and results in higher QALYs in comparison with sitagliptin 100 mg in dual therapy as add-on to metformin and in triple therapy as add-on to MET plus SU. In dual therapy, as add-on to MET, canagliflozin (100 mg and 300 mg weight averaged 65:35) has an average cost saving of 24 € and an average QALY gain of 0.036. In triple therapy as add-on to MET+SU, canagliflozin (100 mg and 300 mg weight averaged 65:35) has an average cost saving of 171 € and an average QALY gain of 0.013, which leads to an ICER of 30,154 €. In triple therapy canagliflozin (100 mg and 300 mg weight averaged 50:50) dominates sitagliptin with average cost saving of 0.46 € and average QALY gain of 0.005. In dual therapy, canagliflozin 100 mg and 300 mg will be cost-saving (1,280 €) compared to sitagliptin (diligardulate 1.2 mg / 1.8 mg - 0.71/0.29 based on French market research data) with incremental QALYs of -0.015. Canagliflozin (100 mg and 300 mg weight averaged 50:50) dominates a mixed strategy with sitagliptin (12.5%) and sitagliptin (87.5%) average cost saving of 410 € and average QALY gain of 0.041. Sensitivity analyses showed that HBA1c, and SBP treatment effects were key drivers of the cost-effectiveness results. CONCLUSIONS: Canagliflozin 100 mg and 300 mg will be a cost-effective alternative to sitagliptin in dual therapy as add-on to metformin. In triple therapy as add-on to metformin and SU, canagliflozin dominates in comparison with a mix of patients treated with sitagliptin or liraglutide. Canagliflozin 100 mg or 300 mg was not expected to be considered good value for money for the treatment of T2DM in France.

PD670 THE COST-EFFECTIVENESS OF EXENATIDE BD VERSUS INSULIN LYSIN PRO TID AS ADD-ON THERAPY TO TITRATED INSULIN GLARGINE IN PATIENTS WITH TYPE 2 DIABETES - AN ANALYSIS FROM THE SWEDISH HEALTH CARE PERSPECTIVE

Gunder 1, McEwan P. 2, Johansen P. 3, Sabale U. 1, Thiringer P. 4, Backman T. 5

1HEVA HEOR, Lyon, France, 2Medtronic, Tolochenaz, Switzerland, 3Faculty of Health Sciences, University of Pécs, Pécs, Hungary, 4Medtronic, Budapest, Budapest, Hungary, 5University of Debrecen, Medical School and Health Science Centre, Pediatric Dept., Debrecen, Hungary

OBJECTIVES: To project the long-term costs and outcomes of sensor-augmented pump (SAP) with low glucose suspend (LSUS) versus insulin pump (CSII) alone for the treatment of type 1 diabetes in Hungary. METHODS: The CORE Diabetes Model is a peer-reviewed, validated model, which employs standard Markov/Monte Carlo simulation techniques to describe the long-term incidence and progression of diabetes-related complications. It was used to simulate disease progression in a cohort of patients with baseline characteristics (mean age 18.6 years, duration of diabetes 12 years, mean HbA1c 7.5%) and clinical outcomes (severe hypoglycaemic event rates; Quality of Life, HbA1c taken from a recent randomised controlled trial (HbA1c by Ravn et al. 2013)). Local therapy and complication costs were used. The main scenario considered in this cost-effectiveness analysis was the comparison of sensor-augmented insulin pump (SAP) with low glucose suspend (LSUS) versus pump alone (CSII). The target population was hypo-prone type 1 diabetes patients with the analysis based on a deterministic microsimulation of 1,000 patients, using a 1 to 5 year time horizon. Direct costs were calculated from a third-party payer perspective. Discount rates of 3.7% per annum were applied to both costs and clinical outcomes. RESULTS: The Incremental Cost-Effectiveness-Ratio (ICER) for SAP-LGS vs CSII was HUF 616,886 HUF (20,298) per Quality-Adjusted-Life-Year gained over a 1 year time horizon. Results were similar using a 5 year time horizon (HUF 1,234,836 (20,068) per QALY gained). Extensive sensitivity analyses showed the robustness of the results. CONCLUSIONS: Using a payer’s perspective, our analysis showed that SAP (w LGS) is cost-effective over a short term (1-5 year) time horizon in hypo prone patients with Type 1 Diabetes in Hungary (using a WTP threshold of 50,000 EUR GDP).