View metadata, citation and similar papers at <u>core.ac.uk</u> browser browser brought to you by **CORE**

provided by E

Available online at www.sciencedirect.com

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 421 (2007) 24–44

www.elsevier.com/locate/laa

Potentially nilpotent and spectrally arbitrary even cycle sign patterns $\frac{1}{x}$

B.D. Bingham ^a, D.D. Olesky ^{b,∗}, P. van den Driessche ^c

^a *Department of Computer Science, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4* ^b *Department of Computer Science, University of Victoria, P.O. Box 3055, Victoria, British Columbia, Canada V8W 3P6* ^c *Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada V8W 3P4*

> Received 29 August 2005; accepted 4 October 2006 Available online 22 November 2006 Submitted by S. Kirkland

Abstract

An $n \times n$ sign pattern \mathcal{S}_n is potentially nilpotent if there is a real matrix having sign pattern \mathcal{S}_n and characteristic polynomial x^n . A new family of sign patterns \mathcal{C}_n with a cycle of every even length is introduced and shown to be potentially nilpotent by explicitly determining the entries of a nilpotent matrix with sign pattern \mathcal{C}_n . These nilpotent matrices are used together with a Jacobian argument to show that \mathscr{C}_n is spectrally arbitrary, i.e., there is a real matrix having sign pattern \mathscr{C}_n and characteristic polynomial $x^n + \sum_{i=1}^n (-1)^i \mu_i x^{n-i}$ for any real μ_i . Some results and a conjecture on minimality of these spectrally arbitrary sign patterns are given.

© 2006 Elsevier Inc. All rights reserved.

AMS classification: 05C50; 15A48

Keywords: Character[istic polynomial; Cycl](mailto:binghamb@cs.ubc.ca)e product; Digra[ph; Nilpotent matrix;](mailto:dolesky@cs.uvic.ca) Potentially nil[potent; Sign pattern;](mailto:pvdd@math.uvic.ca) Spectrally arbitrary; Spectrum

⁻ Research supported in part by NSERC through an USRA for B.D. Bingham and Discovery Grants for D.D. Olesky and P. van den Driessche.

[∗] Corresponding author. Tel.: +1 250 472 5788; fax: +1 250 472 5708.

E-mail addresses: binghamb@cs.ubc.ca (B.D. Bingham), dolesky@cs.uvic.ca (D.D. Olesky), pvdd@math.uvic.ca (P. van den Driessche).

^{0024-3795/\$ -} see front matter \odot 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2006.10.001

1. Introduction

A real $n \times n$ matrix $Y_n = [y_{ij}]$ has an associated digraph $D(Y_n)$ with vertices $1, 2, ..., n$ and an arc (i, j) from vertex i to vertex j if and only if $y_{ij} \neq 0$. If $y_{ii} \neq 0$, then the simple cycle (i, i) of length 1 in $D(Y_n)$ is called a loop at vertex i, and its associated cycle product of size 1 is y_{ii} . A simple cycle of length $k \ge 2$ (called a k-cycle) in $D(Y_n)$ is a sequence of arcs $(v_1, v_2), (v_2, v_3), \ldots, (v_{k-1}, v_k), (v_k, v_1)$ with k distinct vertices, and its asso[cia](#page-20-0)ted cycle product of size k is $(-1)^{k+1} y_{v_1v_2} y_{v_2v_3} \dots y_{v_{k-1}v_k} y_{v_kv_1}$. A composite cycle of length k is a set of vertex disjoint simple cycles with lengths summing to k. Its associated cycle product of size k is $(-1)^m$ times the product of all matrix entries corresponding to these vertex disjoint cycles, where m is the number of such cycles of even length. If the characteristic polynomial of Y_n , det(xI – Y_n), is given by

$$
p_n(x) = x^n - \mu_1 x^{n-1} + \mu_2 x^{n-2} - \dots + (-1)^n \mu_n,
$$
\n(1.1)

then it is well known that the coefficient μ_i of $(-1)^i x^{n-i}$ for $1 \leq i \leq n$ in the characteristic polynomial of Y_n is the sum of all cycle products of size i [\(s](#page-19-0)ee, for example, [4]).

A fixed matrix $Y_n = [y_{ij}]$ has an associated sign pattern (matrix) $\mathcal{S}_n = [s_{ij}]$ with $s_{ij} =$ sgn(y_{ij}) for all i, j, where sgn(y_{ij}) = +, -, 0 according as y_{ij} is positive, negative, zero, respectively. We denote by $Q(\mathcal{S}_n)$ $Q(\mathcal{S}_n)$ $Q(\mathcal{S}_n)$ the set of all real matrices with associated sign pattern \mathcal{S}_n , thus $Y_n \in Q(\mathscr{S}_n)$. Also $D(\mathscr{S}_n) = D(Y_n)$ and cycles in $D(\mathscr{S}_n)$ are defined as above for $D(Y_n)$. A sign pattern \mathcal{S}_n is a *spectrally arbitrary pattern* (SAP) if given any real monic polynomial $p_n(x)$ of degree *n*, there exists [a](#page-19-0) real matrix $Y_n \in Q(\mathcal{S}_n)$ with c[ha](#page-19-0)racteristic polynomial $p_n(x)$. A sign pattern \mathcal{S}_n is *po[ten](#page-19-0)tially nilpotent* if there exists a matrix $Y_n \in Q(\mathcal{S}_n)$ that is nilpotent, i.e., the characteristic polynomial of Y_n is x^n . If \mathcal{S}_n is a SAP, then [cle](#page-20-0)arly \mathcal{S}_n is potentially nilpotent, but the converse is not necessarily true. However, Drew et al. [3] developed a methodology (based on the implicit function theorem) of using a nilpotent matrix Y_n [to](#page-20-0) determine a s[pe](#page-20-0)ctrally arbitrary pattern.

The first known family of spectrally arbitrary patterns (for all $n \geq 2$) was given in [7] and is based on constructions using a Soules matrix. If \mathcal{S}_n is a SAP, but no proper subpattern of \mathcal{S}_n is a SAP, then \mathcal{S}_n is a *minimal* SAP. The first known families of minimal spectrally arbitrary patterns were given in [1] by using the methodology of [3]. This was also used by Cavers and Vander Meulen [2] to introduce other families of SAPs. More recently, all spectrally arbitrary patterns with an associated star graph were determined in [6]. The characteristic polynomial of a matrix with a star graph is relatively simple, and consequently the mat[rix](#page-19-0) entries can be explicitly computed for any given characteristic polynomial. Results of [8] were used in [6] to characterize all potentially nilpotent star patterns. Note that SAPs and potentially nilpotent patterns are studied up to equivalence, i.e., transposition, negat[ion](#page-19-0), and permutation and signature similarity.

Here we introduce a new family of particular sign patterns \mathcal{C}_n that have a cycle of every even length (which we call *even cycle sign patterns*), and show that this family is spectrally arbitrary. For *n* even, we prove that if $D(\mathcal{C}_n)$ has *n* loops and the product of entries corresponding to each of the cycles of even length is negative, then \mathcal{C}_n is a SAP. Although the characteristic polynomial of $M_n \in \mathcal{Q}(\mathscr{C}_n)$ is complicated, we use algebraic and graph theoretic techniques to find nilpotent matrices with these sign patterns, and then use the methodology of [3] to demonstrate that the pattern is spectrally arbitrary. When $n = 2k + 1$, the results and proofs are obtained from those for $n = 2k$ by requiring that $D(\mathscr{C}_{2k+1})$ has a Hamilton cycle and only 2k loops. Even cycle sign patterns are motivated by the observation [2, Lemma 1.5] that if \mathcal{S}_n allows any inertia, which must be true if \mathcal{S}_n is a SAP, then $D(\mathcal{S}_n)$ contains a 2-cycle with $s_{kj} s_{jk} < 0$ for $k \neq j$.

In Section 2, we begin by finding nilpotent even cycle matrices $M_n \in Q(\mathscr{C}_n)$, firstly for *n* even and then for n odd. In Section 3, we consider a Jacobian and show that it is nonzero, which allows us to use the methodology of [3]. In Section 4, which contains our main results, we prove that \mathcal{C}_n is a SAP (with approximately $5n/2$ nonzero entries) and identify a subpattern that is potentially nilpotent (but not a SAP). We conclude with some results and a conjecture on minimality.

2. Nilpotent even cycle matrices

Throughout we restrict consideration to $n \times n$ matrices with $n \geq 4$ and having the following structures depending on the parity of *n*. For $n = 2k$, let

M2^k = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ a¹ 1 b² a² 1 0 a³ 1 0 b⁴ a⁴ ⁰ ... ¹ 0 a2k−¹ 1 b2^k a2^k ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (2.1) M2k+¹ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ a¹ 1 b² a² 1 0 a³ 1 0 b⁴ a⁴ ¹ 0 0 a2k−¹ 1 b2^k a2^k 1 b2k+¹ a2k+¹ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , (2.2)

where $b_n \neq 0$ and all other variables are arbitrary. Note that both $D(M_{2k})$ and $D(M_{2k+1})$ have a loop at each vertex j for which $a_j \neq 0$ and exactly one simple cycle of length 2i if $b_{2i} \neq 0$; the corresponding cycle products are a_j (for the loop at vertex j) and $-b_{2i}$ (for the simple cycle of length 2i). The digraph $D(M_{2k+1})$ also has one simple cycle of length $2k + 1$ with corresponding cycle product b_{2k+1} . Since all the simple cycles of $D(M_n)$ have even length, except for loop[s and](#page-1-0) (if n is odd) a Hamilton cycle, we call the matrices M_n *even cycle matrices*.

With respect to M_n in (2.1) and (2.2), let $A_{n,q} = \{n - q + 1, n - q + 2, ..., n\}$ for $1 \leq q \leq n$. For $1 \leqslant w \leqslant q$, define

$$
F(q, w) = \sum_{\substack{B \subseteq A_{n,q} \\ |B| = w}} \prod_{i \in B} a_i,
$$

i.e., $F(q, w)$ is the sum of all products of w distinct entries a_z , where $z \in A_{n,q}$. Define $F(q, 0) =$ $F(0, 0) = 1$ and define $F(q, w) = 0$ if $w > q$.

We first consider the case that *n* is even. The coefficients of the characteristic polynomial (1.1) of M_{2k} in (2.1) can be specified in terms of the functions $F(q, w)$ (see Lemma 2.1). If, for $n = 2k$, we let

$$
a_{2i-1} = 1
$$
 and $a_{2i} = -1$ for $1 \le i \le k$, (2.3)

and

then the functions $F(q, w)$ are easily computed (see Lemma 2.2) and this enables us to determine a nilpotent matrix M_{2k} (in Theorem 2.3).

With respect to $D(M_{2k})$, the cycle products of size i are obtained from i loops, or from a simple even cycle of length $j \le i$ and $i - j$ loops that are disjoint from the j-cycle. These observations give the following expressions for the coefficients of the characteristic polynomial of M_{2k} .

Lemma 2.1. When $k \geqslant 2$ and $n = 2k$, the characteristic polynomial (1.1) of M_n has for $1 \leqslant r \leqslant$ k,

$$
\mu_{2r} = F(2k, 2r) - \sum_{i=1}^{r} b_{2i} F(2k - 2i, 2r - 2i)
$$
\n(2.4)

and for $0 \le r \le k - 1$,

$$
\mu_{2r+1} = F(2k, 2r+1) - \sum_{i=1}^{r} b_{2i} F(2k - 2i, 2r+1 - 2i).
$$
 (2.5)

The F fun[ction](#page-2-0)s in the above lemma are now computed by assigning values to the variables a_i as in (2.3).

Lemma 2.2. *Let* $k \ge 2$ *and* $n = 2k$ *. If* (2.3) *holds and* $2 \le p \le k$ *, then for* $r = 0, 1, ..., p$ *,*

$$
F(2p, 2r) = (-1)^r \binom{p}{r} \tag{2.6}
$$

and

$$
F(2p, 2r + 1) = 0.\t(2.7)
$$

Proof. If (2.3) holds, then each product of entries a_z with $z \in A_{n,2p}$ is ± 1 . Letting $B_p = \{i :$ i is odd and $i \in A_{n,2p}$ and $C_p = \{i : i$ is even and $i \in A_{n,2p}\}$, $F(2p, w)$ is the number of sets with w elements formed by taking an even number of elements from C_p (and the rest from B_p), minus the number of sets with w elements formed by taking an odd number of elements from C_p (and the rest from B_p). Thus,

$$
F(2p, 2r) = \sum_{i=0}^{r} {p \choose 2i} {p \choose 2r - 2i} - \sum_{i=0}^{r-1} {p \choose 2i+1} {p \choose 2r - (2i+1)}.
$$
 (2.8)

This can easily be seen by noting that each term in these summations is of the form $\binom{p}{i}$ j $\bigwedge p$ ℓ  , where *j* elements are chosen from C_p and ℓ elements are chosen from B_p to form a set of size $j + \ell$. Note that $j + \ell = 2r$ in (2.8).

The coefficient of t^{2r} in the binomial expansion of $(1 - t^2)^p$ is $(-1)^r \binom{p}{r}$ r  . Similarly, the coefficient of t^{2r} in the product of the binomial expansions of $(1 - t)^p$ and $(1 + t)^p$ is

$$
\sum_{i=0}^{2r} (-1)^i {p \choose i} {p \choose 2r-i} = F(2p, 2r)
$$

by (2.8). Since $(1 - t)^p (1 + t)^p = (1 - t^2)^p$, they must have equal coefficients of t^{2r} , thus $F(2p, 2r) = (-1)^r \binom{p}{r}$ r  .

By a similar argument as used for (2.8),

$$
F(2p, 2r + 1) = \sum_{i=0}^{r} {p \choose 2r + 1 - (2i + 1)} {p \choose 2i + 1} - \sum_{i=0}^{r} {p \choose 2i + 1} {p \choose 2r + 1 - (2i + 1)},
$$

which is equal to 0. \square

Theorem 2.3. Let $k \geq 2$ and $n = 2k$. If $a_{2i-1} = 1$ and $a_{2i} = -1$ for $1 \leq i \leq k$, then M_n is *nilpotent if and only if* $b_{2r} = -\binom{k}{r}$ r \int *for* $1 \leqslant r \leqslant k$.

Proof. In the characteristic polynomial of M_n , by (2.5) and (2.7) it follows that $\mu_{2r+1} = 0$ for $0 \le r \le k - 1$. Then M_n is nilpotent if and only if $\mu_{2r} = 0$ for $1 \le r \le k$. By (2.4) and (2.6), this holds if and only if for $1 \le r \le k$

$$
b_{2r} = F(2k, 2r) - \sum_{i=1}^{r-1} b_{2i} F(2k - 2i, 2r - 2i)
$$

= $(-1)^r {k \choose r} - \sum_{i=1}^{r-1} b_{2i} (-1)^{r-i} {k-i \choose r-i}$. (2.9)

Now we show by induction on r that (2.9) gives $b_{2r} = -\binom{k}{r}$ r). For $r = 1$, Eq. (2.9) gives $b_2 = (-1)^1 \binom{k}{1}$ 1 $-0 = -\binom{k}{1}$ 1), so the statement is true. Now assume that $b_{2r} = -\binom{k}{r}$ r for all $r \le u - 1$. From (2.9) and the induction hypothesis,

$$
b_{2u} = (-1)^u {k \choose 0} {k \choose u} + \sum_{i=1}^{u-1} (-1)^{u-i} {k \choose i} {k-i \choose u-i}
$$

=
$$
\sum_{i=0}^{u-1} (-1)^{u-i} {k \choose i} {k-i \choose u-i}
$$

=
$$
\sum_{i=0}^{u-1} (-1)^{u-i} {k \choose u} {u \choose i} = {k \choose u} \left[(-1)^u \sum_{i=0}^u (-1)^i {u \choose i} - 1 \right].
$$

Note that $\sum_{i=0}^{u}(-1)^{i} \binom{u}{i}$ i = 0 since the binomial expansion $(1 - t)^u = \sum_{i=0}^u$ $\int u$ i $(-t)^{i}$ with $t = 1$ gives $0 = \sum_{i=0}^{u} (-1)^{i} \begin{pmatrix} u \\ i \end{pmatrix}$ i). Therefore $b_{2u} = -\binom{k}{u}$ u and the statement follows by induction. \square

We now consider M_n when n is odd as in (2.2). For a specified main diagonal (that simplifies the characteristic polynomial), a necessary condition for M_n to be nilpotent is given in the following lemma, and a nilpotent matrix M_n is determined in Theorem 2.5.

Lemma 2.4. Let $k \ge 2$ and $n = 2k + 1$, and let M_n have exactly one $a_v = 0$ for $1 \le v \le n$ and $b_{2r} \neq 0$ *for all* $1 \leq r \leq k$. *Suppose the nonzero* a_i *alternate in value* $1, -1, 1, -1, \ldots, 1, -1$ *. If* M_n *is nilpotent, then either* $a_{n-2} = 0$ *or* $a_{n-1} = 0$.

Proof. Considering the cycle products of size n , the constant term of the characteristic polynomial of M_n is

$$
\sum_{r=1}^{k} \left(b_{2r} \prod_{j=2r+1}^{n} a_j \right) - b_n - \prod_{i=1}^{n} a_i.
$$
\n(2.10)

Since a_n appears in each term except $-b_n$, if $a_n = 0$ then (2.10) is $-b_n \neq 0$, and M_n is not nilpotent.

Now suppose $a_v = 0$ for some fixed v with $1 \le v \le n - 3$, and let

$$
s = \begin{cases} v & \text{for } v \text{ even} \\ v + 1 & \text{for } v \text{ odd.} \end{cases}
$$

Here s is the length of the shortest cycle of length at least 2 in $D(M_n)$ on which vertex v lies, and s is even with $2 \le s \le n - 3$ and $2 \le n - s - 1 \le n - 3$. The coefficient of x^{n-s-1} in the characteristic polynomial of M_n with $a_v = 0$ is given by the sum of all cycle products of size $s + 1$, i.e., by

$$
F(2k+1, s+1) - \sum_{i=1}^{s-2} b_{2i} F(2k+1-2i, s+1-2i) - b_s \sigma,
$$
\n(2.11)

where

$$
\sigma = \sum_{i=s+1}^n a_i.
$$

There are an odd number, namely $n - s$, of loops that are disjoint from the cycle of length s. The sets $A_{n,q}$ corresponding to each of the above F functions, respectively, are

 $A_{2k+1,2k+1}, A_{2k+1,2k-1}, A_{2k+1,2k-3}, \ldots, A_{2k+1,2k+1-(s-2)}$.

By definition, each of these sets contains the index v such that $a_v = 0$. Each F function in (2.11) is of the form $F(2j + 1, w)$ for $2k + 1 - (s - 2) \le 2j + 1 \le 2k + 1$ and w odd with $3 \leq w \leq s + 1$, where the associated set $A_{2k+1,2j+1}$ contains j indices z for which $a_z = 1$ and j indices z for which $a_z = -1$. Thus its value is equal to $F(2j, w)$ when (2.3) holds. Since $s + 1$, $s - 1$, $s - 3$,..., 3 are all odd, by (2.7) all of the F functions in (2.11) are equal to 0 and (2.11) reduces to $-b_s\sigma$. The value of σ is clearly nonzero since it is the sum of an odd number of variables with values from $\{1, -1\}$, therefore (2.11) is nonzero and M_n is not nilpotent.

Thus if M_n is nilpotent and exactly one $a_v = 0$, then $v = n - 2$ or $n - 1$. \Box

Theorem 2.5. *Let* $k \ge 2$ *and* $n = 2k + 1$ *. Suppose* M_n *has exactly one of* a_{n-2} *and* a_{n-1} *equal to* 0, and the nonzero a_i alternate in value $1, -1, 1, -1, \ldots, 1, -1$. *Then* M_n *is nilpotent if and only if* $b_{2r} = -\binom{k}{r}$ r *for* $1 \leq r \leq k$ *and* $b_{2k+1} = 1$.

Proof. Let M_{2k} have characteristic polynomial (1.1) with (2.3) holding. Consider the characteristic polynomial (1.1) of M_{2k+1} with μ_i replaced by $\tilde{\mu}_i$ and where the a_i are assigned as in the theorem statement. For $1 \leq p \leq 2k$, we claim that the sets of all cycle products of size p in $D(M_{2k+1})$ and $D(M_{2k})$ are identical. This is true because:

- (i) In $D(M_{2k+1})$, the arc fr[o](#page-4-0)m vertex $2k + 1$ to vertex 1 belongs to no cyc[le](#page-4-0) of length $\leq 2k$ (and thus b_{2k+1} does not occur in these cycle products).
- (ii) Every cycle product of size p in $D(M_{2k})$ and $D(M_{2k+1})$ corresponds to either
	- (a) p loops (and each digraph [has](#page-5-0) k loops with cycle product equal to 1 and k loops with cycle product equal to -1), or
	- (b) one cycle of length 2r for $1 \le r \le k$ and $p 2r$ loops (and in each digraph, the cycles of length 2r have the same cycle product and each is disjoint from $2k - 2r$ loops, $k - r$ of which have cycle product 1 and $k - r$ of which have cycle product -1).

Thus it follows that $\mu_i = \tilde{\mu}_i$ for $1 \leq i \leq 2k$ (in terms of the b_{2r}). By Theorem 2.3, $\mu_i = \tilde{\mu}_i = 0$ for $1 \leq i \leq 2k$ if and only if $b_{2r} = -\binom{k}{r}$ r for $1 \leq r \leq k$. The constant term $\tilde{\mu}_n$ is the sum of cycle product[s](#page-5-0) of size $2k + 1$ $2k + 1$ $2k + 1$ as [in](#page-5-0) [\(](#page-5-0)2.10). With the a_i as assigned, the only such cycle products are obtained from the $(2k + 1)$ -cycle and from the composite cycle consisting of the loop at vertex $2k + 1$ and the 2k-cycle. These cycle products have values equal to b_{2k+1} and $-a_{2k+1}b_{2k}$, respectively. Thus, $\tilde{\mu}_n = 0$ if and only if

$$
0 = -b_{2k+1} + a_{2k+1}b_{2k},
$$

that is, if and only if $b_{2k+1} = (-1) \begin{bmatrix} -\binom{k}{k} \end{bmatrix} = 1.$ \square

Remark 2.6. Theorems 2.3 and 2.5 give nilpotent matrices M_n for specific assignments of the a_j when $n \geq 4$. However, the proofs of both theorems can be adapted to show nilpotence for other values of the main diagonal. When $k \ge 2$, $n = 2k$, $a_{2i} \in \{1, -1\}$ and $a_{2i-1} = -a_{2i}$ for $1 \le i \le k$, then M_n is nilpotent if and only if $b_{2r} = -\binom{k}{r}$ r for $1 \leq r \leq k$. When $k \geq 2$, $n = 2k + 1$, $a_{2i} \in$ $\{1, -1\}$ and $a_{2i-1} = -a_{2i}$ for $1 \le i \le k - 1$, if $\{a_{2k-1}, a_{2k}\} = \{1, 0\}$ and $a_{2k+1} = -1$, then M_n is nilpotent if and only if $b_{2r} = -\binom{k}{r}$ r for $1 \leq r \leq k$ and $b_{2k+1} = 1$. However, in this latter case if $\{a_{2k-1}, a_{2k}\} = \{-1, 0\}$ $\{a_{2k-1}, a_{2k}\} = \{-1, 0\}$ $\{a_{2k-1}, a_{2k}\} = \{-1, 0\}$ and $a_{2k+1} = 1$, [th](#page-19-0)en $b_{2r} = -\binom{k}{r}$ r for $1 \leq r \leq k$ and (2.12) gives $b_{2k+1} = -1$ for nilpotence. Thus, from M_n we can find $2^{\lceil n/2 \rceil}$ nonequivalent potentially nilpotent sign patterns.

3. Nonzero Jacobian

With a view to obtaining spectrally arbitrary patterns from M_n , we now consider a particular Jacobian evaluated at values a_i, b_i obtained for a nilpotent matrix M_n . This enables us to use the methodology of [3, Observation 10]; see also [1, Lemma 2.1]. We first consider the case that *n* is even, i.e., $n = 2k$ for $k \ge 2$. In M_n , set

$$
a_{2i} = -1 \quad \text{for } 1 \leqslant i \leqslant k. \tag{3.1}
$$

Certain entries of the matrix D_n , which is defined below in (3.6), are determined by differentiating the coefficients of the characteristic polynomial μ_i with respect to the *n* remaining variables a_{2i-1} and b_{2i} ; see Lemmas 3.1, 3.2, 3.4, 3.6 and 3.7.

For $1 \leq j \leq k$ and for some odd ℓ with $n - 2j + 1 \leq \ell \leq n$, define

$$
\tilde{A}_{n,2j-1} \equiv A_{n,2j} \backslash \{\ell\}.
$$

For $1 \leqslant w \leqslant 2j - 1$, define

$$
\widetilde{F}(2j-1, w) = \sum_{\substack{B \subseteq \widetilde{A}_{n,2j-1} \\ |B| = w}} \prod_{i \in B} a_i,
$$

i.e., $\overline{F}(2j-1, w)$ is equal to the sum of all products of w distinct entries a_z , where $z \in \overline{A}_{n,2j-1}$. Define $\vec{F}(2j - 1, 0) = 1$ $\vec{F}(2j - 1, 0) = 1$ $\vec{F}(2j - 1, 0) = 1$ and define $\vec{F}(2j - 1, w) = 0$ if $w > 2j - 1$.

Lemma 3.1. *If* (2.3) *holds*, $0 \le p \le k - 1$ *and* $0 \le r \le p$ *, then*

$$
\widetilde{F}(2p+1,2r) = (-1)^r \binom{p}{r},\tag{3.2}
$$

and

$$
\widetilde{F}(2p+1, 2r+1) = (-1)^{r+1} \binom{p}{r}.
$$
\n(3.3)

Proof. If (2.3) holds, then each product of entries a_z with $z \in \overline{A}_{n,2p+1}$ is ± 1 . Letting $\overline{B}_p = \{i : i \text{ is odd and } i \in \widetilde{A}_{n,2p+1}\}$ and $\widetilde{C}_{p+1} = \{i : i \text{ is even and } i \in \widetilde{A}_{n,2p+1}\}$, $\widetilde{F}(2p+1,w)$ is the numbe the rest from B_p) minus the number of sets with w elements formed by taking an odd number of elements from \tilde{C}_{p+1} (and the rest from \tilde{B}_p). Note that $|\tilde{B}_p| = p$ and $|\tilde{C}_{p+1}| = p + 1$. As in the proof of Lemma 2.2, the expression for $\widetilde{F}(2p+1, w)$ is

$$
\widetilde{F}(2p+1,2r) = \sum_{i=0}^{r} {p \choose 2i} {p+1 \choose 2r-2i} - \sum_{i=0}^{r-1} {p \choose 2i+1} {p+1 \choose 2r-(2i+1)}.
$$

Consider the binomial expansions

$$
(1+t)^p = \sum_{i=0}^p \binom{p}{i} t^i \quad \text{and} \quad (1-t)^{p+1} = \sum_{i=0}^{p+1} (-1)^i \binom{p+1}{i} t^i.
$$

The coefficient of t^{2r} in $(1 + t)^p(1 - t)^{p+1}$ is

$$
\sum_{i=0}^{2r} (-1)^i {p \choose i} {p+1 \choose 2r-i} = \sum_{i=0}^r {p \choose 2i} {p+1 \choose 2r-2i} - \sum_{i=0}^{r-1} {p \choose 2i+1} {p+1 \choose 2r-(2i+1)},
$$

which is $F(2p + 1, 2r)$. Also,

$$
(1+t)^p(1-t)^{p+1} = (1-t)(1-t^2)^p = (1-t^2)^p - t(1-t^2)^p.
$$

The coefficient of t^{2r} in $(1 - t^2)^p - t(1 - t^2)^p$ is equal to the coefficient of t^{2r} in $(1 - t^2)^p$ since $-t(1-t^2)^p$ has no even powers of t. Therefore, since

$$
(1 - t2)p = \sum_{i=0}^{p} (-1)^{i} {p \choose i} t^{2i},
$$

(3.2) follows.

For (3.3), observe that [when](#page-1-0) F is defined with respect to $A_{n,2p+2}$, F is defined with respect to $\tilde{A}_{n,2p+1} \equiv A_{n,2p+2} \setminus \{ \ell \}, \text{ and } \ell \text{ is odd with } n-2p-1 \leq \ell \leq n,$

$$
F(2p + 2, 2r + 1) = \widetilde{F}(2p + 1, 2r + 1) + a_{\ell} \widetilde{F}(2p + 1, 2r).
$$

By (2.7), $F(2p + 2, 2r + 1) = 0$, so $-a_{\ell}F(2p + 1, 2r) = F(2p + 1, 2r + 1)$. This implies that $\widetilde{F}(2p + 1, 2r + 1) = (-1)^{r+1} \binom{p}{r}$ r by (3.2), since $a_{\ell} = 1$. \Box

Lemma 3.2. Let $k \geq 2$ and $n = 2k$. If (3.1) holds, then the derivatives of the coefficients in the *characteristic polynomial* (1.1) *of* M_n *are, for* $1 \leq j \leq k$ *, given by*

$$
\frac{\partial \mu_{2r}}{\partial a_{2j-1}} = \widetilde{F}(2k-1, 2r-1) - \sum_{i=1}^{r-1} b_{2i} \widetilde{F}(2k-1-2i, 2r-1-2i)
$$

when $2 \leq 2r \leq 2j$ *and*

$$
\frac{\partial \mu_{2r+1}}{\partial a_{2j-1}} = \widetilde{F}(2k-1, 2r) - \sum_{i=1}^r b_{2i} \widetilde{F}(2k-1-2i, 2r-2i)
$$

when $1 \leq 2r + 1 \leq 2j - 1$.

Proof. Consider (2.4), in which all $F(2p, w)$ are defined with respect to $A_{n,2p} = \{n - 2p + 1\}$ $1, n - 2p + 2, \ldots, n$ and (3.1) holds. For some fixed j with $1 \le j \le k$, factor a_{2j-1} from this expression to give

$$
\mu_{2r} = a_{2j-1} \left(\widetilde{F}(2k-1, 2r-1) - \sum_{i=1}^{r-1} b_{2i} \widetilde{F}(2k-1-2i, 2r-1-2i) \right) + f(a_1, a_3, \dots, a_{2j-3}, a_{2j+1}, \dots, a_{2k-1}, b_2, b_4, \dots, b_{2r})
$$
(3.4)

if $2r \leq 2j$, where each term $F(2p-1, w)$ above is defined with respect to $A_{n,2p-1} \equiv A_{n,2p}\setminus\{2j-1\}$. 1}. That is, all such (nontrivial) terms $F(2p, w)$ have $2j - 1 \in A_{n, 2p}$ and thus can be expressed as

$$
F(2p, w) = a_{2j-1} \widetilde{F}(2p - 1, w - 1)
$$

+ $f_1(a_{2k-2p+1}, a_{2k-2p+3}, \dots, a_{2j-3}, a_{2j+1}, \dots, a_{2k-1}),$

where f_1 is the sum of terms that do not include a_{2j-1} as a factor. Note that the product $a_{2j-1}b_{2i}$, for $1 \le i \le r - 1$, occurs in (2.4) if and only if $2r \le 2j$ (by the definition of $F(2p, w)$). Differentiating (3.4) with respect to a_{2j-1} gives

$$
\frac{\partial \mu_{2r}}{\partial a_{2j-1}} = \widetilde{F}(2k-1, 2r-1) - \sum_{i=1}^{r-1} b_{2i} \widetilde{F}(2k-1-2i, 2r-1-2i)
$$

as required.

Similarly, (2.5) can be written as

$$
\mu_{2r+1} = a_{2j-1} \left(\widetilde{F}(2k-1, 2r) - \sum_{i=1}^{r} b_{2i} \widetilde{F}(2k-1-2i, 2r-2i) \right) + f(a_1, a_3, \dots, a_{2j-3}, a_{2j+1}, \dots, a_{2k-1}, b_2, b_4, \dots, b_{2r}),
$$
\n(3.5)

if $2r + 1 \leq 2j - 1$. Note that the product $a_{2j-1}b_{2i}$, for $1 \leq i \leq r$, occurs in (2.5) if and only if $2r + 1 \leq 2j - 1$ (by the definition of $F(2p, w)$). Differentiating (3.5) with respect to a_{2j-1} gives

$$
\frac{\partial \mu_{2r+1}}{\partial a_{2j-1}} = \widetilde{F}(2k-1, 2r) - \sum_{i=1}^{r} b_{2i} \widetilde{F}(2k-1-2i, 2r-2i)
$$

as required. \square

Lemma 3.3. *If* $v \ge 0$ *and* $k \ge v + 1$ *, then*

$$
\sum_{u=0}^{v} (-1)^{u} {v \choose u} \frac{1}{k-u} = \frac{(-1)^{v}}{(k-v) {k \choose v}}.
$$

The above identity (see [5, Identity 1.43]), which can be proven by induction, is used to p[rove](#page-3-0) the following lemma. For $k \geqslant 2$ and $n = 2k$, define the $n \times n$ matrix $D_n = [d_{ij}]$ where for $1 \leqslant i \leqslant n$,

$$
d_{ij} = (-1)^i \frac{\partial \mu_i}{\partial a_{2j-1}} \quad \text{and} \quad d_{i,k+j} = (-1)^i \frac{\partial \mu_i}{\partial b_{2j}} \qquad \text{for } 1 \leqslant j \leqslant k. \tag{3.6}
$$

Lemma 3.4. *Let* $k \ge 2$, $n = 2k$, $1 \le j \le k$ *and* $1 \le i \le 2j$. *If* (3.1) *holds and* d_{ij} *is evaluated with* $b_{2r} = -\binom{k}{r}$ r $\hat{a}_{\text{and }a_{2r-1}} = 1$ *for* $1 \leq r \leq k$, *then* $d_{ij} = -1$.

Proof. Fix $j, 1 \leq j \leq k$ and fix $i, 1 \leq i \leq 2j$. If i is odd $(i = 2g + 1)$, then by Lemma 3.2

$$
\frac{\partial \mu_{2g+1}}{\partial a_{2j-1}} = \widetilde{F}(2k-1,2g) + \sum_{u=1}^g {k \choose u} \widetilde{F}(2k-1-2u,2g-2u).
$$

Applying (3.2) gives

$$
\frac{\partial \mu_{2g+1}}{\partial a_{2j-1}} = (-1)^g {k-1 \choose g} + \sum_{u=1}^g {k \choose u} (-1)^{g-u} {k-1-u \choose g-u}
$$

=
$$
\sum_{u=0}^g (-1)^{g-u} {k \choose u} {k-1-u \choose g-u}
$$

=
$$
\sum_{u=0}^g (-1)^{g-u} \frac{k}{k-u} {k-1 \choose g} {g \choose u}
$$

=
$$
(-1)^g k {k-1 \choose g} \sum_{u=0}^g (-1)^u \frac{1}{k-u} {g \choose u}.
$$
 (3.7)

Using Lemma 3.3 with v as g gives

$$
\frac{\partial \mu_{2g+1}}{\partial a_{2j-1}} = (-1)^g k \binom{k-1}{g} \frac{(-1)^g}{(k-g) \binom{k}{g}} \\
= \frac{k(k-1)!}{g!(k-1-g)!} \frac{g!(k-g)!}{(k-g)k!} = 1.
$$

Recalling that $d_{ij} = -\frac{\partial \mu_i}{\partial a_{2j-1}}$ for i odd, $d_{2g+1,j} = -1$ as required. If *i* is even $(i = 2g)$, then using Lemma 3.2 and applying (3.3) gives

$$
\frac{\partial \mu_{2g}}{\partial a_{2j-1}} = \widetilde{F}(2k - 1, 2g - 1) + \sum_{u=1}^{g-1} {k \choose u} \widetilde{F}(2k - 1 - 2u, 2g - 1 - 2u)
$$

= $(-1)^g {k-1 \choose g-1} + \sum_{u=1}^{g-1} {k \choose u} (-1)^{g-u} {k-1-u \choose g-1-u}$
= $\sum_{u=0}^{g-1} (-1)^{g-u} {k \choose u} {k-1-u \choose g-1-u}$
= $-\sum_{u=0}^{g-1} (-1)^{g-1-u} {k \choose u} {k-1-u \choose g-1-u}.$

This is the negative of (3.7) with g replaced by $g - 1$. Recalling the definition in (3.6), a similar argument to the *i* odd case gives $d_{2g,j} = -1$ as require[d.](#page-7-0) \square

The following identity established in the above proof is used in the proof of the next lemma.

Corollary 3.5. *For* $k \ge 2$ *and* $0 \le g \le k - 1$ *,*

$$
\sum_{u=0}^{g} (-1)^{g-u} {k \choose u} {k-1-u \choose g-u} = 1.
$$

Lemma 3.6. *Let* $k \ge 2$, $n = 2k$ *and* $1 \le i \le k - 1$. *If* (3.1) *holds and* $d_{2j+1,j}$ *is evaluated with* $b_{2r} = -\binom{k}{r}$ r \int and $a_{2r-1} = 1$ for $1 \leq r \leq k$, then $d_{2j+1,j} \geq 1$.

Proof. If the variables a_{2r-1} and b_{2r} for $1 \leq r \leq k$ are not assigned values, then μ_{2j+1} has terms containing the factors $a_{2j-1}b_h$ for all $h = 2, 4, ..., 2j - 2$ since such a factor occurs in some cycle product of size $2j + 1$. However, the factor $a_{2j-1}b_{2j}$ occurs nowhere in μ_{2j+1} since the cycle of length 2*j* and the loop at vertex $2j - 1$ are not disjoint. Thus, analogous to (3.5), Eq. (2.5) can be written as

$$
\mu_{2j+1} = a_{2j-1} \left(\widetilde{F}(2k-1,2j) - \sum_{i=1}^{j-1} b_{2i} \widetilde{F}(2k-1-2i,2j-2i) \right) + f(a_1, a_3, \dots, a_{2j-3}, a_{2j+1}, \dots, a_{2k-1}, b_2, b_4, \dots, b_{2j}).
$$

Differentiating with respect to a_{2j-1} gives

$$
\frac{\partial \mu_{2j+1}}{\partial a_{2j-1}} = \widetilde{F}(2k-1, 2j) - \sum_{i=1}^{j-1} b_{2i} \widetilde{F}(2k-1-2i, 2j-2i).
$$

Thus, if (3.1) holds[, ass](#page-5-0)igning $a_{2r-1} = 1$ and $b_{2r} = -\binom{k}{r}$ r for $1 \leq r \leq k$, application of (3.2) gives

$$
\frac{\partial \mu_{2j+1}}{\partial a_{2j-1}} = (-1)^j {k-1 \choose j} + \sum_{i=1}^{j-1} {k \choose i} (-1)^{j-i} {k-1-i \choose j-i}
$$

$$
= \left[\sum_{i=0}^j (-1)^{j-i} {k \choose i} {k-1-i \choose j-i} \right] - (-1)^0 {k \choose j} {k-1-j \choose 0}. \tag{3.8}
$$

Applying Corollary 3.5 to (3.8) gives

$$
\frac{\partial \mu_{2j+1}}{\partial a_{2j-1}} = 1 - \binom{k}{j},\tag{3.9}
$$

which implies that $d_{2j+1,j} = \binom{k}{j}$ j $-1.$ Since $\binom{k}{k}$ j $\}$ ≥ 2 if $1 \leq j \leq k - 1$ and $k \geq 2$, it follows that $d_{2j+1,j} \geqslant 1$ $d_{2j+1,j} \geqslant 1$ $d_{2j+1,j} \geqslant 1$. \Box

We now consider columns $k + 1, k + 2, \ldots, 2k$ of D_n , the entries of which are defined in terms of derivatives with respect to b_{2j} for $j = 1, 2, \ldots, k$.

Lemma 3.7. *Let* D_n *be defined as in* (3.6) *with* $k \ge 2$ *and* $n = 2k$.

(i) *If* $1 \le j \le k$ *and* $1 \le i \le 2j - 1$ *, then* $d_{i,k+j} = 0$ [.](#page-2-0) (ii) *If* $1 \leq j \leq k$, *[then](#page-3-0)* $d_{2j,k+j} = -1$. (iii) *If* (2.3) *holds*, $1 \le j \le k - 1$ *and* $i = 1, 3, ..., 2k - 2j - 1$, *then* $d_{2j+i,k+j} = 0$.

Proof. Fix column $k + j$ for $1 \leq j \leq k$. The variable b_{2j} doe[s no](#page-2-0)t appear in $\mu_1, \mu_2, \ldots, \mu_{2j-1}$ since b_{2j} occurs only in a cycle product of size at least 2j. Therefore $d_{i,k+j} = 0$ for $i =$ $1, 2, \ldots, 2j - 1$, and (i) follows.

Fix column $k + j$ for $1 \leq j \leq k$. In μ_{2j} , the variable b_{2j} appears once with coefficient -1 , therefore $\frac{\partial \mu_{2j}}{\partial h_2}$ $\frac{\partial \mu_{2j}}{\partial b_{2j}} = d_{2j,k+j} = -1$ $\frac{\partial \mu_{2j}}{\partial b_{2j}} = d_{2j,k+j} = -1$, and (ii) follows.

Fix column $k + j$ for $1 \leq j \leq k - 1$ and assume that (2.3) holds. Consider $\mu_{2j+1}, \mu_{2j+3}, \ldots$, μ_{2k-1} as given by (2.5). The coefficient of b_{2j} in μ_{2j+i} is $-F(2k-2j, i)$, $i = 1, 3, \ldots, 2k-1$ $2j - 1$. This coefficient is 0 by (2.7) and (iii) follows. \Box

Theorem 3.8. Let $k \ge 2$ and $n = 2k$. If D_n is evaluated when (2.3) holds and $b_{2r} = -\binom{k}{r}$ r $\Big)$, 1 $r \leq k$, *then* $\det(D_n) \neq 0$.

Proof. By Lemmas 3.4, 3.6 and 3.7, if D_n is evaluated with a_i and b_{2r} as stated, then D_n has the form

$$
\begin{bmatrix}\n-1 & -1 & -1 & \cdots & -1 & -1 & 0 & 0 & 0 & \cdots & 0 & 0 \\
-1 & -1 & -1 & -1 & -1 & -1 & 0 & 0 & \cdots & 0 & 0 \\
c_1 & -1 & \ddots & \ddots & -1 & -1 & 0 & 0 & \ddots & \ddots & 0 & 0 \\
d_{41} & -1 & \ddots & \ddots & -1 & -1 & d_{4,k+1} & -1 & 0 & \ddots & 0 & 0 \\
d_{51} & c_2 & -1 & \ddots & -1 & -1 & 0 & 0 & 0 & \ddots & 0 & 0 \\
d_{61} & d_{62} & -1 & \ddots & -1 & -1 & d_{6,k+1} & d_{6,k+2} & -1 & 0 & 0 \\
d_{71} & d_{72} & c_3 & -1 & -1 & 0 & 0 & 0 & \cdots & 0 & 0 \\
d_{81} & d_{82} & d_{83} & -1 & -1 & d_{8,k+1} & d_{8,k+2} & d_{8,k+3} & 0 & 0 \\
\vdots & \vdots \\
d_{n-2,1} & d_{n-2,2} & d_{n-2,3} & \cdots & -1 & -1 & d_{n-2,k+1} & d_{n-2,k+2} & d_{n-2,k+3} & \cdots & -1 & 0 \\
d_{n-1,1} & d_{n-1,2} & d_{n-1,3} & \cdots & c_{k-1} & -1 & 0 & 0 & 0 & \cdots & 0 & 0 \\
d_{n1} & d_{n2} & d_{n3} & \cdots & d_{n,k-1} & -1 & d_{n,k+1} & d_{n,k+2} & d_{n,k+3} & \cdots & d_{n,2k-1} & -1\n\end{bmatrix}
$$

where $c_i \geq 1$ for $1 \leq i \leq k - 1$ by Lemma 3.6. Expansion along columns in the order 2k, 2k – $1, \ldots, k + 1$, gives

$$
\det(D_n) = (-1)^{\lceil k/2 \rceil} \det(G_k)
$$

with

$$
G_k = \begin{bmatrix} -1 & -1 & -1 & -1 & \dots & -1 & -1 \\ c_1 & -1 & -1 & -1 & \dots & -1 & -1 \\ d_{51} & c_2 & \ddots & \ddots & \ddots & -1 & -1 \\ d_{71} & d_{72} & c_3 & \ddots & \ddots & -1 & -1 \\ d_{91} & d_{92} & d_{93} & c_4 & \ddots & -1 & -1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ d_{n-1,1} & d_{n-1,2} & d_{n-1,3} & d_{n-1,4} & c_{k-1} & -1 \end{bmatrix}.
$$

Using elementary row operations (subtracting row 1 from row *i* for $2 \le i \le k$), det(G_k) = $\det(\hat{G}_k)$ where

$$
\widehat{G}_k = \begin{bmatrix}\n-1 & -1 & -1 & -1 & \dots & -1 & -1 \\
c_1 + 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
d_{51} + 1 & c_2 + 1 & \ddots & \ddots & \ddots & 0 & 0 \\
d_{71} + 1 & d_{72} + 1 & c_3 + 1 & \ddots & 0 & 0 \\
d_{91} + 1 & d_{92} + 1 & d_{93} + 1 & c_4 + 1 & \ddots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
d_{n-1,1} + 1 & d_{n-1,2} + 1 & d_{n-1,3} + 1 & d_{n-1,4} + 1 & c_{k-1} + 1 & 0\n\end{bmatrix}.
$$

Since each $c_i \geqslant 1$, $\det(\widehat{G}_k) \neq 0$ and thus $\det(D_n) \neq 0$. \Box

We now consider the case that *n* is odd. For $k \ge 2$, let M_{2k+1} have characteristic polynomial $p_{2k+1}(x)$ as in (1.1) with μ_i replaced by $\tilde{\mu}_i$, and let $\{\hat{a}, \tilde{a}\} = \{a_{2k-1}, a_{2k}\}\)$. Define the $(2k + 1) \times$ $(2k+1)$ matrix $\widetilde{D}_{2k+1} = [\widetilde{d}_{ij}]$ where for $1 \le i \le 2k+1$,

$$
\tilde{d}_{ij} = (-1)^i \frac{\partial \tilde{\mu}_i}{\partial a_{2j-1}}, \quad 1 \le j \le k - 1,
$$

$$
\tilde{d}_{i,k+j} = (-1)^i \frac{\partial \tilde{\mu}_i}{\partial b_{2j}}, \quad 1 \le j \le k,
$$

$$
\tilde{d}_{ik} = (-1)^i \frac{\partial \tilde{\mu}_i}{\partial \hat{a}} \quad \text{and} \quad \tilde{d}_{i,2k+1} = (-1)^i \frac{\partial \tilde{\mu}_i}{\partial b_{2k+1}}
$$

Let M_{2k} be as in (2.1) with characteristic polynomial $p_{2k}(x)$ as in (1.1), and let D_{2k} be the associated $2k \times 2k$ matrix of partial derivatives as in (3.6). The following result relates D_{2k} to D_{2k+1} as defined above.

.

Theorem 3.9. *Let* $k \ge 2$. *Suppose* D_{2k} *is evaluated when* (2.3) *holds and* $b_{2r} = -\binom{k}{r}$ r \int *for* 1 \leq $r \le k$, and \widetilde{D}_{2k+1} *is evaluated when* $0 = \tilde{a} \in \{a_{2k-1}, a_{2k}\}$, *all other* a_i (*including* \hat{a}) *alternate in value* 1, -1, 1, -1, ..., 1, -1, $b_{2r} = -\binom{k}{r}$ r *for* $1 \leq r \leq k$ *and* $b_{2k+1} = 1$ *. Then*

$$
\widetilde{D}_{2k+1} = \begin{bmatrix} & & & & 0 \\ & D_{2k} & & & 0 \\ & & & & \vdots \\ & & & & 0 \\ 0 & 0 & \dots & 0 & -1 & -1 \end{bmatrix} \quad \text{and} \quad \det(\widetilde{D}_{2k+1}) \neq 0.
$$

Proof. To show that $d_{ij} = d_{ij}$ for $1 \leq i \leq 2k$ $1 \leq i \leq 2k$ and $1 \leq j \leq 2k$ when t[hey](#page-3-0) are evaluated with a_i and b_{2r} as stated, consider the sums of cycle products of size m that give coefficients μ_m and $\tilde{\mu}_m$ for $1 \leq m \leq 2k$ of $p_{2k}(x)$ and $p_{2k+1}(x)$, respectively. Recall that each such cycle product co[rresp](#page-3-0)onds [to a](#page-3-0) simple cycle, a composite cycle of loops, or a composite cycle of some even length cycle and some loops. Note that $-\mu_1 = -\sum_{j=1}^{2k} a_j$ and $-\tilde{\mu}_1 = -\sum_{j=1}^{2k+1} a_j$, and thus $\tilde{d}_{1j} = d_{1j} = -1$ for $1 \leqslant j \leqslant 2k$.

With the equality established when the relevant cycle products are size $m = 1$, let $m \ge 2$. The cycle products corresponding to a simple cycle are of even size and are given by $-b_m$, which appears in both μ_m and $\tilde{\mu}_m$. The sum of the cycle products corresponding to a composite cycle of loops is given by $F(2k, m)$ in μ_m (see the first terms in (2.4) and (2.5)) and analogously by $F(2k + 1, m)$ in $\tilde{\mu}_m$. The sum of the cycle products that correspond to a composite cycle of some even length cycle and some loops is given by $-b_{2r}F(2k-2r, m-2r)$ in μ_m (see the summations in (2.4) and (2.5)) and analogously by $-b_{2r}F(2k+1-2r, m-2r)$ in $\tilde{\mu}_m$ for $2 \leq 2r < m \leq 2k$. We now argue that with a_i as specified, $F(2k, m)$ and $F(2k + 1, m)$ are equal for $2 \le m \le 2k$ and that $F(2k - 2r, m - 2r)$ and $F(2k + 1 - 2r, m - 2r)$ are equal for fixed r, m and k such that $2 \leqslant 2r < m \leqslant 2k$. By the definition of cycle products and the F function, each such F function in μ_m is defined with respect to $A_{2k,2k-2r} = \{2r+1, 2r+2, ..., 2k\} \equiv A_{even}$. Similarly, each such F function in $\tilde{\mu}_m$ is defined with respect to $A_{2k+1,2k+1-2r} = \{2r+1, 2r+2, ..., 2k-2, 2k-1\}$ 1, 2k, $2k + 1$ } $\equiv A_{\text{odd}}$. Define A to be the intersection of these sets, that is $A \equiv A_{\text{even}} \cap A_{\text{odd}} =$ ${2r + 1, 2r + 2, ..., 2k - 2}$. Note that $A_{even} = A \cup {2k - 1, 2k}$, $A_{odd} = A \cup {2k - 1, 2k}$, $2k + 1$ } and that A is empty when $2r = 2k - 2$. Since terms in $p_{2k+1}(x)$ with \tilde{a} as a fac-

tor are equal to 0, all cycle products in μ_m are the same as those in $\tilde{\mu}_m$ with \hat{a} replaced by a_{2k-1} and with a_{2k+1} replaced by a_{2k} . Therefore, after differentiating μ_m and $\tilde{\mu}_m$ with respect to one of $a_1, a_3, \ldots, a_{2k-3}, b_2, b_4, \ldots, b_{2k}$ and assigning values to all variables as in the theorem statement, it follows that $\tilde{d}_{ij} = d_{ij}$ for $1 \leq i \leq 2k$ and $j = 1, 2, ..., k - 1, k + 1$ 1,..., 2k. Note that this assignment has a_{2k-1} and a_{2k} in μ_m taking the values 1 and -1 , respectively, \hat{a} and a_{2k+1} in $\tilde{\mu}_m$ taking the values 1 and -1 , respectively, and each of the variables $a_1, a_2, \ldots, a_{2k-3}, b_2, b_4, \ldots, b_{2k}$ taking the same value in μ_m and $\tilde{\mu}_m$. Similarly, differentiating μ_m with respect to a_{2k-1} and evaluating the variables gives the same value as differentiating $\tilde{\mu}_m$ with respect to \hat{a} and evaluating the variables. Thus $\bar{d}_{ik} = d_{ik}$ for $1 \leq i \leq 2k$, and it follows that

$$
\tilde{d}_{ij} = d_{ij} \quad \text{for } 1 \leqslant i \leqslant 2k, 1 \leqslant j \leqslant 2k. \tag{3.10}
$$

The corresponding cycle product b_{2k+1} of the $(2k + 1)$ -cycle in $D(M_{2k+1})$ does not appear in any of the coefficients $\tilde{\mu}_m$ for $1 \leq m \leq 2k$ [in](#page-13-0) $p_{2k+1}(x)$. Therefore,

$$
\tilde{d}_{i,2k+1} = 0 \quad \text{for } 1 \leqslant i \leqslant 2k. \tag{3.11}
$$

In $D(M_{2k+1})$ $D(M_{2k+1})$ $D(M_{2k+1})$ $D(M_{2k+1})$ $D(M_{2k+1})$ th[e](#page-11-0) only cycle products of size $2k+1$ [ar](#page-13-0)e b_{2k+1} from the $(2k+1)$ -cycle and $-a_{2k+1}b_{2k}$ [from](#page-6-0) the composite cycle of the loop at vertex $2k + 1$ and the 2k-cycle, so $-\tilde{\mu}_{2k+1} =$ $-(b_{2k+1} - a_{2k+1}b_{2k})$. [Assig](#page-9-0)ning a_{2k+1} the value -1 gives $-\tilde{\mu}_{2k+1} = -b_{2k+1} - b_{2k}$ [,](#page-11-0) [w](#page-11-0)hich implies t[hat](#page-13-0)

$$
\tilde{d}_{2k+1,2k+1} = -1, \quad \tilde{d}_{2k+1,2k} = -1 \quad \text{and} \quad \tilde{d}_{2k+1,j} = 0 \quad \text{for } 1 \le j \le 2k - 1. \tag{3.12}
$$

Thus, by (3.10), (3.11) and (3.12) the matrix \widetilde{D}_{2k+1} has the stated form. By expanding det(\widetilde{D}_{2k+1}) along column $2k + 1$ and using Theorem 3.9, it follows that $\det(\tilde{D}_{2k+1}) \neq 0$. \Box

Remark 3.10. Similar results as in Theorems 3.8 and 3.9 hold for other assignments of the a_i as in Remark 2.6. When $k \geqslant 2$ and $n = 2k$, define D_n with respect to the partial derivatives of the positive a_i and b_{2i} , cf. (3.6). Then D_n has the same form as in the proof of Theorem 3.8, and $\det(D_n) \neq 0$. For $k \geq 2$ and $n = 2k + 1$, with a_i assigned as in Remark 2.6, the method used in Theorem 3.9 holds showing that $\det(\overline{D}_{2k+1}) = -\det(D_{2k}) \neq 0$.

4. Spectrally arbitrary even cycle patterns and minimality

Define the $n \times n$ sign pattern \mathcal{C}_n as follows. For $k \geq 2$ and $n = 2k$, let

$$
\mathscr{C}_{2k} = \begin{bmatrix} + & + & & & & & \\ - & - & + & & & & & \\ 0 & & + & + & & & & \\ 0 & & & & + & & & \\ \vdots & & 0 & & & & & & \\ \vdots & & 0 & & & & & & \\ - & & & & & & & & \\ \end{bmatrix}
$$

and for $n = 2k + 1$, let

$$
\mathscr{C}_{2k+1} = \begin{bmatrix} + &+ & & & & & \\ - & - &+ & & & & \\ 0 & & + &+ & & 0 & \\ - & & - & \ddots & & & \\ \vdots & & & \ddots & + & & \\ 0 & & 0 & & + & + & \\ - & & & & 0 & + \\ + & & & & & - \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} + &+ & & & & & \\ - & - &+ & & & & \\ 0 & & + &+ & & 0 & \\ - & & - & \ddots & & & \\ \vdots & & & & \ddots & + & \\ 0 & & 0 & & 0 & + & \\ - & & & & & + & + \\ + & & & & & - \end{bmatrix}
$$

The nilpotent matrices M_n defined in Theorems 2.3 and 2.5 have $M_n \in Q(\mathscr{C}_n)$. Note that $D(\mathscr{C}_n)$ has a cycle of every even length with the product of entries corresponding to each even cycle being negative, and thus we call \mathcal{C}_n an *even cycle sign pattern*. Using the results of Theorems 2.3 and 3.8 (for n even) and Theorems 2.5 and 3.9 (for n odd) with the methodolog[y of](#page-2-0) [3, Observation 10], the following result is immediate.

Theorem 4.1. *For* $n \geq 4$, \mathcal{C}_n \mathcal{C}_n \mathcal{C}_n *is spectrally arbitr[ary](#page-6-0). Moreover, any superpattern of* \mathcal{C}_n *is spectrally arbitrary*.

To investigate if $\mathcal{C}_n = [c_{ij}]$ is a minimal SAP for *n* even, we proceed as follows. Let $\mathcal{R}_n = [r_{ij}]$ be an irreducible subpattern of \mathcal{C}_n (thus r_{n1} is negative, $r_{i,i+1}$ is positive for $1 \leq i \leq n - 1$ and the other r_{ij} can be equal to c_{ij} or 0). If $Y_n \in Q(\mathcal{R}_n)$ for $k \geq 2$ and $n = 2k$, then without loss of generality the superdiagonal entries of Y_n can be normalized to 1 by a positive diagonal similarity transformation. Thus we can restrict attention to $M_n \in \mathcal{Q}(\mathcal{R}_n)$ as given in (2.1). Our goal is to show that if $M_n \in Q(\mathcal{R}_n)$ is nilpotent for $k \geq 2$ and $n = 2k$, then $a_{2i} = -a_{2i-1}$ and $b_{2i} < 0$ for $1 \leq i \leq k$ (see Corollary 4.5). From this, some properties of the structure of irreducible potentially nilpotent subpatterns of \mathcal{C}_n are given in Theorem 4.6 and a conjecture on the minimality of \mathcal{C}_n is stated.

For $v \ge 1$, define $P_{2v}(x_1, x_2, ..., x_n)$ equal to the sum of all products of nonnegative even powers of x_i where the sum of the powers is $2v$. That is,

 $P_{2v}(x_1, x_2, \dots, x_n) = \sum x_1^{2i_1} x_2^{2i_2} \cdots x_n^{2i_n}, \text{ where } i_1 + i_2 + \cdots + i_n = v,$ and define $P_0(x_1, x_2, ..., x_n) = 1$.

Lemma 4.2. For real c_i , s and t and integer $r \ge 0$, if

$$
H_{2v}(c_1, c_2, \ldots, c_r; s, t) = \begin{cases} \frac{P_{2v}(c_1, c_2, \ldots, c_r, s) - P_{2v}(c_1, c_2, \ldots, c_r, t)}{s^2 - t^2} & if \ |s| \neq |t|, \\ \lim_{|s| \to |t|} \frac{P_{2v}(c_1, c_2, \ldots, c_r, s) - P_{2v}(c_1, c_2, \ldots, c_r, t)}{s^2 - t^2} & if \ |s| = |t|, \end{cases}
$$

then

$$
H_{2v}(c_1, c_2, \ldots, c_r; s, t) = P_{2v-2}(c_1, c_2, \ldots, c_r, s, t).
$$

Proof. When $r = 0$,

$$
H_{2v}(s,t) = \begin{cases} \frac{s^{2v} - t^{2v}}{s^2 - t^2} & \text{if } |s| \neq |t|, \\ \lim_{|s| \to |t|} \frac{s^{2v} - t^{2v}}{s^2 - t^2} & \text{if } |s| = |t|. \end{cases}
$$

.

Since

$$
s^{2v} - t^{2v} = (s^2 - t^2) \sum_{i=0}^{v-1} s^{2i} t^{2v-2i-2},
$$

\n
$$
H_{2v}(s, t) = \begin{cases} \sum_{i=0}^{v-1} s^{2i} t^{2v-2i-2} = P_{2v-2}(s, t) & \text{if } |s| \neq |t|, \\ \lim_{|s| \to |t|} \sum_{i=0}^{v-1} s^{2i} t^{2v-2i-2} = P_{2v-2}(t, t) & \text{if } |s| = |t|. \end{cases}
$$

When $r \geqslant 1$, since

$$
P_{2v}(c_1, c_2, \dots, c_r, s) = \sum_{i=0}^{v} s^{2i} P_{2v-2i}(c_1, c_2, \dots, c_r),
$$

\n
$$
\frac{P_{2v}(c_1, c_2, \dots, c_r, s) - P_{2v}(c_1, c_2, \dots, c_r, t)}{s^2 - t^2}
$$

\n
$$
= \sum_{i=1}^{v} \frac{s^{2i} - t^{2i}}{s^2 - t^2} P_{2v-2i}(c_1, c_2, \dots, c_r)
$$

\n
$$
= \sum_{i=1}^{v} P_{2i-2}(s, t) P_{2v-2i}(c_1, c_2, \dots, c_r), \text{ by the } r = 0 \text{ case above,}
$$

\n
$$
= P_{2v-2}(c_1, c_2, \dots, c_r, s, t).
$$

The above argument also shows the limiting case. \Box

For $k \geqslant 2$ and $n = 2k$, let $M_n \in \mathcal{Q}(\mathcal{R}_n)$ be nilpotent. From (2.1), the characteristic polynomial $\det(xI - M_n)$ is given by

$$
p_n(x) = x^n = -\sum_{i=0}^{n/2} b_{2i} \prod_{j=2i+1}^{n} (x - a_j), \text{ where } b_0 = -1.
$$

Remark 4.3. Consider $p_n(a_n) = a_n^n = -b_n$, and $p_n(a_{n-1}) = a_{n-1}^n = -b_n$. Therefore, for some $c_0 > 0$ (since $b_n \neq 0$), $a_n = -c_0$, $a_{n-1} = c_0$ and $b_n = -c_0^n = -P_n(c_0)$. Thus, if M_n is nilpotent, it follows that a_n and a_{n-1} , which ar[e](#page-3-0) [of](#page-3-0) opposite sign since $M_n \in \mathcal{Q}(\mathcal{R}_n)$, must be nonzero and of the same magnitude.

As motivation for the proof of the next lemma, consider

$$
p_n(a_{n-2}) = -b_{n-2}(a_{n-2} - c_0)(a_{n-2} + c_0) - b_n = a_{n-2}^n.
$$

Thus

$$
-b_{n-2}(a_{n-2}^2 - c_0^2) + c_0^n = a_{n-2}^n
$$

and if $|a_{n-2}| \neq |c_0|$, then by Lemma 4.2

$$
-b_{n-2} = \frac{a_{n-2}^n - c_0^n}{a_{n-2}^2 - c_0^2} = P_{n-2}(c_0, a_{n-2}).
$$

If $|a_{n-2}|=|c_0|$, then the same result follows by the limiting case of Lemma 4.2. Simliarly, considering $p_n(a_{n-3})$ leads to the equation

 $-b_{n-2} = P_{n-2}(c_0, a_{n-3}).$

This implies that

$$
P_{n-2}(c_0, a_{n-2}) = P_{n-2}(c_0, a_{n-3}).
$$
\n(4.1)

If $g(x) = P_n(c_0, x)$, then $g(x)$ is even and strictly increasing on $(0, \infty)$. Since (4.1) implies that $g(a_{n-2}) = g(a_{n-3})$, it follows that $|a_{n-2}| = |a_{n-3}|$. That is, for some $c_1 \ge 0$, $a_{n-2} = -c_1$, $a_{n-3} = c_1$ and $b_{n-2} = -P_{n-2}(c_0, c_1)$.

Lemma 4.4. Let $k \geq 2$ and M_{2k} be nilpotent with $M_{2k} \in Q(\mathcal{R}_{2k})$. For a fixed p with $1 \leq$ $p \le k - 1$, suppose $c_0 > 0$, $c_{k-j} \ge 0$ for $p + 1 \le j \le k - 1$, $-a_{2i} = a_{2i-1} = c_{k-i}$ and $-b_{2i} = a_{2i-1}$ *P*_{2*i*}($c_0, c_1, \ldots, c_{k-i}$) *for* $p + 1 \leq i \leq k$. *Then*

$$
-b_{2p} \prod_{j=p+1}^{q} (a_{2p}^2 - c_{k-j}^2) + \sum_{i=p+1}^{q} P_{2i}(c_0, c_1, \dots, c_{k-i}) \prod_{j=i+1}^{q} (a_{2p}^2 - c_{k-j}^2)
$$

= $P_{2q}(c_0, c_1, \dots, c_{k-q-1}, a_{2p})$

for $p \leqslant q \leqslant k - 1$.

Proof. Since M_{2k} is nilpotent,

$$
p_{2k}(a_{2p}) = a_{2p}^{2k} = -\sum_{i=0}^{k} b_{2i} \prod_{j=2i+1}^{2k} (a_{2p} - a_j)
$$

and it follows from Remark 4.3 that

$$
-\sum_{i=p}^{k-1}b_{2i}\prod_{j=2i+1}^{2k}(a_{2p}-a_j)=a_{2p}^{2k}-c_0^{2k}.
$$

Thus, by the assumptions on b_{2i} , a_{2i} [and](#page-3-0) a_{2i-1} ,

$$
-b_{2p} \prod_{j=p+1}^{k} (a_{2p}^2 - c_{k-j}^2) + \sum_{i=p+1}^{k-1} P_{2i}(c_0, c_1, \dots, c_{k-i}) \prod_{j=i+1}^{k} (a_{2p}^2 - c_{k-j}^2) = a_{2p}^{2k} - c_0^{2k}
$$

and if $|a_{2p}| \neq |c_0|$, then

$$
-b_{2p} \prod_{j=p+1}^{k-1} (a_{2p}^2 - c_{k-j}^2) + \sum_{i=p+1}^{k-1} P_{2i}(c_0, c_1, \dots, c_{k-i}) \prod_{j=i+1}^{k-1} (a_{2p}^2 - c_{k-j}^2) = \frac{a_{2p}^{2k} - c_0^{2k}}{a_{2p}^2 - c_0^2}
$$

= $P_{2k-2}(c_0, a_{2p})$ by Lemma 4.2.

If $|a_{2p}|=|c_0|$, then the same result follows by the limiting case of Lemma 4.2. This establishes the statement for $q = k - 1$. Now assume the statement holds for $q = v$ with $p + 1 \le v \le k - 1$; i.e.,

$$
-b_{2p} \prod_{j=p+1}^{v} (a_{2p}^2 - c_{k-j}^2) + \sum_{i=p+1}^{v} P_{2i}(c_0, c_1, \dots, c_{k-i}) \prod_{j=i+1}^{v} (a_{2p}^2 - c_{k-j}^2)
$$

= $P_{2v}(c_0, c_1, \dots, c_{k-v-1}, a_{2p}).$

Therefore

$$
-b_{2p} \prod_{j=p+1}^{v} (a_{2p}^2 - c_{k-j}^2) + \sum_{i=p+1}^{v-1} P_{2i}(c_0, c_1, \dots, c_{k-i}) \prod_{j=i+1}^{v} (a_{2p}^2 - c_{k-j}^2)
$$

= $P_{2v}(c_0, c_1, \dots, c_{k-v-1}, a_{2p}) - P_{2v}(c_0, c_1, \dots, c_{k-v-1}, c_{k-v})$

and thus

$$
-b_{2p} \prod_{j=p+1}^{v-1} (a_{2p}^2 - c_{k-j}^2) + \sum_{i=p+1}^{v-1} P_{2i}(c_0, c_1, \dots, c_{k-i}) \prod_{j=i+1}^{v-1} (a_{2p}^2 - c_{k-j}^2)
$$

=
$$
\frac{P_{2v}(c_0, c_1, \dots, c_{k-v-1}, a_{2p}) - P_{2v}(c_0, c_1, \dots, c_{k-v-1}, c_{k-v})}{a_{2p}^2 - c_{k-v}^2} \quad \text{if } |a_{2p}| \neq |c_{k-v}|
$$

=
$$
P_{2v-2}(c_0, c_1, \dots, c_{k-v-1}, c_{k-v}, a_{2p}) \text{ by Lemma 4.2.}
$$

If $|a_{2p}|=|c_{k-v}|$, then the same result follows by the limiting case of Lemma 4.2. Thus, the statement is true for $q = v - 1$ $q = v - 1$, and the result follows by downward induction on q. \square

The following result shows that if M_n is nilpotent and $n = 2k$, then $a_{2i} + a_{2i-1} = 0$ and $b_{2i} < 0$ for $1 \leq i \leq k$.

Corollary 4.5. Let $k \geq 2$ and M_{2k} be nilpotent with $M_{2k} \in Q(\mathcal{R}_{2k})$. For a fixed p with $1 \leq$ $p \le k - 1$, suppose $c_0 > 0$, $c_{k-j} \ge 0$ for $p + 1 \le j \le k - 1$, $-a_{2i} = a_{2i-1} = c_{k-i}$ and $-b_{2i} = a_{2i-1}$ $P_{2i}(c_0, c_1, \ldots, c_{k-i})$ *for* $p + 1 \leq i \leq k$. *Then* $a_{2p} = -a_{2p-1}$ *and* $-b_{2p} = P_{2p}(c_0, c_1, \ldots, c_{k-p})$.

Proof. By Lemma 4.4 when $q = p$,

$$
-b_{2p} = P_{2p}(c_0, c_1, \ldots, c_{k-p-1}, a_{2p}).
$$

By considering $p_n(a_{2p-1})$, an identical argument to that in Lemma 4.4 can be used to show

$$
-b_{2p} = P_{2p}(c_0, c_1, \ldots, c_{k-p-1}, a_{2p-1}).
$$

Since $P_{2p}(c_0, c_1, \ldots, c_{k-p-1}, a_{2p})$ and $P_{2p}(c_0, c_1, \ldots, c_{k-p-1}, a_{2p-1})$ are equal and are even polynomials in a_{2p} and a_{2p-1} that are strictly increasing on $(0, \infty)$, it follows that $|a_{2p}| =$ $|a_{2p-1}| = c_{k-p}$ for some $c_{k-p} \ge 0$. Therefore,

 $-b_{2p} = P_{2p}(c_0, c_1, \ldots, c_{k-p-1}, c_{k-p}),$

and the sign pattern implies that $a_{2p} = -c_{k-p}$ and $a_{2p-1} = c_{k-p}$. \Box

Suppose that $k \ge 2$, $n = 2k$ and $M_n \in \mathcal{Q}(\mathcal{R}_n)$ is nilpotent. Then $b_{2k} < 0$ and by Remark 4.3, $a_{2k-1} = -a_{2k} > 0$. By Corollary 4.5 with $p = k - 1$, $a_{2k-3} = -a_{2k-2} \ge 0$ and $-b_{2k-2} =$ $P_{2k-2}(c_0, c_1) > 0$, and considering $p = k - 2, k - 3, \ldots, 1$, the following result is obtained.

Theorem 4.6. Let $k \geq 2$ and $n = 2k$. If \mathcal{R}_n is an irreducible subpattern of \mathcal{C}_n that is potentially *nilpotent, then* $D(\mathcal{R}_n)$ *has a simple cycle of each even length, a loop at vertices* $2k - 1$ *and* $2k$ *, and has, for* $1 \le i \le k - 1$ *, a loop at vertex* 2*i if and only if it has a loop at vertex* 2*i* -1 *.*

The following result identifies a family of subpatterns \mathcal{R}_{2k} from Theorem 4.6 that is potentially nilpotent but not spectrally arbitrary, and a similar family \mathcal{R}_{2k+1} .

Theorem 4.7. *For* $k \ge 2$ *and* $n = 2k$ *or* $n = 2k + 1$ *, if* \Re_n *has* $r_{ii} = 0$ *for* $1 \le i \le 2k - 2$ *and* $r_{ij} = c_{ij}$ *otherwise, then* \mathcal{R}_n *is potentially n[ilpot](#page-1-0)ent, but not spectrally arbitrary.*

Proof. Let $n = 2k$ and suppose $M_n \in Q(\mathcal{R}_n)$, that is, M_n has $a_1 = a_2 = \cdots = a_{n-2} = 0$, $a_{n-1} > a_n$ 0, $a_n < 0$ and $b_{2i} < 0$ for $1 \leq i \leq k$. Consider the characteristic polynomial of M_n as in (1.1) with coefficients μ_i as given by (2.4) and (2.5). For i even, $\mu_i = -a_{n-1}a_nb_{i-2} - b_i$, and for i odd, $\mu_i = -(a_{n-1} + a_n)b_{i-1}$, with $b_0 \equiv -1$. Assigning $a_{n-1} = 1$ and $a_n = -1$ gives $\mu_i = 0$ for i odd, and gives $\mu_i = 0$ for i even if and only if $b_{2i} = -1$ for $1 \le i \le k$.

Similarly, let $n = 2k + 1$ and suppose $M_n \in Q(\mathcal{R}_n)$, that is, M_n has $a_1 = a_2 = \cdots = a_{n-3}$ 0, $\{a_{n-2}, a_{n-1}\} = \{0, \hat{a}\}$ with $\hat{a} > 0$, $a_n < 0$, $b_{2i} < 0$ for $1 \leq j \leq k$ and $b_{2k+1} > 0$. Let the characteristic polynomial of M_n be given by ([1.1\)](#page-6-0) [w](#page-6-0)ith μ_i replaced by $\tilde{\mu}_i$. The coefficients $\tilde{\mu}_i$ are given by $\tilde{\mu}_i = -\hat{a}a_n b_{i-2} - b_i$ [for](#page-6-0) i [even,](#page-4-0) and $\tilde{\mu}_i = -(\hat{a} + a_n) b_{i-1}$ for i odd, where $1 \leq i \leq 2k$ and $b_0 \equiv -1$. Assigning $\hat{a} = 1$ and $a_{2k+1} = -1$ gives $\tilde{\mu}_i = 0$ for i odd, and gives $\tilde{\mu}_i = 0$ for i even if and o[nly](#page-3-0) if $b_{2i} = -1$ $b_{2i} = -1$ for $1 \le i \le k$. The constant term μ_{2k+1} , given by (2.12), is then 0 if and only if $b_{2k+1} = 1$ $b_{2k+1} = 1$ $b_{2k+1} = 1$.

Thus, for $n \geq 4$, $M_n \in Q(\mathcal{R}_n)$ as specified above is nilpotent and therefore \mathcal{R}_n is potentially nilpotent. The pattern \mathcal{R}_n is clearly not a SAP since $\mu_1 = 0$ implies that $\mu_3 = 0$ and $\tilde{\mu}_1 = 0$ implies that $\tilde{\mu}_3 = 0$. \Box

Note that if n is odd and $a_{2k+1} = 0$, then (2.12) gives $b_{2k+1} = 0$, and if $\hat{a} = 0$, then $\tilde{\mu}_{2k} = 0$ implies $b_{2k} = 0$, which from (2.12) implies that $b_{2k+1} = 0$. In the even case, if $a_{2k-1} = 0$ or $a_{2k} = 0$, then $b_{2k} = 0$ (from Remark 4.3). But $b_n \neq 0$ for an irreducible matrix, so we conclude that \mathcal{R}_n in the theorem above has no irreducible proper subpattern that is potentially nilpotent.

Theorems 4.1, 4.6 and 4.7 imply that \mathcal{C}_4 is a minimal SAP. However, for $k \geq 3$ and $n = 2k$, it is not known whether or not \mathcal{C}_n is minimal. In particular, it is unknown whether or not a subpattern \mathcal{R}_n of \mathcal{C}_n with $r_{2i,2i} = r_{2i-1,2i-1} = 0$ for some $1 \leq i \leq k-1$ is a SAP.

Conjecture 4.8. *If* $k \ge 3$ *and* $n = 2k$ *, then* \mathcal{C}_n *is a minimal SAP.*

For $n = 5$, a careful analysis shows that \mathcal{C}_5 is a minimal SAP, but minimality in the general case for n odd remains to be explored.

Acknowledgement

The authors thank Frank Ruskey for bringing Ref. [5] to their attention, and an anonymous referee for comments from a very careful reading.

References

- [1] T. Britz, J.J. McDonald, D.D. Olesky, P. van den Driessche, Minimal spectrally arbitrary sign patterns,SIAM J. Matrix Anal. Appl., 26 (2004) 257–271.
- [2] M.S. Cavers, K.N. Vander Meulen, Spectrally and inertially arbitrary sign patterns, Linear Algebra Appl. 394 (2005) 53–72.
- [3] J.H. Drew, C.R. Johnson, D.D. Olesky, P. van den Driessche, Spectrally arbitrary patterns, Linear Algebra Appl. 308 (2000) 121–137.
- [4] C.A. Eschenbach, Z. Li, Potentially nilpotent sign pattern matrices, Linear Algebra Appl. 299 (1999) 81–99.
- [5] H.W. Gould, Combinatorial Identities, Morgantown Printing, West Virginia, 1972.
- [6] G. MacGillivray, R.M. Tifenbach, P. van den Driessche, Spectrally arbitrary star sign patterns, Linear Algebra Appl. 400 (2005) 99–119.
- [7] J.J. McDonald, D.D. Olesky, M.J. Tsatsomeros, P. van den Driessche, On the spectra of striped sign patterns, Linear and Multilinear Algebra 51 (2003) 39–48.
- [8] L. Yeh, Sign pattern matrices that allow a nilpotent matrix, Bull. Austral. Math. Soc. 53 (1996) 189–196.