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for sufficiently Lp-regular right-hand sides. From this we deduce
that the parabolic problem with Robin or Wentzell–Robin boundary
conditions is well-posed on C(Ω̄).
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1. Introduction

In this article we show that solutions of elliptic Robin boundary value problems on a bounded Lip-
schitz domain Ω ⊂ R

N are Hölder regular up to the boundary if the right-hand side is smooth enough
in an L p-sense. In particular, this result applies to Neumann boundary conditions. From this we ob-
tain well-posedness of the parabolic problem with Neumann, Robin, and Wentzell–Robin boundary
conditions in the space C(Ω̄).

E-mail address: robin.nittka@uni-ulm.de.
0022-0396/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jde.2011.05.019

https://core.ac.uk/display/82349165?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jde.2011.05.019
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jde
mailto:robin.nittka@uni-ulm.de
http://dx.doi.org/10.1016/j.jde.2011.05.019


R. Nittka / J. Differential Equations 251 (2011) 860–880 861
To be more precise, let L be a strictly elliptic operator in divergence form

Lu = −
N∑

j=1

D j

(
N∑

i=1

aij Diu + b ju

)
+

N∑
i=1

ci Diu + du (1.1)

with bounded, measurable coefficients. We consider elliptic problems that formally take the form⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Lu = f0 −
N∑

j=1

D j f j, on Ω,

∂u

∂νL
+ βu = g +

N∑
j=1

f jν j, on ∂Ω,

(1.2)

where we set

∂u

∂νL
:=

N∑
j=1

(
N∑

i=1

aij Diu + b ju

)
ν j,

and where ν denotes the outer normal on ∂Ω . We assume β to be bounded and measurable, but
make no assumptions on the sign of β .

In Section 2 we explain what is meant by a weak solution of (1.2). Section 3 is devoted to L p-
regularity and Hölder regularity results for solutions of (1.2), which are summarized in Theorem 3.14.
The main idea is to extend weak solutions by reflection at the boundary, to show that this extension
again solves an elliptic problem, and then to apply interior regularity results. This strategy is known,
see for example [23, Section 2.4.3] or [6, Remark 3.10], but it seems that until now it has not been
exploited to this extent.

In particular, if f0 ∈ L p/2(Ω), f j ∈ L p(Ω), j = 1, . . . , N , and g ∈ L p−1(∂Ω) for p > N , then every so-
lution u of (1.2) is Hölder continuous on Ω . Weaker versions of this result can be found in [6,25,11,1].
On the other hand, a stronger version of this result has been obtained in [19], but by considerably
more difficult methods that also might be less flexible in certain situations.

Using the elliptic regularity result we attack parabolic problems in spaces of continuous functions
in Section 4. More precisely, we consider the initial value problems⎧⎪⎪⎨

⎪⎪⎩
u̇(t, x) = −Lu(t, x), t > 0, x ∈ Ω,

∂u

∂νL
(t, z) + βu(t, z) = 0, t � 0, z ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

(1.3)

i.e., Robin or Neumann boundary conditions, and⎧⎪⎪⎨
⎪⎪⎩

u̇(t, x) = −Lu(t, x), t > 0, x ∈ Ω,

−Lu(t, z) + ∂u(t, z)

∂νL
+ βu(t, z) = 0, t > 0, z ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω̄,

(1.4)

i.e., Wentzell–Robin boundary conditions. The solution operators for these equations form strongly
continuous semigroups in appropriate Hilbert spaces. Those semigroups have extensively been stud-
ied, see for example [2,9,10,3,5,8]. In special cases it is known that these semigroups extrapolate to
strongly continuous semigroups also on C(Ω̄), see [6,17,15,12,25], i.e., that the parabolic problem is
well-posed in C(Ω̄). We extend these results to the case of arbitrary strongly elliptic differential op-
erators with bounded, measurable coefficients. These results seem to be new in the literature. To get
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an idea why it is important to have generation results also in this space we refer to [7,24] and the
references therein.

For simplicity we consider second order linear equations only. We will work with bounded, real-
valued coefficients and pure Robin boundary conditions, i.e., we do not allow for Dirichlet or mixed
boundary conditions. We will not investigate whether the operators generate semigroups on spaces
of Hölder continuous functions. In the generation results for Wentzell–Robin boundary conditions we
will in addition assume that the coefficients b j , j = 1, . . . , N , are Lipschitz continuous.

2. Preliminaries

Throughout the whole article Ω denotes a bounded Lipschitz domain in R
N , i.e., Ω is an open,

bounded set that is locally the epigraph of a Lipschitz regular function. When we work with Lebesgue
spaces L p(∂Ω), we always equip ∂Ω with the natural surface measure, which coincides with the
(N − 1)-dimensional Hausdorff measure. Since Ω is a Lipschitz domain, there exists a bounded trace
operator from H1(Ω) to L2(∂Ω), and we denote the trace of u ∈ H1(Ω) by u|∂Ω or simply by u, if
misunderstandings are not to be expected.

We consider a linear differential operator L in divergence form acting on functions on Ω , i.e., L is
(formally) given by (1.1). We assume throughout that the coefficients aij , b j , ci , and d are bounded
and measurable and that L is strictly elliptic, i.e., there exists α > 0 such that

N∑
i, j=1

aij(x)ξiξ j � α|ξ |2 (2.1)

holds for all ξ ∈ R
N and almost every x in Ω . Moreover, we restrict ourselves to the case N � 2 since

the results for N = 1 are easy, but cumbersome to include into the general statement.
For L as in (1.1) and β ∈ L∞(∂Ω), we define the bilinear form aL,β via

aL,β(u, v) :=
N∑

i, j=1

∫
Ω

aij DiuD j v dλ +
N∑

j=1

∫
Ω

b juD j v dλ

+
N∑

i=1

∫
Ω

ci Diuv dλ +
∫
Ω

duv dλ +
∫

∂Ω

βuv dσ (2.2)

for u and v in H1(Ω).
Given functions f j ∈ L1(Ω), j = 1, . . . , N , and g ∈ L1(∂Ω), we call a function u in H1(Ω) that

satisfies

aL,β(u, v) =
∫
Ω

f0 v dλ +
N∑

j=1

∫
Ω

f j D j v dλ +
∫

∂Ω

gv dσ for all v ∈ C1(Ω̄) (2.3)

a weak solution of (1.2). If all functions and the domain are sufficiently smooth, then in fact (2.3) is
equivalent to (1.2) as can be seen from the divergence theorem.

If u satisfies (2.3) maybe not for all v ∈ C1(Ω̄), but at least for all smooth functions with compact
support in Ω , i.e., for all v ∈ C∞

c (Ω), we say that u ∈ H1(Ω) solves the problem Lu = f0 −∑N
j=1 D j f j .

Note that this condition does not depend on β .
In the proofs, we will frequently need Sobolev embedding theorems, which can be found for ex-

ample in Grisvard’s book [20, Theorems 1.5.1.3 and 1.4.4.1].
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3. Elliptic problems

3.1. Neumann boundary conditions

In this section we consider (2.3) in the special case β = 0, i.e., elliptic problems with Neumann
boundary conditions. We will see that for sufficiently regular right-hand sides, every solution admits
a Hölder continuous representative.

Let Ω ⊂ R
N be a Lipschitz domain. By definition, for every z ∈ ∂Ω we can choose an orthogonal

matrix O, a radius r > 0, a Lipschitz continuous function ψ: R
N−1 → R, and

G := {(
y,ψ(y) + s

)
: y ∈ B(0, r) ⊂ R

N−1, s ∈ (−r, r)
}

such that

O(Ω − z) ∩ G = {(
y,ψ(y) + s

)
: y ∈ B(0, r) ⊂ R

N−1, s ∈ (0, r)
}
. (3.1)

Convention 3.1. Since the assumptions of Section 2 are invariant under isometric transformations
of R

N , for local considerations we assume without loss of generality that O = I and z = 0.

Define T (y, s) := (y,ψ(y) + s) for y ∈ R
N−1 and s ∈ R. Then T is a bi-Lipschitz mapping from

B(0, r) × (−r, r) to G with derivative

T ′(y, s) =
(

I 0

∇ψ(y) 1

)
and T ′(y, s)−1 =

(
I 0

−∇ψ(y) 1

)

almost everywhere. Moreover, define the reflection S: G → G at the boundary ∂Ω by S(T (y, s)) :=
T (y,−s). Then

S ′(T (y, s)
) = T ′(y,−s)

(
I 0

0 −1

)
T ′(y, s)−1 =

(
I 0

2∇ψ(y) −1

)

almost everywhere. Note that S(Sx) = x, S ′ is bounded, det S ′(x) = −1 and S ′(x)−1 = S ′(x). Moreover,
S ′(y, s) does not depend on s, whence S ′(Sx) = S ′(x).

Notation 3.2. We write U for G ∩ Ω and V for S(U ) = G \ Ω̄ . For a function w on D ⊂ G , define w∗
by w∗(x) := w(Sx) on S(D). For a function w on U , define w̃ (almost everywhere) on G by

w̃(x) :=
{

w(x), x ∈ U ,

w∗(x), x ∈ V .

In the following it will not matter that w̃ is not defined on the Lebesgue null set ∂Ω ∩ G since we
will apply this notation only to L p-functions.

For the rest of the section we fix a linear, strictly elliptic differential operator L in divergence form
and write a for the matrix (aij) and b and c for the vectors (b j) and (ci), respectively. Moreover, we
define

â(x) :=
{

a(x), x ∈ U ,

S ′(x)a∗(x)S ′(x)T , x ∈ V ,
b̂(x) :=

{
b(x), x ∈ U ,

S ′(x)b∗(x), x ∈ V ,

ĉ(x) :=
{

c(x), x ∈ U ,

S ′(x)c∗(x), x ∈ V .
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Lemma 3.3.

(i) If w is in H1(D), then w∗ is in H1(S(D)), and ∇w∗(x) = ∇w(Sx)S ′(x) almost everywhere.
(ii) If w is in H1(U ), then w|∂U = w∗|∂V on ∂Ω ∩ G.

(iii) If w is in H1(U ), then w̃ is in H1(G), and ∇ w̃ = ∇w1U + ∇w∗1V .
(iv) For any p ∈ [1,∞], the extension operator w 
→ w̃ is continuous from L p(U ) to L p(G).
(v) The functions â, b̂, ĉ and d̃ are measurable and bounded on G.

Proof. Assertion (i) follows from [26, Theorem 2.2.2]. Assertion (ii) is obvious if w is in addition
continuous up to the boundary. Since U is a Lipschitz domain, those functions are dense in H1(U )

and the claim follows by approximation. Let ϕ be a test function on G . The divergence theorem [14,
Section 4.3] shows that

∫
G

w̃ Diϕ dλ =
∫
∂U

wϕνi dσ −
∫
U

Di wϕ dλ +
∫
∂V

w∗ϕνi dσ −
∫
V

Di w∗ϕ dλ.

The boundary integrals cancel due to (ii) since the boundaries ∂V and ∂U have opposite orientations.
This proves (iii). Assertion (iv) follows from [14, Section 3.4.3], and assertion (v) is obvious. �
Lemma 3.4. There exists a constant α̂ > 0 such that ξ T â(x)ξ � α̂|ξ |2 for all ξ ∈ R

N and almost every x ∈ G.

Proof. Let w ∈ R
N−1 be an arbitrary row vector and define W := ( I 0

w −1

)
. Given a positive definite

matrix M := ( A b
c d

) ∈ R
N×N , the matrix

WMWT =
(

A AwT − b

w A − c w AwT − wb − cwT + d

)

is positive definite as well. In fact, it suffices to check that the leading principal minors are positive.
Since M is positive definite, all minors of M are positive. Hence the first N − 1 leading principal
minors of WMWT are positive and, moreover, det M > 0. Thus det(WMWT ) > 0 by the multiplicativity
of the determinant since det W = det W T = −1, which proves the claim.

By what we have shown, the least eigenvalue λ1(WMWT ) of WMWT is positive whenever M
is positive definite. Since λ1 depends continuously on the entries of the matrix this shows that
λ1(WMWT ) � δ for some δ > 0 as M ranges over a compact subset of the set of all positive defi-
nite matrices, and w ranges over a compact subset of R

N−1.
Recall that a matrix A ∈ R

N×N satisfies ξ T Aξ � α|ξ |2, α > 0, for all ξ ∈ R
N if and only if λ1((A +

AT )/2) � α. Thus by assumption (2.1)

1

2

(
a(x) + a(x)T ) ∈ K1 := {

M ∈ R
N×N : M = MT , λ1(M) � α, ‖M‖ � c

}
for some constant c and for almost all x ∈ U . The set K1 is a compact subset of the positive definite
matrices. Let K2 ⊂ R

N−1 be a closed ball whose radius is large enough such that 2∇ψ(y) ∈ K2 for
almost all y.

Using the first part of this proof, we see that there is δ > 0 such that

λ1

(
1

2
S ′(x)

(
a(Sx) + a(Sx)T )

S ′(x)T
)

� δ

for almost every x ∈ U . Thus ξ T â(x)ξ � δ|ξ |2 almost everywhere on V , from which the claim follows
with α̂ := min{α, δ}. �
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Lemma 3.5. Let L̂ denote the differential operator on G for the coefficients â, b̂, ĉ and d̃. Assume that there exists
p > N such that f0 ∈ L p/2(Ω), f j ∈ L p(Ω), j = 1, . . . , N, and g ∈ L p−1(∂Ω). Let u ∈ H1(Ω) satisfy (2.3)
(recall that we allow only for β = 0 in this section). Then there exist s > N and functions h0 ∈ Ls/2(G) and
h j ∈ Ls(G), j = 1, . . . , N, that satisfy

aL̂,0(ũ, v) =
∫
G

h0 v dλ +
N∑

i=1

∫
G

hi Di v dλ (3.2)

for every function v ∈ C∞
c (G).

Proof. By definition of a solution of (2.3) we have that

N∑
i, j=1

∫
U

âi j Di ũD j v dλ +
N∑

j=1

∫
U

b̂ j ũD j v dλ +
N∑

i=1

∫
U

ĉi Di ũv dλ +
∫
U

d̃ũv dλ

=
∫
U

f0 v dλ +
N∑

j=1

∫
U

f j D j v dλ +
∫
∂U

gv dσ (3.3)

holds for every v ∈ C∞
c (G).

Using part (i) of Lemma 3.3 and the change of variables formula [14, Section 3.4.3] (replacing x
by Sx) we obtain

∫
V

(∇ũ)â(∇v)T dλ +
∫
V

ũ(∇v)b̂ dλ +
∫
V

(∇ũ)ĉv dλ +
∫
V

d̃ũv dλ

=
∫
V

∇u(Sx)S ′(x)S ′(x)a(Sx)S ′(x)T (∇v(x)
)T

dx

+
∫
V

u(Sx)∇v(x)S ′(x)b(Sx)dx +
∫
V

∇u(Sx)S ′(x)S ′(x)c(Sx)v(x)dx

+
∫
V

d(Sx)u(Sx)v(x)dx

=
∫
U

∇u(x)a(x)S ′(x)T (∇v(Sx)
)T

dx +
∫
U

u(x)∇v(Sx)S ′(x)b(x)dx

+
∫
U

∇u(x)c(x)v(Sx)dx +
∫
U

d(x)u(x)v(Sx)dx

=
∫
U

∇u(x)a(x)
(∇v∗(x)

)T
dx +

∫
U

u(x)∇v∗(x)b(x)dx

+
∫

∇u(x)c(x)v∗(x)dx +
∫

d(x)u(x)v∗(x)dx
U U
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=
∫
U

f0 v∗ dλ +
N∑

j=1

∫
U

f j D j v∗ dλ +
∫
∂U

gv∗ dσ

=
∫
U

f0(x)v(Sx)dx +
N∑

j=1

∫
U

f j(x)
N∑

i=1

Di v(Sx)
(

S ′(x)
)

i j dx +
∫
∂U

gv∗ dσ

=
∫
V

f ∗
0 v dλ +

N∑
i=1

∫
V

N∑
j=1

(
S ′)

i j f ∗
j Di v dλ +

∫
∂U

gv dσ (3.4)

for every v ∈ C∞
c (Ω), where we have used in addition that u satisfies (2.3).

Adding Eqs. (3.3) and (3.4) we obtain

aL̂,0(ũ, v) =
∫
G

f̃ 0 v dλ +
N∑

j=1

∫
G

f̂ j D j v dλ + 2
∫
∂U

gv dσ (3.5)

for f̂ j ∈ L p(G) defined by

f̂ j(x) :=
{

f j(x), x ∈ U ,∑N
i=1(S ′(x)) ji f ∗

i (x), x ∈ V .

Since g is in L p−1(∂U ) and the trace operator is bounded from W 1,r(G) to L(N−1)r/(N−r)(∂U ) for
every r ∈ (1, N) the mapping

C∞
c (G) → R, v 
→ 2

∫
∂U

gv dσ

extends to a continuous linear functional on W 1,r0
0 (G) for r0 := (p−1)N

(p−2)N+1 . Thus there exist functions

(k j)
N
j=0 in Lr′

0(G) such that

2
∫
∂U

gv dσ =
∫
G

k0 v dλ +
N∑

j=1

∫
G

k j D j v dλ

holds for all v ∈ C∞
c (G), see [26, Theorem 4.3.3]. Note that by assumption r′

0 = (p−1)N
N−1 > N .

Hence (3.2) follows from (3.5) by setting h0 := f̃ 0 + k0 and h j := f̂ j + k j for j = 1, . . . , N . �
Proposition 3.6. Let Ω ⊂ R

N be a Lipschitz domain and p > N. There exist γ > 0 and a constant c with
the following property. If f0 ∈ L p/2(Ω), f j ∈ L p(Ω), j = 1, . . . , N, and g ∈ L p−1(∂Ω), then every solution u
of (2.3) (recall that at the moment we allow only for β = 0) is in C0,γ (Ω) and satisfies

‖u‖C0,γ (Ω) � c

(
‖u‖L2(Ω) + ‖ f0‖L p/2(Ω) +

N∑
j=1

‖ f j‖L p(Ω) + ‖g‖L p−1(∂Ω)

)
. (3.6)
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Proof. Fix z in ∂Ω and consider a neighborhood G of z as in (3.1). By Lemma 3.5 there exist s > N
and functions h0 ∈ Ls/2(G) and h j ∈ Ls(G), j = 1, . . . , N , such that the extension ũ ∈ H1(G) of u solves
the problem

L̂ũ = h0 −
N∑

j=1

D jh j.

By Lemmata 3.3 and 3.4, the differential operator L̂ on G satisfies the assumptions of Section 2. Thus
it follows from interior regularity results [18, Theorem 8.24] that for every relatively compact subset
G0 of G there exists γ0 > 0 such that ũ is in C0,γ0(G0) and satisfies an estimate of the kind (3.6).
Thus u is in C0,γ0(G0 ∩ Ω) and satisfies an appropriate estimate.

Since ∂Ω is compact, we can cover ∂Ω by finitely many such sets. Thus u is Hölder continuous in
an interior neighborhood of ∂Ω and its Hölder norm can be controlled as in (3.6). Finally, we use the
result about interior regularity once again to control u in the remaining part of Ω . �
3.2. Robin boundary conditions

In this section we apply Proposition 3.6 to obtain similar results also for Robin boundary condi-
tions, i.e., for solutions of (2.3) if β does not necessarily equal zero. As a stepping stone, we investigate
the L p-regularity of solutions also in cases where the data is less regular than in Proposition 3.6. Thus
even for β = 0 the results of this section extend those of the previous one.

As before, let Ω ⊂ R
N be a Lipschitz domain and L be a linear, strictly elliptic differential operator

on Ω . Moreover, let β be an arbitrary function in L∞(∂Ω).
For ω ∈ R we introduce the form aω

L,β defined by

aω
L,β(u, v) := aL,β(u, v) + ω

∫
Ω

uv dλ (3.7)

for u and v in H1(Ω) and investigate the class of functions u ∈ H1(Ω) that satisfy

aω
L,β(u, v) =

∫
Ω

f0 v dλ +
N∑

j=1

∫
Ω

f j D j v dλ +
∫

∂Ω

gv dσ for all v ∈ C1(Ω̄). (3.8)

This is a generalized version of (2.3). More precisely, (2.3) and (3.8) coincide for ω = 0. The advantage
of this more general situation is that for large ω the problem (3.8) is uniquely solvable.

Lemma 3.7. Let N � 3. There exist ω ∈ R and a constant c with the following property. If f0 ∈ L2N/(N+2)(Ω),
f j ∈ L2(Ω), j = 1, . . . , N, and g ∈ L2(N−1)/N (∂Ω), then problem (3.8) has a unique solution u ∈ H1(Ω), and

‖u‖H1(Ω) � c

(
‖ f0‖L2N/(N+2)(Ω) +

N∑
j=1

‖ f j‖L2(Ω) + ‖g‖L2(N−1)/N (∂Ω)

)
. (3.9)

Proof. By [11, Corollary 2.5] there exist η > 0 and ω ∈ R such that

aω
L,β(u, u) � η‖u‖2

H1(Ω)
.

Thus, by the Lax–Milgram theorem [18, Theorem 5.8] there exists a constant c1 with the following
property. For every ψ ∈ H1(Ω)′ there exists a unique function u ∈ H1(Ω) that satisfies

aω
L,β(u, v) = ψ(v) for all v ∈ H1(Ω), (3.10)
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and for this u we have

‖u‖H1(Ω) � c1‖ψ‖H1(Ω)′ . (3.11)

Since H1(Ω) embeds into L2N/(N−2)(Ω) and the trace operator maps H1(Ω) into
L2(N−1)/(N−2)(∂Ω), there exists a constant c2 with the following property. For f0 ∈ L2N/(N+2)(Ω),
f j ∈ L2(Ω), j = 1, . . . , N , and g ∈ L2(N−1)/N (∂Ω),

ψ(v) :=
∫
Ω

f0 v dλ +
N∑

j=1

∫
Ω

f j D j v dλ +
∫

∂Ω

gv dσ (3.12)

defines a continuous linear functional ψ on H1(Ω) that satisfies

‖ψ‖H1(Ω)′ � c2

(
‖ f0‖L2N/(N+2)(Ω) +

N∑
j=1

‖ f j‖L2(Ω) + ‖g‖L2(N−1)/N (∂Ω)

)
. (3.13)

Now let f0 ∈ L2N/(N+2)(Ω), f j ∈ L2(Ω), j = 1, . . . , N , and g ∈ L2(N−1)/N (∂Ω) be arbitrary. Define
ψ as in (3.12), and let u be as in (3.10). Then u is a solution of (3.8). Since C1(Ω̄) is dense in H1(Ω),
every solution of (3.8) satisfies (3.10). Hence the solution of (3.8) is unique. Estimate (3.9) follows
with c := c1c2 by combining (3.11) and (3.13). �
Lemma 3.8. Let N = 2 and q > 1. There exist ω ∈ R and a constant c with the following property. If
f0 ∈ Lq(Ω), f j ∈ L2(Ω), j = 1, . . . , N, and g ∈ Lq(∂Ω), then problem (3.8) has a unique solution u ∈ H1(Ω),
and

‖u‖H1(Ω) � c

(
‖ f0‖Lq(Ω) +

N∑
j=1

‖ f j‖L2(Ω) + ‖g‖Lq(∂Ω)

)
. (3.14)

Proof. The proof is similar to the proof of Lemma 3.7. Here, however, we use that H1(Ω) embeds into
Lr(Ω) for every r < ∞, and that the trace operator maps H1(Ω) into Lr(∂Ω) for every r < ∞. �
Remark 3.9. It should be noted that in Lemmata 3.7 and 3.8 we can take any ω ∈ R such that (3.8)
has a unique solution for some right-hand side. In fact, let A be the operator from H1(Ω) to H1(Ω)′
defined by 〈Au, v〉 := aL,β (u, v). Considering H1(Ω) as a subspace of H1(Ω)′ via the scalar prod-
uct in L2(Ω), A is a densely defined, closed operator on H1(Ω)′ . The resolvent of A is compact
since H1(Ω) is compactly embedded into L2(Ω). For ω ∈ R, the Fredholm alternative asserts that
either there exists u ∈ H1(Ω) such that (ω + A)u = 0, which means precisely that the solution
of (3.8) is not unique, or ω + A is boundedly invertible, which implies estimate (3.9) or (3.14), re-
spectively.

Now, as an interlude, we come back to the Neumann problem. Afterwards, the following lemmata
will be generalized to cover Robin problems as well.

Lemma 3.10. Let p > N, and let ω be as in Lemma 3.7 or Lemma 3.8, respectively. Assume β = 0. Then there
exist γ > 0 and a constant c with the following property. If f0 ∈ L p/2(Ω), f j ∈ L p(Ω), j = 1, . . . , N, and
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g ∈ L p−1(∂Ω), then the unique solution u of (3.8) is in C0,γ (Ω) and satisfies

‖u‖C0,γ (Ω) � c

(
‖ f0‖L p/2(Ω) +

N∑
j=1

‖ f j‖L p(Ω) + ‖g‖L p−1(∂Ω)

)
.

Proof. By Lemma 3.7 or Lemma 3.8, respectively, the solution is unique, and by (3.9) or (3.14) there
exists a constant c1 such that

‖u‖L2(Ω) � c1

(
‖ f0‖L p/2(Ω) +

N∑
j=1

‖ f j‖L p(Ω) + ‖g‖L p−1(∂Ω)

)
.

Thus the result follows from Proposition 3.6. �
Lemma 3.11. Let N � 3, 2N

N+2 � q < N
2 , ε > 0, and let ω be as in Lemma 3.7. Assume β = 0. Then there

exists a constant c with the following property. If f0 ∈ Lq+ε(Ω), f j ∈ LNq/(N−q)+ε(Ω), j = 1, . . . , N, and
g ∈ L(N−1)q/(N−q)+ε(∂Ω), then the unique solution u of (3.8) satisfies u ∈ LNq/(N−2q)(Ω) and u|∂Ω ∈
L(N−1)q/(N−2q)(∂Ω), and

‖u‖LNq/(N−2q)(Ω) + ‖u‖L(N−1)q/(N−2q)(∂Ω)

� c

(
‖ f0‖Lq+ε(Ω) +

N∑
j=1

‖ f j‖LNq/(N−q)+ε(Ω) + ‖g‖L(N−1)q/(N−q)+ε(∂Ω)

)
.

Proof. Pick p > N . It will turn out at the end how close to N we have to pick p, but this condition
will depend only on N and q, hence the argument is not circular.

To simplify the notation of the proof we introduce the Banach spaces

Lr,s,t := Lr(Ω) ⊕ Ls(Ω)N ⊕ Lt(∂Ω) and Lx,y := Lx(Ω) ⊕ L y(∂Ω).

Note that the complex interpolation spaces [Lr0,s0,t0 , Lr1,s1,t1 ]θ and [Lx0,y0 , Lx1,y1 ]θ , θ ∈ [0,1], are in a
natural way isomorphic to Lr,s,t and Lx,y , respectively, where

1

r
= 1 − θ

r0
+ θ

r1
,

1

s
= 1 − θ

s0
+ θ

s1
,

1

t
= 1 − θ

t0
+ θ

t1
,

1

x
= 1 − θ

x0
+ θ

x1
,

1

y
= 1 − θ

y0
+ θ

y1
. (3.15)

This follows from [22, Section 1.18.4] and the observation that

[X0 ⊕ Y0, X1 ⊕ Y1]θ ∼= [X0, X1]θ ⊕ [Y0, Y1]θ
holds for all Banach spaces X0, X1, Y0 and Y1, which in turn is a direct consequence of the definition
of the complex interpolation functor [22, Section 1.9].

For f0 ∈ L2N/(N+2)(Ω), f j ∈ L2(Ω), j = 1, . . . , N , and g ∈ L2(N−1)/N (∂Ω) we denote by
R( f0, ( f j)

N
j=1, g) the unique solution u ∈ H1(Ω) of (3.8). It is clear that R is a linear map. Let γ > 0

be as in Lemma 3.10. If we consider H1(Ω) and C0,γ (Ω) as subspaces of L2,2 via the injection
u 
→ (u, u|∂Ω), then the Sobolev embedding theorems and Lemmata 3.7 and 3.10 show that R maps

L2N/(N+2),2,2(N−1)/N into L2N/(N−2),2(N−1)/(N−2) and L p/2,p,p−1 into L∞,∞ .
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Using [22, Theorem 1.9.3(a)] for

θ := Nq + 2q − 2N

q(N − 2)
,

we obtain that R maps Lrp ,sp ,tp into LNq/(N−2q),(N−1)q/(N−2q) , where rp , sp and tp are defined analo-
gously to (3.15) for

r0 = 2N

N + 2
, s0 = 2, t0 = 2(N − 1)

N
,

r1 = p

2
, s1 = p, t1 = p − 1.

It is easy to see that the dependence of rp , sp and tp on p is continuous and that

rN = q, sN = Nq

N − q
and tN = (N − 1)q

N − q
.

Thus there exists p > N such that

rp < q + ε, sp <
Nq

N − q
+ ε and tp <

(N − 1)q

N − q
+ ε.

The result follows if we start the whole argument with such a p. �
Remark 3.12. We exclude N = 2 in Lemma 3.11 because the admissible range for q is empty in that
case. However, if we take N = 2 and q = 1 and adopt the convention that 1

0 be ∞, Lemma 3.11 is a
trivial consequence of Lemma 3.10. More generally, this is true also for N � 3 in the boundary case
q = N

2 .

Now we come back to Robin boundary conditions. The following bootstrapping argument allows
us to deduce regularity results for Robin problems from the corresponding results for Neumann prob-
lems.

Lemma 3.13. Let N � 3, 2N
N+2 � q � N

2 , and ε > 0. Then there exist ε̃ > 0 and a constant c with the following

property. If f0 ∈ Lq+ε(Ω), f j ∈ LNq/(N−q)+ε(Ω), j = 1, . . . , N, and g ∈ L(N−1)q/(N−q)+ε(∂Ω), then every
solution u ∈ H1(Ω) of (2.3) satisfies u ∈ Lq+ε̃(Ω), u|∂Ω ∈ L(N−1)q/(N−q)+ε̃ (∂Ω) and

‖u‖Lq+ε̃ (Ω) + ‖u‖L(N−1)q/(N−q)+ε̃ (∂Ω)

� c

(
‖u‖L2(Ω) + ‖ f0‖Lq+ε(Ω) +

N∑
j=1

‖ f j‖LNq/(N−q)+ε(Ω) + ‖g‖L(N−1)q/(N−q)+ε(∂Ω)

)
.

Proof. Define by induction

q0 := 2N

N + 2
and qn+1 := min

{
q,

Nqn

N − 2qn

}
,

where we adopt the convention that 1/0 := ∞. Note that there exists n0 ∈ N0 such that qn = q, since
otherwise we would have
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qn = Nqn−1

N − 2qn−1
� N

N − 2
qn−1 � · · · �

(
N

N − 2

)n

q0 → ∞ (n → ∞)

which is not possible since qn � q for all n ∈ N by definition.
For n ∈ N0, we say that (Pn) is fulfilled if there exist εn > 0 and a constant cn with the following

property. If f0 ∈ Lq+ε(Ω), f j ∈ LNq/(N−q)+ε(Ω), j = 1, . . . , N , and g ∈ L(N−1)q/(N−q)+ε(∂Ω), then every
solution u ∈ H1(Ω) of (2.3) satisfies u ∈ Lqn+εn (Ω), u|∂Ω ∈ L(N−1)qn/(N−qn)+εn (∂Ω) and

‖u‖Lqn+εn (Ω) + ‖u‖L(N−1)qn/(N−qn)+εn (∂Ω)

� cn

(
‖u‖L2(Ω) + ‖ f0‖Lq+ε(Ω) +

N∑
j=1

‖ f j‖LNq/(N−q)+ε(Ω) + ‖g‖L(N−1)q/(N−q)+ε(∂Ω)

)
. (3.16)

The statement (P0) is obviously true. So now assume that (Pn) is true for some n ∈ N0. If qn = q,
then (Pn+1) is trivially fulfilled since it is the same statement as (Pn). Thus we may assume qn < q
without loss of generality. Let ω be as in Lemma 3.7 or Lemma 3.8, respectively, and note that every
solution u ∈ H1(Ω) of (2.3) satisfies

aω
L,0(u, v) =

∫
Ω

( f0 + ωu)v dλ +
N∑

j=1

∫
Ω

f j D j v dλ +
∫

∂Ω

(g − βu)v dσ (3.17)

for all v ∈ C1(Ω̄), i.e., u solves a Neumann problem for a different right-hand side that involves u.
Thus Lemma 3.11 applied for a value q̃ such that qn < q̃ < min{q,qn + εn} implies that there exist
constants c̃ and εn+1 > 0 such that

u ∈ LNq̃/(N−2q̃)(Ω) ⊂ Lqn+1+εn+1(Ω),

u|∂Ω ∈ L(N−1)q̃/(N−2q̃)(∂Ω) ⊂ L(N−1)qn+1/(N−qn+1)+εn+1(∂Ω),

and

‖u‖Lqn+1+εn+1 (Ω) + ‖u‖L(N−1)qn+1/(N−qn+1)+εn (∂Ω)

� c̃

(
‖u‖Lqn+εn (Ω) + ‖u‖L(N−1)qn/(N−qn)+εn (∂Ω) + ‖ f0‖Lq+ε(Ω)

+
N∑

j=1

‖ f j‖LNq/(N−q)+ε(Ω) + ‖g‖L(N−1)q/(N−q)+ε(∂Ω)

)
.

Using (Pn) to estimate the norms of u on the right-hand side as in (3.16), we have proved (Pn+1). By
induction, (Pn) is true for every n ∈ N0. Since the statement of the lemma is equivalent to (Pn0 ) for
some n0 ∈ N0 such that qn0 = q, this finishes the proof. �

The following theorem summarizes (and extends) the previous results of this section.

Theorem 3.14. Let Ω be an open, bounded Lipschitz domain in R
N , N � 2, and let L be a strictly elliptic

differential operator as in (1.1) with bounded, measurable coefficients. Let 2N
N+2 � q � N

2 and ε > 0. Then there

exist γ > 0 and a constant c with the following property. If f0 ∈ Lq+ε(Ω), f j ∈ LNq/(N−q)+ε(Ω), j = 1, . . . , N,
and g ∈ L(N−1)q/(N−q)+ε(∂Ω), then every function u ∈ H1(Ω) satisfying (2.3) fulfills:
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(i) if q < N/2, then u ∈ LNq/(N−2q)(Ω), u|∂Ω ∈ L(N−1)q/(N−2q)(∂Ω), and

‖u‖LNq/(N−2q)(Ω) + ‖u‖L(N−1)q/(N−2q)(∂Ω)

� c

(
‖u‖L2(Ω) + ‖ f0‖Lq+ε(Ω) +

N∑
j=1

‖ f j‖LNq/(N−q)+ε(Ω) + ‖g‖L(N−1)q/(N−q)+ε(∂Ω)

)
;

(ii) if q = N/2, then u ∈ C0,γ (Ω), and

‖u‖C0,γ (Ω) � c

(
‖u‖L2(Ω) + ‖ f0‖LN/2+ε(Ω) +

N∑
j=1

‖ f j‖LN+ε(Ω) + ‖g‖LN−1+ε(∂Ω)

)
.

Moreover, if the solution is unique, then it satisfies

(iii) if q < N/2, then u ∈ LNq/(N−2q)(Ω), u|∂Ω ∈ L(N−1)q/(N−2q)(∂Ω), and

‖u‖LNq/(N−2q)(Ω) + ‖u‖L(N−1)q/(N−2q)(∂Ω)

� c

(
‖ f0‖Lq+ε(Ω) +

N∑
j=1

‖ f j‖LNq/(N−q)+ε(Ω) + ‖g‖L(N−1)q/(N−q)+ε(∂Ω)

)
;

(iv) if q = N/2, then u ∈ C0,γ (Ω), and

‖u‖C0,γ (Ω) � c

(
‖ f0‖LN/2+ε(Ω) +

N∑
j=1

‖ f j‖LN+ε(Ω) + ‖g‖LN−1+ε(∂Ω)

)
.

Proof. Let u ∈ H1(Ω) be a solution of (2.3). Then there exists ε̃ > 0 such that u is in Lq+ε̃(Ω) and
u|∂Ω is in L(N−1)q/(N−q)+ε̃ (∂Ω). Moreover, the norms in these space can be estimates by the right-
hand sides in (i) and (ii), respectively. In fact, for N = 2 this is trivial, whereas for N � 3 this is the
statement of Lemma 3.13.

Let ω be as in Lemma 3.7 or Lemma 3.8, respectively. By (2.3) the function u satisfies

aω
L,0(u, v) =

∫
Ω

( f0 + ωu)v dλ +
N∑

j=1

∫
Ω

f j D j v dλ +
∫

∂Ω

(g − βu)v dσ

for all v ∈ C1(Ω̄), i.e., u is a weak solution of a Neumann problem with right-hand side as in
Lemma 3.11 for q < N/2 or as in Proposition 3.6 for q = N/2. The respective conclusions of
Lemma 3.11 and Proposition 3.6 yield (i) and (ii).

For (iii) and (iv) it only remains to show that ‖u‖L2(Ω) can be estimated accordingly if the solution
is unique. This follows from the Fredholm alternative, see Remark 3.9. �
4. Parabolic problems

Let Ω be an open, bounded Lipschitz domain in R
N . Assume that L is a strictly elliptic differential

operator as in (1.1) It has been shown in [25] that −L = Δ with Robin or Wentzell–Robin boundary
conditions generates a C0-semigroup on C(Ω̄). Although the calculations contain a small mistake that
oversimplifies the arguments, the proof can be saved with a minor modification. We employ the same
idea to show the result is true in general.
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4.1. Neumann and Robin boundary conditions

Let A be the operator on L2(Ω) associated with the form aL,β defined in (2.2). It follows from
the theory of forms that −A generates a positive, compact, holomorphic C0-semigroup (T (t))t�0 on
L2(Ω), cf. for example [21]. The trajectories of this semigroup are the unique mild solutions of the
parabolic problem (1.3) with Robin boundary conditions, compare [13, Section VI.5].

It is known that each T (t) is a kernel operator with a bounded kernel k(t, ·, ·) which has Gaussian
estimates [9, Corollary 6.1]. Thus (T (t))t�0 extrapolates to a family of holomorphic semigroups on
L p(Ω), p ∈ [1,∞], which have the same angle of holomorphy, and all operator T (z) for Re z > 0 are
kernel operators satisfying a Gaussian estimate [2, Theorem 5.4].

We start this section by an investigation of the regularity of these kernels. In particular it follows
from the next theorem that the kernels are jointly continuous in the time variable (away from t = 0)
and in the space variables (up to the boundary of Ω).

Theorem 4.1. The function t 
→ k(t, ·, ·) is analytic from (0,∞) to C0,γ (Ω × Ω) for γ as in Theorem 3.14. In
particular, k ∈ C0,γ ([τ1, τ2] × Ω × Ω) for 0 < τ1 � τ2 < ∞.

Proof. Let ω be so large that aω
L,β is coercive, see Lemmata 3.7 and 3.8. Then A + ω is invertible, i.e.,

λ := −ω ∈ �(A). By Theorem 3.14 there exists m ∈ N and γ > 0 such that

R(λ, A)m L2(Ω) ⊂ C0,γ (Ω).

Since (T (t))t�0 is holomorphic, this implies that T (t) maps L2(Ω) boundedly to C0,γ (Ω) for every
t > 0.

Let ϕhol be the sector of holomorphy of (T (t))t�0 and fix 0 < θ < ϕhol. Let k(z, ·, ·) denote the
kernel of T (z) for z ∈ Σθ , and let 0 < τ1 < τ2. Define

Σθ,τ1,τ2 := {
z ∈ C: z − τ1 ∈ Σθ and |z| < τ2

}
.

Since k(t, ·, ·) ∈ L∞(Ω × Ω), there exists a constant K > 0 that depends only on the semigroup and
the set Σθ,τ1,τ2 such that for all z ∈ Σθ,τ1,τ2 and almost every y ∈ Ω we have

∥∥k(z, ·, y)
∥∥

C0,γ (Ω)
=

∥∥∥∥T

(
τ1

2

)
T (z − τ1)k

(
τ1

2
, ·, y

)∥∥∥∥
C0,γ (Ω)

�
∥∥∥∥T

(
τ1

2

)∥∥∥∥
L (L2(Ω),C0,γ (Ω))

∥∥T (z − τ1)
∥∥

L (L2(Ω))

∥∥∥∥k

(
τ1

2
, ·, y

)∥∥∥∥
L2(Ω)

� K .

Using a duality argument, we can estimate ‖k(z, x, ·)‖C0,γ (Ω) in a similar manner, possibly increasing
the value of K appropriately. Thus

∣∣k(z, x, y) − k(z, x̄, ȳ)
∣∣ � K |x − x̄|γ + K |y − ȳ|γ � 2K

∣∣∣∣
(

x − x̄

y − ȳ

)∣∣∣∣
γ

∞
(4.1)

for almost every x, x̄, y and ȳ in Ω , which shows that {k(z, ·, ·): z ∈ Σθ,τ1,τ2 } is a bounded subset of
C0,γ (Ω × Ω).

Since (T (z))z∈Σθ is holomorphic on L2(Ω),

(
T (z)1A

∣∣ 1B
)

L2(Ω)
=

∫
k(z, x, y)1A×B d(x, y)
Ω×Ω
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is holomorphic for all measurable subsets A and B of Ω . Since the class of functionals on C0,γ (Ω ×Ω)

that arise from integration against 1A×B is a separating subset, we thus obtain that the mapping
z 
→ k(z, ·, ·) is holomorphic from Σθ,τ1,τ2 to C0,γ (Ω × Ω) [4, Theorem A.7]. Since τ1 and τ2 are
arbitrary, the first assertion follows. The second assertion is an easy consequence of the first. �

Next we show that (T (t))t�0 restricts to a C0-semigroup on C(Ω̄). For this we need the following
density result.

Lemma 4.2. Assume that aL,β is coercive and let γ be as in Theorem 3.14. For all v ∈ C∞(Ω̄) and all ε > 0
there exists ψ ∈ C∞(Ω̄) such that the unique solution u of (2.3) for the right-hand side f0 := ψ , f j := 0,
j = 1, . . . , N, and g := 0 satisfies ‖u − v‖C0,γ (Ω) < ε.

Proof. Let ε̃ > 0 and p > N be arbitrary. Let hd ∈ C∞(RN ;R
N ) be such that hd · ν � 1 almost every-

where on ∂Ω [11, Lemma 3.2]. By the Stone–Weierstrass theorem we can find a smooth vector field
h ∈ C∞(RN ;R

N ) such that

∥∥∥∥h − βvhd

hd · ν
∥∥∥∥

L p(∂Ω;RN )

< ε̃.

Hence g̃ := h · ν − βv satisfies ‖g̃‖Lp(∂Ω) < ε̃. Since the test functions are dense in L p(Ω) there exist
k0, k1, . . . ,kN in C∞

c (Ω) such that the functions

f̃ 0 := k0 −
N∑

i=1

ci Di v − dv, f̃ j := −h j − k j −
N∑

i=1

aij Di v − b j v ( j = 1, . . . , N),

satisfy ‖ f̃ j‖Lp(Ω) < ε̃ for j = 0, . . . , N . Define ψ ∈ C∞(Ω̄) by

ψ := k0 +
N∑

j=1

D jk j + div(h),

and let u be the unique solution of (2.3) as described in the claim. By the divergence theorem

∫
Ω

ψϕ dλ =
∫
Ω

k0ϕ dλ +
∫

∂Ω

(h · ν)ϕ dσ −
N∑

j=1

∫
Ω

(h j + k j)D jϕ dλ

for every ϕ ∈ C1(Ω̄), hence

aL,β(u − v,ϕ) =
∫
Ω

ψϕ dλ − aL,β(v,ϕ)

=
∫
Ω

f̃ 0ϕ dλ +
N∑

j=1

∫
Ω

f̃ j D jϕ dλ +
∫

∂Ω

g̃ϕ dσ

for all ϕ ∈ C1(Ω̄). Thus part (iv) of Theorem 3.14 implies that

‖u − v‖C0,γ (Ω) � c(N + 2)ε̃
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for some constant c that does not depend on v , ψ , ε or ε̃. Now if we pick ε̃ small enough such that
c(N + 2)ε̃ < ε, the claim follows. �
Theorem 4.3. The restriction of (T (t))t�0 to C(Ω̄) is a positive, compact, holomorphic C0-semigroup.

Proof. Let ω be such that aω
L,β is coercive. Then λ := −ω ∈ �(A). By Theorem 3.14 there exists m ∈ N

and γ > 0 such that

R(λ, A)m L2(Ω) ⊂ C0,γ (Ω).

Since (T (t))t�0 is holomorphic, this implies that T (t) maps L2(Ω) boundedly to C0,γ (Ω) for every
t � 0. In particular, the subspace C(Ω̄) is invariant under T (t), and factoring through L2(Ω) we see
that T (t) is a compact operator on C(Ω̄). Positivity follows from the positivity on L2(Ω).

As was already remarked, the restriction of (T (t))t�0 to L∞(Ω) is a holomorphic semigroup in
the sense of [4, Definition 3.7.1]. Its generator is the part of A in L∞(Ω). Since C∞(Ω̄) is dense in
C(Ω̄), Lemma 4.2 shows that the part of A + ω in C(Ω̄) and hence also the part of A in C(Ω̄) is
densely defined. Thus by [4, Proposition 3.7.4 and Remark 3.7.13] the restriction of (T (t))t�0 to C(Ω̄)

is a holomorphic C0-semigroup, whose generator is the part of A in C(Ω̄). �
4.2. Wentzell–Robin boundary conditions

Let A be the operator on the Hilbert space H := L2(Ω) ⊕ L2(∂Ω) that is associated with the form

aL,β

(
(u, u|∂Ω), (v, v|∂Ω)

) := aL,β(u, v)

with the dense form domain

V := {
(u, u|∂Ω): u ∈ H1(Ω)

} ⊂ H.

It follows from the theory of forms that −A generates a positive, compact, holomorphic C0-semigroup
(T (t))t�0 on H. This semigroup, or more precisely its restriction to V , describes the solutions of the
evolution problem (1.4) with Wentzell–Robin boundary conditions, compare [5].

We want to show that (T (t))t�0 extrapolates to C(Ω̄). An easy sufficient condition is quasi-L∞-
contractivity, i.e., to assume that the semigroup (e−ωt T (t))t�0 is L∞-contractive for some ω ∈ R.
However, this cannot be expected in general, even if Ω is an interval and L is formally self-adjoint
and has regular second order coefficients, as the following example shows.

Example 4.4. Consider the operator

(Lu)(x) = −(
u′(x) + sgn(x)u(x)

)′ + sgn(x)u(x)

on Ω = (−1,1) with Wentzell–Robin boundary conditions, i.e., a = 1, b = c = sgn, d = 0, and β

arbitrary. There exists no ω ∈ R such that the semigroup e−ωt T (t) consists of contractions on
L∞(Ω) ⊕ L∞(∂Ω).

Proof. Assume that there exists ω � 0 such that e−ωt T (t) is contractive on L∞(Ω) ⊕ L∞(∂Ω) for all
t � 0. This semigroup comes from the form aω

L,β , which is defined by
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aω
L,β

(
(u, u|∂Ω), (v, v|∂Ω)

)

:=
1∫

−1

(
u′(x)v ′(x) + sgn(x)u(x)v ′(x) + sgn(x)u′(x)v(x) + ωu(x)v(x)

)
dx

+ (
β(−1) + ω

)
u(−1)v(−1) + (

β(1) + ω
)
u(1)v(1)

for (u, u|∂Ω) and (v, v|∂Ω) in V . Thus by [21, Theorem 2.15]

aω
L,β

(
(v, v|∂Ω), (w, w|∂Ω)

)
� 0 with v := (

1 ∧ |u|) sgn(u) and w := (|u| − 1
)+

sgn(u)

for all (u, u|∂Ω) ∈ V , hence in particular

1∫
−1

(
sgn(x)u′(x) + ωu(x)

)
1{u�1} dx � 0

for all u ∈ H1(−1,1) satisfying u(−1) = u(1) = 0 and u � 0. For un(x) := 2(1 − x2)n we obtain with
αn := (1 − 2−1/n)1/2

0 �
1∫

−1

(
sgn(x)u′

n(x) + ωun(x)
)
1{un�1} dx

= −un|0−αn
+ un|αn

0 + ω

αn∫
−αn

un dλ � −2 + 4ωαn.

This is a contradiction since αn → 0 as n → ∞. �
However, if we assume some regularity of the coefficients, more precisely b j ∈ W 1,∞(Ω) = Lip(Ω)

for j = 1, . . . , N , then we obtain a quasi-submarkovian semigroup, i.e., a semigroup such that
(e−ωt T (t))t�0 is positive and L∞-contractive for some ω ∈ R, as we show next.

Proposition 4.5. If b j ∈ W 1,∞(Ω) for j = 1, . . . , N, then the Wentzell–Robin semigroup (T (t))t�0 is quasi-
submarkovian on H.

Proof. It follows from [21, Theorem 2.6] that (T (t))t�0 is positive. By assumption, there exists k � 0
such that |b| � k and div(b) � k almost everywhere. Pick ω larger than ‖d‖∞ +k and ‖β‖∞ +k. Since
D ju+ = D ju1{u�0} , we obtain from the divergence theorem that for all (u, u|∂Ω) ∈ V satisfying u � 0
we have

aω
L,β

(
(1 ∧ u,1 ∧ u|∂Ω),

(
(u − 1)+, (u|∂Ω − 1)+

))
=

∫
Ω

b∇(u − 1)+ dλ +
∫
Ω

(d + ω)(u − 1)+ dλ +
∫

∂Ω

(β + ω)(u − 1)+ dσ

=
∫

(u − 1)+b · ν dσ −
∫

(u − 1)+ div(b)dλ
∂Ω Ω
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+
∫
Ω

(d + ω)(u − 1)+ dλ +
∫

∂Ω

(β + ω)(u − 1)+ dσ

�
∫
Ω

(u − 1)+
(
ω − ‖d‖∞ − k

)
dλ +

∫
∂Ω

(u − 1)+
(
ω − ‖β‖∞ − k

)
dσ � 0.

It follows from [21, Corollary 2.17] that (e−ωt T (t))t�0 is submarkovian. �
We need a density result that is similar to Lemma 4.2 in order to show that (T (t))t�0 restricts to

a C0-semigroup on C(Ω̄).

Lemma 4.6. Assume that aL,β is coercive and let γ be as in Theorem 3.14. For all v ∈ C∞(Ω̄) and all ε > 0
there exists ψ ∈ C∞(Ω̄) such that the unique solution u of (2.3) for the right-hand side f0 := ψ , f j := 0,
j = 1, . . . , N, and g := ψ |∂Ω satisfies ‖u − v‖C0,γ (Ω) < ε.

Proof. Let p > N and ε̃ > 0 be arbitrary. By the Stone–Weierstrass theorem there exists k̃0 ∈ C∞(Ω̄)

such that g̃ := (k̃0 −βv)|∂Ω satisfies ‖g̃‖Lp(∂Ω) < ε̃. Now pick test functions k j ∈ C∞
c (Ω), j = 1, . . . , N ,

such that

f̃ 0 := k̃0 + k0 −
N∑

i=1

ci Di v − dv, f̃ j := k j −
N∑

i=1

ai Di v − b j v ( j = 1, . . . , N)

satisfy ‖ f̃ j‖Lp(Ω) < ε̃ for j = 0, . . . , N . Define

ψ := k̃0 + k0 +
N∑

j=1

k j ∈ C∞(Ω̄)

and let u be the unique solution of (2.3) as described in the claim. Then

aL,β(u − v,ϕ) =
∫
Ω

ψϕ dλ +
∫

∂Ω

ψϕ dσ − aL,β(v,ϕ)

=
∫
Ω

f̃ 0ϕ dλ +
N∑

j=1

∫
Ω

f̃ j D jϕ dλ +
∫

∂Ω

g̃ϕ dσ

for all ϕ ∈ C1(Ω̄). Thus part (iv) of Theorem 3.14 implies that

‖u − v‖C0,γ (Ω) < c(N + 2)ε̃

for some constant c that does not depend on v , ψ , ε or ε̃. If we pick ε̃ small enough such that
c(N + 2)ε̃ < ε, the claim follows. �
Theorem 4.7. Assume b j ∈ W 1,∞(Ω) for all j = 1, . . . , N. Then the restriction of (T (t))t�0 to C :=
{(u, u|∂Ω): u ∈ C(Ω̄)} is a positive, compact C0-semigroup.
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Proof. Pick ω � 0 large enough such that aω
L,β and hence in particular aω

L,β is coercive. Then λ := −ω

is in �(A), where A denotes the generator of (T (t))t�0.
Using Theorem 3.14, one can show as in the proof of Lemma 3.13 that there exists m ∈ N such

that

R(λ, A)m H ⊂ C 0,γ := {
(u, u|∂Ω): u ∈ C0,γ (Ω)

}
.

Since (T (t))t�0 is analytic, each T (t), t > 0, is a bounded operator from H to C 0,γ . In particular, C is
invariant under each T (t), t > 0.

By Proposition 4.5, the restriction of (T (t))t�0 to C is a semigroup in the sense of [4, Defini-
tion 3.2.5]. Its generator is the part of A in C . Since C∞(Ω̄) is dense in C(Ω̄), the part of A in C
is densely defined by Lemma 4.6. Thus by [4, Corollary 3.3.11] the restriction of (T (t))t�0 to C is a
C0-semigroup.

Since T (t) is positive on H, it is also positive on C . Since V is compactly embedded into H by the
Sobolev embedding theorems, T (t) is compact on H for every t > 0. Compactness of the semigroup
on C follows by factorization through H. �
Remark 4.8. Typically one identifies the semigroup (T (t))t�0 on C of Theorem 4.7 via the isometric
isomorphism

C → C(Ω̄), (u, u|∂Ω) 
→ u

with a positive, compact C0-semigroup on C(Ω̄) and calls that one the Wentzell–Robin semigroup.

In the proof of the preceding theorem we used the regularity assumption on the coefficients only
to ensure that the operator norm of T (t) on L∞(Ω) ⊕ L∞(∂Ω) is bounded for small t . There seems
to be no simple argument that ensures the boundedness in the general case. For example, as we have
seen in Example 4.4, we cannot expect the semigroup to be quasi-contractive.

However, the situation is different for the L p-spaces, 1 < p < ∞. By direct estimates, Daners [9]
proved that under rather general regularity assumptions the Robin semigroup is quasi-L p-contractive
for every p ∈ (1,∞). Although a similar proof still works for the Wentzell–Robin semigroup in the
product space L p(Ω) ⊕ L p(∂Ω), as the last result in this article we show how such an estimate can
be obtained by reduction to the Robin case, which extends the result in [16].

Proposition 4.9. There exists a δ0 that depends only on the coefficients of the differential operator L such that
for every p ∈ (1,∞) we have

∥∥T (t)u
∥∥

p � eωpt‖u‖p

for all t � 0 and all u ∈ H that are in L p(Ω) ⊕ L p(∂Ω). Here ωp := max{p, p′}δ0 , where p′ denotes the dual
exponent to p.

Proof. Let p ∈ (1,∞). Denote by B the intersection of H with the unit ball of L p := L p(Ω)⊕ L p(∂Ω).
By Fatou’s lemma, B is closed in H. Moreover, B is convex. Let P denote the orthogonal projection
of H onto B.

Since in the special case L = −Δ and β = 0 the corresponding semigroup (S(t))t�0 is quasi-
submarkovian by Proposition 4.5, we obtain from the Riesz–Thorin interpolation theorem that there
exists ω > 0 such that (e−ωt S(t))t�0 leaves B invariant. Thus

P V ⊂ V (4.2)

by [21, Theorem 2.2] since V is the form domain of aω
−Δ,0.
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Let (R(t))t�0 denote the Robin semigroup for the form aL,β . Let B denote the intersection of
L2(Ω) and the closed unit ball in L p(Ω), and let P be the orthogonal projection of L2(Ω) onto B .
By [9, Theorem 5.1] the semigroup (e−ωpt R(t))t�0 maps B into itself. Thus

a
ωp
L,β(u, u − Pu) � 0 for all u ∈ V := H1(Ω) (4.3)

by [21, Theorem 2.2]. Since we already know that P maps V into V , it is easy to see that

P(u, u|∂Ω) = (
Pu, (Pu)|∂Ω

)
for all u ∈ H1(Ω), (4.4)

since P (u,0) = (Pu,0) for all u ∈ L2(Ω) and P is continuous. Now it follows from the definition of
a
ωp
L,β and from (4.3) and (4.4) that

a
ωp
L,β

(
(u, u|∂Ω), (I − P)(u, u|∂Ω)

)
� 0 for all u ∈ H1(Ω). (4.5)

Now theorem [21, Theorem 2.2], (4.2) and (4.5) imply that B is invariant under the semigroup
(e−ωpt T (t))t�0. This is precisely the statement we wanted to prove. �
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