CLINICAL RESEARCH

Additional value of three-dimensional echocardiography in patients with cardiac resynchronization therapy

Apport de l’échographie cardiaque 3-dimensionnelle chez les patients bénéficiant d’une resynchronisation biventriculaire

Antoine Deplagne b, Pierre Bordachar a,b,*, Patricia Reant a,b, Michel Montaudon b, Sylvain Reuter b, Julien Laborderie b, Pierre Dos Santos a,b, Raymond Roudaut b, Pierre Jais b, Michel Haissaguerre b, François Laurent b, Jacques Clementy b, Stéphane Lafitte a,b

a Université Bordeaux-2, Bordeaux, France
b CHU of Bordeaux, Bordeaux, France

Received 28 October 2008; received in revised form 13 March 2009; accepted 16 March 2009
Available online 21 June 2009

KEYWORDS
Cardiac resynchronization therapy; Echocardiography; Dyssynchrony; 3-dimensional

Summary
Background. — There is no gold standard technique for quantification of ventricular dyssynchrony.
Aim. — To investigate whether additional real-time three-dimensional morphologic assessment of ventricular dyssynchrony affects response after biventricular pacing.
Methods. — Forty-one patients with severe heart failure were implanted with a biventricular pacing device and underwent two-dimensional (time dispersion of 12 left ventricular electromechanical delays) and three-dimensional echocardiographic assessment of ventricular dyssynchrony (dispersion of time to minimum regional volume for 16 left ventricular segments),

Abbreviations: 2D, two-dimensional; 3D, three-dimensional; BVP, biventricular pacing; CRT, cardiac resynchronization therapy; LVEF, left ventricular ejection fraction; NYHA, New York Heart Association.
* Corresponding author. Hôpital cardiologique du Haut-Lévêque, 33604 Bordeaux-Pessac, France. Fax: +33 5 57 65 65 09.
E-mail address: bordacharp@hotmail.com (P. Bordachar).

1875-2136/$ — see front matter © 2009 Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.acvd.2009.03.013
Introduction

CRT has an established role in the management of symptomatic drug-refractory heart failure in patients with prolonged QRS complexes [1–3]. Despite the application of established selection electrocardiographic criteria, up to one-third of patients do not respond to the therapy [3,4]. In single-centre studies, direct assessment of echocardiographic mechanical ventricular dyssynchrony has been found to be useful in selecting appropriate patients for CRT, predicting a favourable response and optimizing device programming [5–9]. Currently, an array of echocardiographic parameters for quantification of ventricular dyssynchrony is available but a gold standard technique has yet to be accepted. A recent, prospective, multicentre study found that some indices of 2D dyssynchrony were associated with high inter- and intraobserver variability, and that no 2D echocardiographic measurement alone improved the process of patient selection for CRT reliably [10]. Real-time 3D echocardiography has already shown a high level of accuracy in determining LVEF and left ventricular volume [11,12]. 3D echocardiography with appropriate software for segmental wall motion analysis allows the quantification of mechanical dyssynchrony, taking all myocardial segments into account [13]. The present study was designed to examine whether the measurement of left ventricular synchronicity by 3D echocardiography, using regional volumetric changes, could quantify the effect of CRT on global left ventricular function and mechanical asynchrony in patients with refractory chronic heart failure, and provide additional information to

before implantation, 2 days postimplantation with optimization of the pacing interventricular delay and 6 months postimplantation.

Results. — Individual optimization of sequential biventricular pacing based on three-dimensional ventricular dyssynchrony provided more improvement ($p < 0.05$) in left ventricular ejection fraction and cardiac output than simultaneous biventricular pacing. During the different configurations of sequential biventricular pacing, the changes in three-dimensional ventricular dyssynchrony were highly correlated with those of cardiac output ($r = -0.67$, $p < 0.001$) and ejection fraction ($r = -0.68$, $p < 0.001$). The correlations between two-dimensional ventricular dyssynchrony and cardiac output or ejection fraction were significant but less ($r = -0.60$, $p < 0.01$ and $r = -0.56$, $p < 0.05$, respectively). After 6 months, 76% of patients were considered responders (10% decrease in end-systolic volume). Before implantation, we observed a significant difference between responders and non-responders in terms of three-dimensional ($p < 0.05$) — but not two-dimensional — ventricular dyssynchrony.

Conclusion. — This prospective study demonstrated the additional value of three-dimensional assessment of ventricular dyssynchrony in predicting response after biventricular pacing and optimizing the pacing configuration.

© 2009 Elsevier Masson SAS. Tous droits réservés.
optimize CRT device programming and distinguish between responders and non-responders.

Methods

Reproducibility of 3D echocardiographic measurements

Interobserver and intraobserver reproducibility of 3D echocardiographic measurements was assessed with linear regression analysis and the Bland-Altman method in 32 patients (28 men; mean age: 53 ± 16 years). These patients were selected to demonstrate different levels of left ventricular dysfunction from normal heart to severe cardiomyopathy.

Study population

Consecutive patients with drug-resistant heart failure undergoing implantation of a BVP device were enrolled prospectively on the following basis: LVEF less than 35%, sinus rhythm, QRS duration more than 120 ms, and NYHA functional class III or IV, despite optimal medical therapy. The presence of echocardiographic evidence of ventricular dyssynchrony was not an inclusion or exclusion criterion. Patients with a history of atrial arrhythmias, complete atrioventricular block or ongoing symptoms of myocardial ischaemia were excluded from the study protocol. All patients provided written, informed consent to the study, which was approved by the institutional clinical research and ethics committee. Of the 46 patients who met the inclusion criteria, five had to be excluded because of a poor ultrasonic window that did not allow exploitable 3D acquisitions.

Pacemaker implantation

All patients had successful implantation of a CRT device and all leads were positioned transvenously. The atrial lead was positioned at the right atrial appendage and the right ventricular lead was positioned at the apex. The left ventricular lead (Attain OTW 4194, Medtronic, Minneapolis, MN, USA) was positioned in a posterior (n=7), lateral

![Figure 1. Upper part: left ventricle cast produced by quantitative offline analysis. Lower part and right side: regional volume curves in a patient with severe intraventricular dyssynchrony.](image-url)
days after implantation, various predetermined pacing configurations were assessed using spontaneous atrial synchronized pacing: right ventricular pacing; left ventricular pacing; simultaneous BVP; sequential BVP with right ventricular pre-activation with interventricular intervals of 20 and 40 ms; and sequential BVP with left ventricular pre-activation with interventricular intervals of 20 and 40 ms. These configurations were performed in a random order. The optimal interventricular delay was defined as the one that resulted in maximal decrease in 3D dyssynchrony. As described previously, the atrioventricular delay was optimized for each configuration to provide the longest transmural filling time without truncation of the A-wave from pulsed Doppler analysis of the left ventricular filling [15].

Statistical analysis

All data are presented as mean values ± standard deviations. Sequential data measurements were analysed by repeated measures of analysis of variance. Spontaneous rhythm was considered as the reference pacing configuration for the comparison of all sequential BVP configurations and to assess the correlations between the percentage change in cardiac output and LVEF on the one hand, and markers of ventricular dyssynchrony on the other. Pearson’s correlation coefficient was used to quantify correlations between quantitative variables. Reproducibility of measurements was assessed with linear regression analysis and the Bland-Altman method. Statistical significance was established at \(p < 0.05 \).

Results

The baseline characteristics of the 41 patients are presented in Table 1. All patients had implantation of an effective BVP device and completed the entire study protocol. No patient died during the 6-month follow-up period.
Reproducibility of echocardiographic measurements

Interobserver variability mean average error (and 95% confidence interval value) obtained from the Bland-Altman analysis of 3D LVEF and 3D left ventricular end-systolic and end-diastolic volumes were $-0.2\% (3.3\%), -1.2\text{ mL} (13.7\text{ mL})$ and $-0.2\text{ mL} (16.1\text{ mL})$, respectively (Figs. 2 and 3).

Intraobserver variability mean average error (and 95% confidence interval value) obtained from the Bland-Altman analysis of 3D LVEF and 3D left ventricular end-systolic and end-diastolic volumes were $0.1\% (2.8\%)$, $-0.1\text{ mL} (8.4\text{ mL})$ and $0.3\text{ mL} (9.6\text{ mL})$, respectively.

Acute impact of biventricular pacing

Compared with baseline evaluation, simultaneous BVP increased LVEF significantly from $27.6\% \pm 6.7\%$ to $31.0\% \pm 6.7\%$ ($p < 0.05$), increased cardiac output significantly from $2.2\% \pm 0.4\text{ L/min} (p < 0.01)$, reduced 2D left ventricular dyssynchrony significantly from $32.0\% \pm 8.9\text{ ms}$ ($p < 0.01$) and reduced 3D left ventricular dyssynchrony significantly from $10.0\% \pm 2.8\text{ ms}$ to $6.9\% \pm 2.3\%$ ($p < 0.01$) (Table 2) (Figs. 4–7).

After optimization of the interventricular delay according to the level of 3D dyssynchrony, simultaneous BVP was the optimal pacing configuration for three patients (7%). Pre-activation of the left ventricle was optimal for 23 patients (56%) with an interventricular interval of 20 ms for eight patients, 40 ms for five patients, and with left ventricular pacing alone for 10 patients. For the 15 remaining patients (37%), pre-activation of the right ventricular lead was optimal with an interventricular interval of 20 ms for seven patients and 40 ms for eight patients. Compared with simultaneous BVP, individually optimized sequential BVP increased LVEF significantly from $31.0\% \pm 6.7\%$ to $35.5\% \pm 6.9\%$ ($p < 0.05$), increased cardiac output significantly from $2.8\% \pm 0.6\text{ L/min}$ ($p < 0.05$) and decreased 3D left ventricular dyssynchrony significantly from $6.9\% \pm 2.3\%$ to $4.9\% \pm 1.8\%$ ($p < 0.01$). 2D left ventricular dyssynchrony was not decreased significantly ($21.5\% \pm 9.9\text{ ms}$ versus $21.5\% \pm 9.9\text{ ms}$; $p = \text{not significant}$).

Changes in 3D left ventricular dyssynchrony between simultaneous BVP, right ventricular pacing, left ventricular pacing and sequential BVP exhibited highly significant correlation with changes in cardiac output and LVEF ($r = -0.67$, $p < 0.001$ and $r = -0.68$, $p < 0.001$, respectively). Changes in 2D left ventricular dyssynchrony correlated significantly with changes in cardiac output and LVEF, but with lower

Table 2 Echocardiographic data: baseline, simultaneous and optimized sequential biventricular pacing.

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Simultaneous BVP</th>
<th>Optimized sequential BVP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac output (L/min)</td>
<td>2.2 ± 0.4</td>
<td>2.8 ± 0.6<sup>b</sup></td>
<td>3.1 ± 0.6<sup>b,c</sup></td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>27.6 ± 6.7</td>
<td>31.0 ± 6.7<sup>a</sup></td>
<td>33.5 ± 6.9<sup>b,c</sup></td>
</tr>
<tr>
<td>3D left ventricular dyssynchrony (%)</td>
<td>10.0 ± 2.8</td>
<td>6.9 ± 2.3<sup>b</sup></td>
<td>4.9 ± 1.8<sup>b,d</sup></td>
</tr>
<tr>
<td>2D left ventricular dyssynchrony (ms)</td>
<td>32.0 ± 8.9</td>
<td>23.7 ± 10.0<sup>b</sup></td>
<td>21.5 ± 9.9<sup>b</sup></td>
</tr>
</tbody>
</table>

Results are given as mean values ± standard deviations.

2D: two-dimensional; 3D: three-dimensional; BVP: biventricular pacing; LVEF: left ventricular ejection fraction.

^a $p < 0.05$ versus baseline.

^b $p < 0.01$ versus baseline.

^c $p < 0.05$ versus simultaneous BVP.

^d $p < 0.01$ versus simultaneous BVP.
Figure 3. Intraobserver reproducibility in terms of 3D left ventricular ejection fraction (LVEF), left ventricular end-diastolic volume (LVEDV) and left ventricular end-systolic volume (LVESV).
Figure 4. Static front map of mechanical activation during spontaneous rhythm, and simultaneous and optimal biventricular pacing configuration based on 3D left ventricular dyssynchrony. In blue, segmental volumes in diastolic time; in red, segmental volumes still in systolic time.
Figure 5. Correlation between percentage changes in 3D or 2D left ventricular dyssynchrony (LVD) and percentage changes in cardiac output (CO).

r and p values ($r = -0.60, p < 0.01$ and $r = -0.56, p < 0.05$, respectively). Changes in 2D left ventricular dyssynchrony also correlated significantly with changes in 3D left ventricular dyssynchrony ($r = 0.49; p < 0.05$).

Mid-term impact of biventricular pacing

After 6 months of simultaneous BVP, NYHA functional class, quality of life score, exercise capacity assessed by the 6-minute walk test and peak exercise oxygen consumption improved significantly compared with baseline. Similarly, 3D echocardiography revealed a significant increase in LVEF ($33.6 \pm 7.2\%$ versus $27.6 \pm 6.7\%; p = 0.001$) associated with a significant decrease in left ventricular end-diastolic volume ($144.1 \pm 60.3\ cm^3$ versus $175.6 \pm 80.2\ cm^3; p < 0.01$), left ventricular end-systolic volume ($95.7 \pm 48.4\ cm^3$ versus $127.1 \pm 69.7\ cm^3; p < 0.01$), 3D left ventricular dyssynchrony ($4.9 \pm 1.2\%$ versus $10.0 \pm 2.8\%; p < 0.001$) and 2D left ventricular dyssynchrony ($23.6 \pm 8.3\ ms$ versus $32.0 \pm 8.9\ ms; p < 0.01$) after 6 months of simultaneous BVP.

Thirty-one patients had a 10% reduction in left ventricular end-systolic volume and were considered to be responders to the therapy. NYHA class, quality of life score, exercise capacity and echocardiographic volumes were significantly more improved in responders than in non-responders (Tables 3 and 4). At baseline, the only parameter that differed between responders and non-responders was the level of 3D left ventricular dyssynchrony. Similarly, the reduction in the magnitude of 3D dyssynchrony after implantation was significantly more pronounced in responders than
in non-responders. In contrast, neither the pre-implantation magnitude of 2D dyssynchrony nor its reduction after CRT was significantly different in responders versus non-responders.

Discussion

Our study brings new information about the potential impact of 3D echocardiographic software in the measurement of ventricular dyssynchrony. First, 3D measurement of left ventricular volumes and ventricular dyssynchrony in the same acquisition is feasible and reproducible. Second, after implantation of a CRT device, optimization of interventricular delay based on 3D ventricular dyssynchrony allows greater improvement than simultaneous BVP in terms of acute haemodynamic parameters. Third, changes in 3D dyssynchrony are correlated with changes in haemodynamic parameters, suggesting that this measurement of dyssynchrony is of haemodynamic importance. These correlations are higher than the correlations obtained with 2D dyssynchrony. Finally, we demonstrated significant differences between responders and non-responders in terms of pre-implantation level of 3D dyssynchrony and reduction of ventricular dyssynchrony after BVP. These differences were not significantly different in terms of 2D dyssynchrony.

To reduce the number of non-responders, attempts to identify and quantify mechanical dyssynchrony (the target of the therapy) led to the investigation of the possible role of echocardiography. Conventional and sophisticated
Figure 7. Correlation between percentage changes in 2D ventricular dyssynchrony and percentage changes in 3D ventricular dyssynchrony.

Table 3	Differences in baseline characteristics between responders and non-responders.		
Characteristic	Responders \((n=31)\)	Non-responders \((n=10)\)	\(p\)
NYHA class	3.2 ± 0.4	3.0 ± 0.5	0.31
Quality of life score	51.3 ± 14.8	58.4 ± 23.6	0.27
Six-minute walk test (m)	291.1 ± 68.5	312.8 ± 72.3	0.33
Peak exercise oxygen consumption (mL/kg/min)	13.2 ± 4.8	13.9 ± 5.9	0.36
Left ventricular end-diastolic volume (mL)	186.5 ± 86.8	141.7 ± 40.1	0.08
Left ventricular end-systolic volume (mL)	139.5 ± 76.1	100.3 ± 30.5	0.07
LVEF (%)	26.9 ± 6.8	29.7 ± 6.2	0.11
2D left ventricular dyssynchrony index (ms)	33.3 ± 9.2	27.2 ± 6.5	0.11
3D left ventricular dyssynchrony index (%)	11.0 ± 2.4	6.5 ± 1.1	< 0.01
QRS duration (ms)	160.7 ± 19.7	153.5 ± 23.1	0.57

Results are given as mean values ± standard deviations.
LVEF: left ventricular ejection fraction; NYHA: New York Heart Association.

Table 4	Comparison of percentage change in baseline characteristics after 6 months of BVP in responders and non-responders.		
Characteristic	Percentage change after 6 months		\(p\)
	Responders \((n=31)\)	Non-responders \((n=10)\)	
NYHA class	-37.5 ± 13.1	-10.0 ± 8.2	< 0.01
Quality of life score	-48.5 ± 23.6	-19.0 ± 17.5	< 0.05
Six-minute walk test (m)	57.5 ± 19.8	6.8 ± 13.7	< 0.01
Peak exercise oxygen consumption	16.6 ± 6.2	4.3 ± 4.9	< 0.05
Left ventricular end-diastolic volume	-21.1 ± 6.9	-3.4 ± 7.3	< 0.01
Left ventricular end-systolic volume	-28.3 ± 7.4	-6.8 ± 4.8	< 0.01
LVEF	28.5 ± 22.2	11 ± 19.5	0.24
2D left ventricular dyssynchrony index	-37.5 ± 19.6	-23.1 ± 21.4	0.18
3D left ventricular dyssynchrony index	-54.5 ± 16.3	-17.5 ± 19.8	< 0.01

Results are given as mean values ± standard deviations.
LVEF: left ventricular ejection fraction; NYHA: New York Heart Association.
echocardiographic techniques have been investigated extensively but, to date, there is still no gold standard echocardiographic parameter for use in clinical practice [5–9]. Some tissue Doppler imaging parameters of dyssynchrony have clearly been shown to correlate with haemodynamic parameters, to help in optimization of device programming and to predict response after CRT, and are therefore used widely in the literature [5,7,9,16,17]. However, the widespread adoption of these techniques in clinical practice has been limited by aspects of acquisition and analysis, low reproducibility, poor spatial resolution and non-simultaneous evaluation of segmental motion. Only the longitudinal function in the basal and mid-segments are studied. Moreover, the PROSPECT study concluded that no single 2D echocardiographic measurement improved the process of patient selection for CRT reliably [10].

3D echocardiography provides a more accurate determination of left ventricular volumes and systolic function than 2D echocardiography and may become very useful in the field of CRT [11–13]. Indeed, 3D echocardiography may overcome some of the limitations observed with 2D echocardiography. As demonstrated in this study, the reproducibility with a semi-automatic endocardial contour analysis was reliable and seemed superior than that obtained with the 12-segment analysis of 2D dyssynchrony. The reproducibility of an echocardiographic measurement is of major importance if it is to be included in a multicentre study as a selection criterion. Moreover, quantification of mechanical dyssynchrony with 3D echocardiography takes all myocardial segments into account by examining the composite effect of radial, circumferential and longitudinal contraction. 2D and 3D echocardiographic parameters explore different systolic periods (end-systole with 3D echocardiography, peak of systolic velocity with 2D echocardiography). This may explain the difference in terms of correlation of 2D and 3D echocardiographic parameters with haemodynamic status. Changes in 3D dyssynchrony were found to correlate highly with changes in cardiac output and ejection fraction.

Echocardiographic dyssynchrony parameters may help in the management of patients with heart failure, in terms of selecting the candidate for CRT and optimizing the programming of the pacing device after implantation. Before implantation, we demonstrated that future responders exhibited significantly higher 3D dyssynchrony than future non-responders. This seems promising in terms of optimizing the selection of candidates for CRT. In our study, the difference in terms of 2D dyssynchrony did not reach significance, in contrast with data published previously. The limited number of patients may be a possible explanation. Interestingly, responders had a significantly higher decrease in 3D dyssynchrony, suggesting that this parameter may help with the pre-implantation optimization of pacing sites based on an acute maximal reduction of 3D dyssynchrony. Similarly, individually optimized sequential BVP based on 3D dyssynchrony allowed a significant improvement in haemodynamic parameters. Pre-discharge optimization of the interventricular delay may be proposed, despite the need for definite proof of the clinical value of sequential BVP. However, as suggested by the PROSPECT study, no single-centre study can come to a definitive conclusion about the value of an echocardiographic technique in the field of CRT [10]. A multicentre study may be required to confirm our results.

There are limitations to this study and to a 3D assessment of ventricular dyssynchrony. The sample size (n = 41) was rather small to determine predictive factors of response, but the protocol, with seven different echocardiographic evaluations, provided enough data for a solid statistical analysis to estimate the haemodynamic significance of the parameters of dyssynchrony. We have demonstrated differences between responders and non-responders in terms of 3D dyssynchrony; however, we did not determine a cut-off value for this parameter that allows selection and/or exclusion of CRT candidates in everyday clinical practice. The semi-automated border detection algorithms are user-friendly, but their use is very limited in patients with a poor ultrasonic window, and the total procedure is still time-consuming. Improved automatic endocardial border detection and a sequential online volume analysis may help to establish the assessment of 3D dyssynchrony as a daily practice clinical method for selecting, monitoring and optimizing CRT. The fact that 2D and 3D dyssynchrony were measured on different echocardiographic machines may have interfered with our data. Finally, the rate of response was high in our study. Patients with a 10% reduction in left ventricular end-systolic volume were considered to be responders to the therapy; a threshold of 15% might have yielded different results.

Conclusion

This prospective echocardiographic study provides new information about the potential impact of 3D echocardiographic software in the measurement of ventricular dyssynchrony and demonstrates the additional value of 3D assessment of ventricular dyssynchrony in predicting the response after BVP and optimizing the pacing configuration.

References

