

Fix column k + j for 1 � j � k − 1 and assume that (2.3) holds. Consider μ2j+1, μ2j+3, . . . ,

μ2k−1 as given by (2.5). The coefficient of b2j in μ2j+i is −F(2k − 2j, i), i = 1, 3, . . . , 2k −
2j − 1. This coefficient is 0 by (2.7) and (iii) follows. �

Theorem 3.8. Let k � 2 and n = 2k. If Dn is evaluated when (2.3) holds and b2r = −
(

k

r

)
, 1 �

r � k, then det(Dn) /= 0.

Proof. By Lemmas 3.4, 3.6 and 3.7, if Dn is evaluated with ai and b2r as stated, then Dn has the
form
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−1 −1 −1 . . . −1 −1 0 0 0 . . . 0 0
−1 −1 −1 −1 −1 −1 0 0 0 0

c1 −1
. . .

. . . −1 −1 0 0
. . .

. . . 0 0

d41 −1
. . .

. . . −1 −1 d4,k+1 −1 0
. . . 0 0

d51 c2 −1
. . . −1 −1 0 0 0

. . . 0 0

d61 d62 −1
. . . −1 −1 d6,k+1 d6,k+2 −1 0 0

d71 d72 c3 −1 −1 0 0 0 . . . 0 0
d81 d82 d83 −1 −1 d8,k+1 d8,k+2 d8,k+3 0 0
...

...
...

...
...

...
...

...
...

...

dn−2,1 dn−2,2 dn−2,3 . . . −1 −1 dn−2,k+1 dn−2,k+2 dn−2,k+3 . . . −1 0
dn−1,1 dn−1,2 dn−1,3 . . . ck−1 −1 0 0 0 . . . 0 0
dn1 dn2 dn3 . . . dn,k−1 −1 dn,k+1 dn,k+2 dn,k+3 . . . dn,2k−1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where ci � 1 for 1 � i � k − 1 by Lemma 3.6. Expansion along columns in the order 2k, 2k −
1, . . . , k + 1, gives

det(Dn) = (−1)�k/2� det(Gk)

with

Gk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −1 −1 . . . −1 −1
c1 −1 −1 −1 −1 −1

d51 c2
. . .

. . .
. . . −1 −1

d71 d72 c3
. . .

. . . −1 −1

d91 d92 d93 c4
. . . −1 −1

...
...

...
. . .

...
...

dn−1,1 dn−1,2 dn−1,3 dn−1,4 ck−1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Using elementary row operations (subtracting row 1 from row i for 2 � i � k), det(Gk) =
det(Ĝk) where

Ĝk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −1 −1 . . . −1 −1
c1 + 1 0 0 0 0 0

d51 + 1 c2 + 1
. . .

. . .
. . . 0 0

d71 + 1 d72 + 1 c3 + 1
. . .

. . . 0 0

d91 + 1 d92 + 1 d93 + 1 c4 + 1
. . . 0 0

...
...

...
. . .

...
...

dn−1,1 + 1 dn−1,2 + 1 dn−1,3 + 1 dn−1,4 + 1 ck−1 + 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since each ci � 1, det(Ĝk) /= 0 and thus det(Dn) /= 0. �

We now consider the case that n is odd. For k � 2, let M2k+1 have characteristic polynomial
p2k+1(x) as in (1.1) with μi replaced by μ̃i , and let {â, ã} = {a2k−1, a2k}. Define the (2k + 1) ×
(2k + 1) matrix D̃2k+1 = [d̃ij ] where for 1 � i � 2k + 1,
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d̃ij = (−1)i
�μ̃i

�a2j−1
, 1 � j � k − 1,

d̃i,k+j = (−1)i
�μ̃i

�b2j

, 1 � j � k,

d̃ik = (−1)i
�μ̃i

�â
and d̃i,2k+1 = (−1)i

�μ̃i

�b2k+1
.

Let M2k be as in (2.1) with characteristic polynomial p2k(x) as in (1.1), and let D2k be the
associated 2k × 2k matrix of partial derivatives as in (3.6). The following result relates D2k to
D̃2k+1 as defined above.

Theorem 3.9. Let k � 2. Suppose D2k is evaluated when (2.3) holds and b2r = −
(

k

r

)
for 1 �

r � k, and D̃2k+1 is evaluated when 0 = ã ∈ {a2k−1, a2k}, all other ai (including â) alternate in

value 1, −1, 1, −1, . . . , 1, −1, b2r = −
(

k

r

)
for 1 � r � k and b2k+1 = 1. Then

D̃2k+1 =

⎡⎢⎢⎢⎢⎢⎣
0

D2k 0
...

0
0 0 . . . 0 −1 −1

⎤⎥⎥⎥⎥⎥⎦ and det(D̃2k+1) /= 0.

Proof. To show that d̃ij = dij for 1 � i � 2k and 1 � j � 2k when they are evaluated with ai

and b2r as stated, consider the sums of cycle products of size m that give coefficients μm and
μ̃m for 1 � m � 2k of p2k(x) and p2k+1(x), respectively. Recall that each such cycle product
corresponds to a simple cycle, a composite cycle of loops, or a composite cycle of some even
length cycle and some loops. Note that −μ1 = −∑2k

j=1 aj and −μ̃1 = −∑2k+1
j=1 aj , and thus

d̃1j = d1j = −1 for 1 � j � 2k.
With the equality established when the relevant cycle products are size m = 1, let m � 2. The

cycle products corresponding to a simple cycle are of even size and are given by −bm, which
appears in both μm and μ̃m. The sum of the cycle products corresponding to a composite cycle
of loops is given by F(2k, m) in μm (see the first terms in (2.4) and (2.5)) and analogously by
F(2k + 1, m) in μ̃m. The sum of the cycle products that correspond to a composite cycle of some
even length cycle and some loops is given by −b2rF (2k − 2r, m − 2r) in μm (see the summations
in (2.4) and (2.5)) and analogously by −b2rF (2k + 1 − 2r, m − 2r) in μ̃m for 2 � 2r < m � 2k.
We now argue that with ai as specified, F(2k, m) and F(2k + 1, m) are equal for 2 � m � 2k

and that F(2k − 2r, m − 2r) and F(2k + 1 − 2r, m − 2r) are equal for fixed r , m and k such that
2 � 2r < m � 2k. By the definition of cycle products and the F function, each such F function in
μm is defined with respect to A2k,2k−2r = {2r + 1, 2r + 2, . . . , 2k} ≡ Aeven. Similarly, each such
F function in μ̃m is defined with respect to A2k+1,2k+1−2r = {2r + 1, 2r + 2, . . . , 2k − 2, 2k −
1, 2k, 2k + 1} ≡ Aodd. Define A to be the intersection of these sets, that is A ≡ Aeven ∩ Aodd =
{2r + 1, 2r + 2, . . . , 2k − 2}. Note that Aeven = A ∪ {2k − 1, 2k}, Aodd = A ∪ {2k − 1, 2k,

2k + 1} and that A is empty when 2r = 2k − 2. Since terms in p2k+1(x) with ã as a fac-



38 B.D. Bingham et al. / Linear Algebra and its Applications 421 (2007) 24–44

tor are equal to 0, all cycle products in μm are the same as those in μ̃m with â replaced
by a2k−1 and with a2k+1 replaced by a2k . Therefore, after differentiating μm and μ̃m with
respect to one of a1, a3, . . . , a2k−3, b2, b4, . . . , b2k and assigning values to all variables as in
the theorem statement, it follows that d̃ij = dij for 1 � i � 2k and j = 1, 2, . . . , k − 1, k +
1, . . . , 2k. Note that this assignment has a2k−1 and a2k in μm taking the values 1 and −1,
respectively, â and a2k+1 in μ̃m taking the values 1 and −1, respectively, and each of the variables
a1, a2, . . . , a2k−3, b2, b4, . . . , b2k taking the same value in μm and μ̃m. Similarly, differentiating
μm with respect to a2k−1 and evaluating the variables gives the same value as differentiating
μ̃m with respect to â and evaluating the variables. Thus d̃ik = dik for 1 � i � 2k, and it follows
that

d̃ij = dij for 1 � i � 2k, 1 � j � 2k. (3.10)

The corresponding cycle product b2k+1 of the (2k + 1)-cycle in D(M2k+1) does not appear in
any of the coefficients μ̃m for 1 � m � 2k in p2k+1(x). Therefore,

d̃i,2k+1 = 0 for 1 � i � 2k. (3.11)

In D(M2k+1) the only cycle products of size 2k + 1 are b2k+1 from the (2k + 1)-cycle and
−a2k+1b2k from the composite cycle of the loop at vertex 2k + 1 and the 2k-cycle, so −μ̃2k+1 =
−(b2k+1 − a2k+1b2k). Assigning a2k+1 the value −1 gives −μ̃2k+1 = −b2k+1 − b2k , which
implies that

d̃2k+1,2k+1 = −1, d̃2k+1,2k = −1 and d̃2k+1,j = 0 for 1 � j � 2k − 1. (3.12)

Thus, by (3.10), (3.11) and (3.12) the matrix D̃2k+1 has the stated form. By expanding det(D̃2k+1)

along column 2k + 1 and using Theorem 3.9, it follows that det(D̃2k+1) /= 0. �

Remark 3.10. Similar results as in Theorems 3.8 and 3.9 hold for other assignments of the ai as
in Remark 2.6. When k � 2 and n = 2k, define Dn with respect to the partial derivatives of the
positive ai and b2j , cf. (3.6). Then Dn has the same form as in the proof of Theorem 3.8, and
det(Dn) /= 0. For k � 2 and n = 2k + 1, with ai assigned as in Remark 2.6, the method used in
Theorem 3.9 holds showing that det(D̃2k+1) = − det(D2k) /= 0.

4. Spectrally arbitrary even cycle patterns and minimality

Define the n × n sign pattern Cn as follows. For k � 2 and n = 2k, let

C2k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ +
− − +
0 + + 0
− − +
0 + . . .
... 0

. . . +
0 + +
− −

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and for n = 2k + 1, let
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C2k+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ +
− − +
0 + + 0

− − . . .
...

. . . +
0 0 + +
− 0 +
+ −

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
or

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ +
− − +
0 + + 0

− − . . .
...

. . . +
0 0 0 +
− + +
+ −

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The nilpotent matricesMn defined in Theorems 2.3 and 2.5 haveMn ∈ Q(Cn). Note thatD(Cn)

has a cycle of every even length with the product of entries corresponding to each even cycle being
negative, and thus we call Cn an even cycle sign pattern. Using the results of Theorems 2.3 and
3.8 (for n even) and Theorems 2.5 and 3.9 (for n odd) with the methodology of [3, Observation
10], the following result is immediate.

Theorem 4.1. For n � 4, Cn is spectrally arbitrary. Moreover, any superpattern of Cn is spec-
trally arbitrary.

To investigate ifCn = [cij ] is a minimal SAP for n even, we proceed as follows. LetRn = [rij ]
be an irreducible subpattern of Cn (thus rn1 is negative, ri,i+1 is positive for 1 � i � n − 1 and
the other rij can be equal to cij or 0). If Yn ∈ Q(Rn) for k � 2 and n = 2k, then without loss of
generality the superdiagonal entries of Yn can be normalized to 1 by a positive diagonal similarity
transformation. Thus we can restrict attention to Mn ∈ Q(Rn) as given in (2.1). Our goal is to
show that if Mn ∈ Q(Rn) is nilpotent for k � 2 and n = 2k, then a2i = −a2i−1 and b2i < 0 for
1 � i � k (see Corollary 4.5). From this, some properties of the structure of irreducible potentially
nilpotent subpatterns of Cn are given in Theorem 4.6 and a conjecture on the minimality of Cn is
stated.

For v � 1, define P2v(x1, x2, . . . , xn) equal to the sum of all products of nonnegative even
powers of xi where the sum of the powers is 2v. That is,

P2v(x1, x2, . . . , xn) =
∑

x1
2i1x2

2i2 · · · xn
2in , where i1 + i2 + · · · + in = v,

and define P0(x1, x2, . . . , xn) = 1.

Lemma 4.2. For real ci, s and t and integer r � 0, if

H2v(c1, c2, . . . , cr ; s, t) =
{

P2v(c1,c2,...,cr ,s)−P2v(c1,c2,...,cr ,t)

s2−t2 if |s| /= |t |,
lim|s|→|t | P2v(c1,c2,...,cr ,s)−P2v(c1,c2,...,cr ,t)

s2−t2 if |s| = |t |,
then

H2v(c1, c2, . . . , cr ; s, t) = P2v−2(c1, c2, . . . , cr , s, t).

Proof. When r = 0,

H2v(s, t) =
{

s2v−t2v

s2−t2 if |s| /= |t |,
lim|s|→|t | s2v−t2v

s2−t2 if |s| = |t |.
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Since

s2v − t2v = (s2 − t2)

v−1∑
i=0

s2i t2v−2i−2,

H2v(s, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v−1∑
i=0

s2i t2v−2i−2 = P2v−2(s, t) if |s| /= |t |,

lim|s|→|t |
v−1∑
i=0

s2i t2v−2i−2 = P2v−2(t, t) if |s| = |t |.

When r � 1, since

P2v(c1, c2, . . . , cr , s) =
v∑

i=0

s2iP2v−2i (c1, c2, . . . , cr ),

P2v(c1, c2, . . . , cr , s) − P2v(c1, c2, . . . , cr , t)

s2 − t2

=
v∑

i=1

s2i − t2i

s2 − t2
P2v−2i (c1, c2, . . . , cr )

=
v∑

i=1

P2i−2(s, t)P2v−2i (c1, c2, . . . , cr ), by the r = 0 case above,

= P2v−2(c1, c2, . . . , cr , s, t).

The above argument also shows the limiting case. �

For k � 2 and n = 2k, let Mn ∈ Q(Rn) be nilpotent. From (2.1), the characteristic polynomial
det(xI − Mn) is given by

pn(x) = xn = −
n/2∑
i=0

b2i

n∏
j=2i+1

(x − aj ), where b0 ≡ −1.

Remark 4.3. Consider pn(an) = an
n = −bn, and pn(an−1) = an

n−1 = −bn. Therefore, for some
c0 > 0 (since bn /= 0), an = −c0, an−1 = c0 and bn = −cn

0 = −Pn(c0). Thus, if Mn is nilpotent,
it follows that an and an−1, which are of opposite sign since Mn ∈ Q(Rn), must be nonzero and
of the same magnitude.

As motivation for the proof of the next lemma, consider

pn(an−2) = −bn−2(an−2 − c0)(an−2 + c0) − bn = an
n−2.

Thus

−bn−2(a
2
n−2 − c2

0) + cn
0 = an

n−2

and if |an−2| /= |c0|, then by Lemma 4.2

−bn−2 = an
n−2 − cn

0

a2
n−2 − c2

0

= Pn−2(c0, an−2).
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If |an−2| = |c0|, then the same result follows by the limiting case of Lemma 4.2. Simliarly,
considering pn(an−3) leads to the equation

−bn−2 = Pn−2(c0, an−3).

This implies that

Pn−2(c0, an−2) = Pn−2(c0, an−3). (4.1)

If g(x) = Pn(c0, x), then g(x) is even and strictly increasing on (0, ∞). Since (4.1) implies
that g(an−2) = g(an−3), it follows that |an−2| = |an−3|. That is, for some c1 � 0, an−2 = −c1,
an−3 = c1 and bn−2 = −Pn−2(c0, c1).

Lemma 4.4. Let k � 2 and M2k be nilpotent with M2k ∈ Q(R2k). For a fixed p with 1 �
p � k − 1, suppose c0 > 0, ck−j � 0 for p + 1 � j � k − 1, −a2i = a2i−1 = ck−i and −b2i =
P2i (c0, c1, . . . , ck−i ) for p + 1 � i � k. Then

−b2p

q∏
j=p+1

(a2
2p − c2

k−j ) +
q∑

i=p+1

P2i (c0, c1, . . . , ck−i )

q∏
j=i+1

(a2
2p − c2

k−j )

= P2q(c0, c1, . . . , ck−q−1, a2p)

for p � q � k − 1.

Proof. Since M2k is nilpotent,

p2k(a2p) = a2k
2p = −

k∑
i=0

b2i

2k∏
j=2i+1

(a2p − aj )

and it follows from Remark 4.3 that

−
k−1∑
i=p

b2i

2k∏
j=2i+1

(a2p − aj ) = a2k
2p − c2k

0 .

Thus, by the assumptions on b2i , a2i and a2i−1,

−b2p

k∏
j=p+1

(a2
2p − c2

k−j ) +
k−1∑

i=p+1

P2i (c0, c1, . . . , ck−i )

k∏
j=i+1

(a2
2p − c2

k−j ) = a2k
2p − c2k

0

and if |a2p| /= |c0|, then

−b2p

k−1∏
j=p+1

(a2
2p − c2

k−j ) +
k−1∑

i=p+1

P2i (c0, c1, . . . , ck−i )

k−1∏
j=i+1

(a2
2p − c2

k−j ) = a2k
2p − c2k

0

a2
2p − c2

0

= P2k−2(c0, a2p) by Lemma 4.2.

If |a2p| = |c0|, then the same result follows by the limiting case of Lemma 4.2. This establishes
the statement for q = k − 1. Now assume the statement holds for q = v with p + 1 � v � k − 1;
i.e.,

−b2p

v∏
j=p+1

(a2
2p − c2

k−j ) +
v∑

i=p+1

P2i (c0, c1, . . . , ck−i )

v∏
j=i+1

(a2
2p − c2

k−j )

= P2v(c0, c1, . . . , ck−v−1, a2p).
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Therefore

−b2p

v∏
j=p+1

(a2
2p − c2

k−j ) +
v−1∑

i=p+1

P2i (c0, c1, . . . , ck−i )

v∏
j=i+1

(a2
2p − c2

k−j )

= P2v(c0, c1, . . . , ck−v−1, a2p) − P2v(c0, c1, . . . , ck−v−1, ck−v)

and thus

−b2p

v−1∏
j=p+1

(a2
2p − c2

k−j ) +
v−1∑

i=p+1

P2i (c0, c1, . . . , ck−i )

v−1∏
j=i+1

(a2
2p − c2

k−j )

= P2v(c0, c1, . . . , ck−v−1, a2p) − P2v(c0, c1, . . . , ck−v−1, ck−v)

a2
2p − c2

k−v

if |a2p| /= |ck−v|

= P2v−2(c0, c1, . . . , ck−v−1, ck−v, a2p) by Lemma 4.2.

If |a2p| = |ck−v|, then the same result follows by the limiting case of Lemma 4.2. Thus, the
statement is true for q = v − 1, and the result follows by downward induction on q. �

The following result shows that if Mn is nilpotent and n = 2k, then a2i + a2i−1 = 0 and b2i < 0
for 1 � i � k.

Corollary 4.5. Let k � 2 and M2k be nilpotent with M2k ∈ Q(R2k). For a fixed p with 1 �
p � k − 1, suppose c0 > 0, ck−j � 0 for p + 1 � j � k − 1, −a2i = a2i−1 = ck−i and −b2i =
P2i (c0, c1, . . . , ck−i ) forp + 1 � i � k.Thena2p = −a2p−1 and−b2p = P2p(c0, c1, . . . , ck−p).

Proof. By Lemma 4.4 when q = p,

−b2p = P2p(c0, c1, . . . , ck−p−1, a2p).

By considering pn(a2p−1), an identical argument to that in Lemma 4.4 can be used to show

−b2p = P2p(c0, c1, . . . , ck−p−1, a2p−1).

Since P2p(c0, c1, . . . , ck−p−1, a2p) and P2p(c0, c1, . . . , ck−p−1, a2p−1) are equal and are even
polynomials in a2p and a2p−1 that are strictly increasing on (0, ∞), it follows that |a2p| =
|a2p−1| = ck−p for some ck−p � 0. Therefore,

−b2p = P2p(c0, c1, . . . , ck−p−1, ck−p),

and the sign pattern implies that a2p = −ck−p and a2p−1 = ck−p. �

Suppose that k � 2, n = 2k and Mn ∈ Q(Rn) is nilpotent. Then b2k < 0 and by Remark
4.3, a2k−1 = −a2k > 0. By Corollary 4.5 with p = k − 1, a2k−3 = −a2k−2 � 0 and −b2k−2 =
P2k−2(c0, c1) > 0, and considering p = k − 2, k − 3, . . . , 1, the following result is obtained.

Theorem 4.6. Let k � 2 and n = 2k. If Rn is an irreducible subpattern of Cn that is potentially
nilpotent, then D(Rn) has a simple cycle of each even length, a loop at vertices 2k − 1 and 2k,

and has, for 1 � i � k − 1, a loop at vertex 2i if and only if it has a loop at vertex 2i − 1.
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The following result identifies a family of subpatternsR2k from Theorem 4.6 that is potentially
nilpotent but not spectrally arbitrary, and a similar family R2k+1.

Theorem 4.7. For k � 2 and n = 2k or n = 2k + 1, if Rn has rii = 0 for 1 � i � 2k − 2 and
rij = cij otherwise, then Rn is potentially nilpotent, but not spectrally arbitrary.

Proof. Let n = 2k and suppose Mn ∈ Q(Rn), that is, Mn has a1 = a2 = · · · = an−2 = 0, an−1 >

0, an < 0 and b2j < 0 for 1 � j � k. Consider the characteristic polynomial of Mn as in (1.1)
with coefficients μi as given by (2.4) and (2.5). For i even, μi = −an−1anbi−2 − bi , and for i

odd, μi = −(an−1 + an)bi−1, with b0 ≡ −1. Assigning an−1 = 1 and an = −1 gives μi = 0 for
i odd, and gives μi = 0 for i even if and only if b2i = −1 for 1 � i � k.

Similarly, let n = 2k + 1 and suppose Mn ∈ Q(Rn), that is, Mn has a1 = a2 = · · · = an−3 =
0, {an−2, an−1} = {0, â} with â > 0, an < 0, b2j < 0 for 1 � j � k and b2k+1 > 0. Let the
characteristic polynomial of Mn be given by (1.1) with μi replaced by μ̃i . The coefficients μ̃i are
given by μ̃i = −âanbi−2 − bi for i even, and μ̃i = −(â + an)bi−1 for i odd, where 1 � i � 2k

and b0 ≡ −1. Assigning â = 1 and a2k+1 = −1 gives μ̃i = 0 for i odd, and gives μ̃i = 0 for i

even if and only if b2i = −1 for 1 � i � k. The constant term μ2k+1, given by (2.12), is then 0
if and only if b2k+1 = 1.

Thus, for n � 4, Mn ∈ Q(Rn) as specified above is nilpotent and therefore Rn is potentially
nilpotent. The pattern Rn is clearly not a SAP since μ1 = 0 implies that μ3 = 0 and μ̃1 = 0
implies that μ̃3 = 0. �

Note that if n is odd and a2k+1 = 0, then (2.12) gives b2k+1 = 0, and if â = 0, then μ̃2k = 0
implies b2k = 0, which from (2.12) implies that b2k+1 = 0. In the even case, if a2k−1 = 0 or
a2k = 0, then b2k = 0 (from Remark 4.3). But bn /= 0 for an irreducible matrix, so we conclude
that Rn in the theorem above has no irreducible proper subpattern that is potentially nilpotent.

Theorems 4.1, 4.6 and 4.7 imply that C4 is a minimal SAP. However, for k � 3 and n = 2k, it
is not known whether or notCn is minimal. In particular, it is unknown whether or not a subpattern
Rn of Cn with r2i,2i = r2i−1,2i−1 = 0 for some 1 � i � k − 1 is a SAP.

Conjecture 4.8. If k � 3 and n = 2k, then Cn is a minimal SAP.

For n = 5, a careful analysis shows that C5 is a minimal SAP, but minimality in the general
case for n odd remains to be explored.
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