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In this paper we present various results on interpolation and 
definability which generalize the well-known theorems of Craig 
[5] and Beth [ 1]. ~I'he proofs a~re almost entirely model-theoretic, 
and rely heavily on the use of special mode:Is (see [ 1 5] ). State- 
ments of some known results we will refer to are included in § 1. 
Our basic result is the Main Lemma 2.2 of § 2 characterizing sub- 
sets of special models definable by infinite conjunctions. The Main 
Lemma is reformulated as Theorem 2.3 on Z l-definable subsets. 
These results are applied in § 3 to yield interpolation-type theo- 
rems, such as Theorem 3.2, which concern certain second-order 
conditions whose only second-order quantifiers are unicersal. 111 

§4 we obtain some definability results using interpolation theo- 
rems. In particular, by applying 1heorem 3.2 we obtain Theorem 
4.1, a generalization of Beth's theorem treating conditions inter- 
mediate between those in Beth's theorem and the theorem of 
Chang [2] and Makkai [ 13]. The Main Lemma is applied in § 5 to 
intersections of elementary submodels, yielding a proof  of  some 
results of Park [ 16, 1 7]. In the last section we give a syntactical 
proof of Theorem 4.1. 

Many of the results of this paper appeared in the author's doc- 
toral dissertation [9] written under Professor C.C.Chang. Theorem 
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4.1 was also announced in [8]. The author wishes to express l:is 
appreciation to Professor Chang for many helpfid comments and 
suggestions for improvements concerning t!~: results of this paper. 
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§ 1. Preliminaries 

We consider a finitary first-order predicate language L (with 

identity) which is fixed throughout the paper. Models for the 

language L will be denoted by 9~, ~ ,  . . . .  We will follow ~he con- 
vention that the universe of 9~ is A,  that of ~ is B, etc. We assume 
familiarity with the basic concepts of model theory, and also the 
notion of special model (from [ 15 ] ). For the most part we employ 
standard terminology anc~ notations; for example, we use ~ for 
isomorphism, = for elementary equivalence, -< for elementary sub- 
model, and I Xl for the cardinality of a set X. We use ~ both for 
the relation of satisfiability in a model (9J ~ ~p(al, ..., a k) where 

a I , ..., a k e A) and for the (semantic) relation of  consequence 
(T ~ ~ where T is a theory). In the rest of this section we explain 
some other notations and cc, nventions, give some facts about  
special models, and state some known results on definability md 
interpolation. 

If  R is a k-place predicate symbol not belonging to L, then L(R) 
is the new language formed by adding R to L. Models for L(R) will 
be written as (9~, R),  where R is a k-place relation on A. Similarly, 
if we are given a sequence R0, RI ,  ... of new predicates, we form 

the new language L(R0, R1, ...), whose models are written ( 9.t, R0,  
R 1 , ...). 

We will assume throughout that P, Q, R, and S (sometimes with 
subscripts) are distinct predicate symbols which do not occur in L. 
In addition, P and Q ,~re assumed to be unary. 

In writing formulas of these expanded languages we will some- 
times exhibit the new predicate symbols. For example, a formula 

of L(P) may be written as ~(P). ~(Q) would then be the formula 
of L(Q) obtained by substituting Q everywhere it: ¢ for P~ Added 
predicates will also be treated at times as second-order variables, 
and we will form second-order sentences such as ] P q~(P). 

We also sometimes exhibit the free (individual) variables of a 

formula, writing ~(ot ,  ..., u k) for ~. Using the notation q~(vt, ..., v k) 
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will imply that  the only free variables of  ¢ are ~1, ..., °k (but 

v 1 .. . .  , v k need not  all occur free in ¢0. We also use x, y ,  and z for 

variables. 

Given formulas ¢1, ..., q~n we will write A q~i an~ V 4~i 
1 <_i<n 1< i<n  

for ¢1 A ... ^¢n and 4~1 v... v¢n respectively. More generally, if 

{ 4~i : i e 1 } is any family of  formulas, we use A ¢i and V ¢i for 
i E l  i ~ l  

the (possibly infinite) conjunct ion and disjunction of  all the for- 

mulas ¢i. The satisfaction of  these infinitary formulas in a model 

is defined by the obvious extension of  the t~sual definit ion for 
finitary formulas. 

We use ::1 <_n x ¢ as an abbreviation for an expression meaning 

"there are at most n x such that  ¢" .  Similarly, 3 !x ¢ means " there 
is exactly one x such that  ¢" .  We always use n, k, and m to denote 
natural numbers,  that  is, elements of co. The empty  set is denoted 
by O. 

If T is a theory of L(P) and PI is any model ( thai  is, model for 
L) then we define 

M T ( ? ~ ) = { P ~ A  • ( ~ [ , P ) ~  T } .  

More generally, if T is a theory of  some language containing L(P), 

say L(P, R, ...), then by MT(~[ )we  mean the set of allPC_ A such 

that (PI, P) can be expanded to some model (~[, P, R, ...) of T. 

We ass¢~me througho~at that T is a theory in L(P) or in some 

language containing L(P). Hence for any T the set Mr(9[  ) is un- 

amhiguously defined for every ~[. 
If (gJ, P) is any model for L(P) then we define 

M(~[, P) = {P' C A • (~l, P) ~ ( M , P ' ) } .  

Therefore P '  e M(9~, P) if and only if there is an automorphism of 

9.1 mapping P on to  P ' .  Notice that  P is always an eleme~.t of 
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M(Pl, P), but  that  MT(gff) may  be empty.  But if (~[, P) is a model  

of  T, then 3~/(9A, P) c_C_ MT(Pi ). 
We will freely use some facts from [ 15 ] about  special models 

wi thout  explicit mention.  Among them are the facts that  every 

consistent theory has special models ("exis tence") ,  that  elemen- 
tarily equivalent special models of  the same power  are isomorphic 
("uniqueness") ,  and that  if 9~ is special and a e A then (P~, a) is 
also special. We also use the fact that  special models are "relat ion- 
universal", that  is: 

If  P~f is special and ff - ~ ' ,  then for any relation 
(U) R '  on A'  there is some relation R on A such that  

(9 . t ,R)-  (P(',R'). 

Now, actually it is only proved in [ 15] that  special models of  
certain cardinalities are relation-uPiversal (namely those cardinali- 
ties in which any theory ~ ~he language has a special model,  in 
which case it is immediate by uniqueness). This would be enougb 
for most  of  our purposes, only making it necessary to add this 
cardinality restriction to the Main Lemma 2.2 and Theorem 2.3. 
However, (U) is true in general, so we here indicate the proof.  

Let ?[ be special, and assume for simplicity that  K = IAI > 
ILl u co. Let P:[' - P~ and R '  be given. By the downward  Lbwen- 
heim-Skolem theorem we may assume that !A'[ < IAI. We con- 
struct a sequence { (?~ ~, R~)} of  models and a ~en-,-,~'- { f~. } ~ _ . ~ _ . . . ~ , .  of  

functions, each of  length K (or cofinality of  x if ~ is singular) such 
that the following hold: 

(P10, R0)  = (~l' ,  R ' ) ,  

(~*v, Rv) -< (Pry, Rv)  for v < / ~ ,  

IA I < ~ ,  
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f~ is an e lementary  map of  ~v into 92, 

f v c _ f ,  for v < / a ,  

and every a e A is in the range of  some fv. 
The construct ion of  these sequences offers no serious difficulties, 

using, say, the characterization of  special models given by remark 
(5 ) i n  [15].  

Now let 

ff"=U 9/v, R"=U R v ,  g=Ufv" 
P b' P 

Then (92', R ' )  < ( 9/", R")  and g is an isomorphism of  9/" onto  92. 

Letting R be the image of  R"  under  g, we have (gJ, R) g (91 ", R") ,  

and so (92, R)  = (92', R ' )  as desired. 
The case IAI = ILI u w offers a few more complicat ions but  is 

not  essentially different.  

The case w _< IAI < ILI can be reduced to the previous cases by 

finding a language L' _c L such that  i L'I u ¢o <_ I A I and every sym- 

bol of  L - L' is definable in ~ by those of  L' alone. This reduct ion 

depends on the fact that  '~, being special, must realize every type 

in finitely many  variables which is consistent with it. Hence, there 

can be at mo~t [AI maximal types, and therefore by compactness 

at most  IAI non-equivalent predicates in L. (Recall that  a type in 

v l ,  ..., o k is a set cI, of  formulas with just o 1 , ..., o k free, and that  

the type • is realized in 2[ if there are a 1 , ..., a k e A such that  
9I ~ ¢(a1, ..., a~ ) for every ~ ecI,.) 

If IAI < w, of  com~se, (U) is obvious. 

In our no ta t ion  we may state Beth's definabili ty theorem as fol- 

lows. 

Thearem 1.1 (Beth [ 1 ] ). For any T the following conditions are 
equivalen t: 

(i) For every 9/, IMT(gA )1 <_ 1; 



§ 1. Preliminaries 429 

(ii) There is a formula ~p(x) o f  L such that 

T ~  Vx[P (x ) ,  , ¢(x)l . 

Beth proved this theorem only for theories T in the language 
L(P). The extension to theories T in any language containing L(P) 
is due to Craig [ 5], and follows naturally from his proof of the 
theorem using his interpolation theorem. 

Theorem 1.2 (Craig [ 5 ] ). Let $(R) be a formula o f  L(R) and x(S) 
a formula o f  L(S). Then the following are equivalent: 

(i) ~ $(R)  .-,. x(S); 
(ii) There is' some ..formula ~ o f  L such ~'hat 

if(R) --*. ¢ and ~ $ --+ x(S)° 

Beth's theorem is true also for predicates of any (finite) number 
of ptaces, not just unary predicates. The same is true for all the 
other definability results ir~ this paper. We have stated them just 
for unary predicates solely for ease of p~esentation. Similarly, in 
Craig's theorem R and S could be replaced by sequences of new 
and all different predicates (also, of course, functions and indi- 
vidual constants). This co~:~ment also will apply to the interpola- 
tion results we will give later. 

Notice that the strongest conditior~ cn the interpolating formula 
of Theorem 1.2 is obtair, ed t;~y takitag L to be the language con- 

taining only the non-logical constants (that i':;, the predicate, func- 
tion, and individual constant symbols) which, occur in both ¢ and 
X. Thus, ~b contains only the non-logical constants common to ~k 
and X. 

The following theorem is similar to "[heorem 1.1 but concerns 
M(~I~, P); condition (i) says that P is lett fixed by the automor- 
phisms of 9~. 
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Theorem 1.3 (Svenonius [ 22 ] ). For any T the fol lowing are equiv- 

alent. 
(i) For every mode l  ( ~ ,  P) o f  T, IM(~,  P)I = 1; 

(ii) There are formulas Cbl (x), ..., c~ n (x) o f  L such that 

T ~  V V x I P ( x )  "- ~ t~i(x)]  . 
1K i_<n 

Svenonius' theorem also holds for theories T in any language 
containing L(P), it being understood in this case that the require- 
ment in (i) that ( ~ ,  P) is a model of T means that P e Mr193 ). 
Theorem 1.3 may be derived .from Beth's theorem by showing that 
if T satisfies condition (i) of 1.3 then every complete extension of 
T satisfies condition (i) of 1.1 ; this follows from a simple special 
model argument (essentially remark (7) of [ 1 5] ). 

Finally there is the following theorem, due independently to 
Chang and Makkai, which is an infinite generalization of both 
Theorems !.1 and t.3. 

Theorem 1.4 (Chang [2],  Makkai [1 3] ). For any T the ]o/lowing 

are equivalen t: 
(i) For every infinite 93, IMT( 93)1 <_ IZ I; 

(ii) For every infinite ~,, tMT( P$)I < 21AI; 
(iii) For every infinite model  (93 , P) o f  1", IM( ~1, P)! <_ IA I; 
(iv) For eveJy infinite model  (93, P) o f T ,  IM(93, P)I < 2IAI: 
(v) There are ; ormulas c~i(x, v I , ..., v k ), 1 <_ i _<_ n, o f  L such that 

T ~  V 3 3 1 ,  . . . , o  k V x  [ P ( x ) ,  > ~i ] . 
l ~ i ~ n  

Among other results concerning definability we mention jl~st 
Robinson's consistency t emma ([ 1 8, 20] ), which is equivalei~t to 
Craig's interpolation theorem, and thus also suffices to yield Beth's 
theorem. There ar~ also several results improving Craig's theorem 
(e.g. I6, 12] ), which have, however, little direct connection with 
the results we will give. 
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§ 2. Subsets of special models 

Before proceeding to the main results of  this section, we first 

note the following. 

Lemma 2.1. Let  9.l be special and let P c_ A. Then the jb l lowing 

are equivalent." 
(i) IM(92, P)I = 1 ; 

(ii) There are formulas (pi./(x) o f  L (i e I, j e J) sveh that 

(9 l ,P )~VxlP(x )~  V A 4~t,j(x)] . 
i E l  ]E J 

Proof. It is enough to show that  (i) implies (ii). Let a, b ~ A and 

assume that ( Pl, a) - ( 9I, b). Then (9I, a) ~ (91[, b) since 91 is 
special, and hence a E P if and only if b ~ P by (i). So, let 
{a i • i E I} enumerate the elements of  P. For each i ~ 1 let 
{ cki.j(x) :j c J}  enumerate  all the formulas ¢(x) of  L satisfied by 

a i in 92. Then b ~ P if and only if ( ~ ,  b) - ( 92, ai) for some i E 1, 
that is, if and only if 

~J ~ A (pi, j(b) for sotne i E I .  
/ E j  

Hence (ii) holds. 

If (92, P) is also special then a compactness a rgummt  can be 

used to show that  in (ii) a single formula ¢(x) suffices to define P. 

From this fact, as is well-known, one can derive Beth's and Sveno- 
nius' theorems. 

Main Lemma 2.2. For any T there are formulas 4)i(x) o f  L (i ~ 1) 
such that Jbr every special mode~ 91, i f  Q = U MT(S~) then 

(92, Q) ~: V x [ Q ( x ) ~  :' A ~i(x)] . 
i E I  
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Conversely, given Q so definable there is such a theorf T 

Proof. Let { ¢i(x) : i 6 I} enumerate  all the formulas ¢(x)  of  L 

sach that  

T ~ V x [ P ( x )  ~ q~(x)] . 

Let 92 be special and let Q = 13 M T (92). Then we have 

(92, Q) ~ ~ ' x [ Q ( x )  ~ A ~i(x)l  
i E I  

since that  implication is true of every P c  Mr(92). So we will be 

through once we show 

(1) (gI,Q)~Vx[-1Q(x)-~ V " - I ~ i ( x ) ]  . 
i E l  

Assume a q~ Q. Let { Xi(X) : / ~ J } enumerate  all the formulas of  
L satisfied by a in 92. Notice IM(92, Q)I = 1. Hence by the proof  of  

the previous lemma we know 

(2) if 92~ A xj(b)  t h e n b C Q  and so 
]EJ  

i f ( g t , P ) ~  T, b • P .  

Let T O be the ct, mplete theory consisting of all sentences of L 
true on 92. We first show 

(3) T O U T u  { X i ( x ) ^ P ( x ) : j ~ J  } is inconsistent. 

I f  not,  there would be some model (92', P ' )  of T o u T and some 
b' ~ P '  satisfying all X! in 9.1 '. But then 92 - 9~' and therefore,  since 
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9.1 is relation-universal, we could find P ~ A and b e P such that 

( 9J~ P) ~ T and aZ ~ A x/(b), thus contradicting (2). 
j e J  

Applying compactness to (3) we obtain some j e J and some 

sentence o of L such that 

T O ~ o and Tt  = ' -1 [o ^ × / ( x ) ^  P(x)] , 

hence 

T ~ Vx(P(x)  -* [o -* q ×j(x)] ) .  

It follows that o - "-1 X/is some ~i. But °d D a ^ xi(a),  hence 91 ~ D 
-1 Oi(c) and so we have shown ( 1 ). 

The converse is clear, since given the definition of Q by the ¢i, 
we could take 

T= {Vx[P(x )  ~ q~i(x)] : iE  I} . 

A few comments are in order. First, P need not be a unary predi- 
cate, and T may be a theory in any language containing L(P), pro- 
vided we add the restriction that IAI is at least as large as the num- 
ber of new symbols added. These improvements a;e both clear 
from the proof. Also, the dual of the Lemma, obtained by ~eplac- 
ing U by f'l and A by V, cleaIly holds. Notice that the hypothesis 
on Q is that it be defined by the second-order (a~.~ in general ~n- 
finitary) formula 3P[ T(P) ^ P(x)] .  The following theorem is a re- 
formulation of the Main Lemma treating the case of an arbitrary 

~ formula. 

Theorem 2.3. Let 0(R, y)  be a formula o f  L(R). Then there are 
formulas ¢ify) o f  L (i c !) inch that for every special model  9I 

D V y [  :lR O(R, y )  ~-~ A q~i(y)] . 
i E l  
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Proof. Define a theory T in L(P, R) by T = { Vx[P(x)  ~ -~ 0(R, x)] } 
Applying Lemma 2.2, in view of the comments  following it, we 

obtain formulas ~i(Y)  of L (i E 1) such that for evc 'y specia~ 9~ the 

set Q = U MT(9~) is definable b)  ¢i0') .  But Q is also definable 
by i~ I  

3P 3 R ( P ( y ) A  'qx[P(x)  ~ > 0 ( R , x ) ] ) ,  

that  is, oy ::1R 0(R, y). Hence the conclusion holds. 

Remarks. (a) Instead of R we could~have any sequence of new 
predicates, and 0 could have, instead of the single flee variable y,  
any number  of free variables~ Also, the dual of Theorem 2.3 holds. 

These facts are clear from the corresponding comments  about  

Lemma 2.2. 
(b) Notice that  the formulas q~i depend only on the symbols of 

L which actually occur in 0, and the identity.  Therefore we can 

take 1 = w. 
(c) In place of 0 we could have an infinite conjunct ion of ~'or- 

mulas Oj, j E J. In this case we take T to be the theory 

{ Vx[P(x)  ~ Oj(R, x)] • j e J} . 

(d) Chang and Moschovakis have recently found a proof  of 

Theorem 2,3 very different from what we have given here. Their 

p roof  also yields an improved form, announced in [4] ,  in which 

the set { ~i(x) • i ~ i} of defining formulas may be taken to be 

primitive recursive. 
In this connect ion  the author  wishes to ment ion that  the formu- 

lations given here of  the Main Lemma and Theorem 2.3 have been 

much improved by comments  and suggestions of C.C.Chang. 

(e) Let 0(S) be a formula containing a k-place predicate S. Let 
S* be a new (k + 1 )-place predicate. Recall the well-known equiv- 

alence 
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Vz 3S 0(S) ~-~ 3 S * V z 0 * ( S * ) ,  

where 0* is the formula resulting from 0 by replacing S( t l , . . . ,  t k) 

everywhere by S*(z, t 1 , ..., t k), for any terms t l ,  ..., t k, assuming 

z is not  bound in 0. The effect of  this is to show that  if 

0 (RI ,  ..., R k , y  , Z l ,  . . . ,  z m ) is a formula of  L(R1, ..., Rk) , then any 
second-order formula obta ined from 0 by quant i fying R 1 ,  . . . ,  R k , 

z l ,  ..., 7, n in a n y  order, provided the R i are quantif ied existen- 
tially, is equivalent to a formula 3 R~ ... 3 R E 0",  where 0* is a 

(first-order) formula of  L(R~, ..., R~) with just y free. Fherefore, 
by Remark (a), Theorem 2.3 applies also to such more general 

secc, nd-order formulas. This remark will be used in the next  sec- 
tion in d.~living Lemma 3.1 * 

(f) Notice that  the equivalence in the Main Lemma or Theorem 

2.3 does not  hold in general for models which are not  spec:al. 

Also, in Theorem 2.3 we may not  allow universal second-order 

quantifiers to occur in addit ion to the existential ones. In this 

connect ion  we refer the reader to Svenonius [23] for a reduct ion 

of ~ ~ sentences on countable  models. Also, it is interesting to 

note that ,  assuming we have only predicate symbols, any second- 

order sentence which can be written in prenex form with only 

universal first-order quantifiers (but arbitrary second-order quanti- 

tiers) is logically equivalent to an infinite cow, junc t ion  of  up.iversal 

first-order sentences (see [ 7 ] page 141). This fact depends essen- 

tially on the well-known special properties of  universal first-order 
formulas. 
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§ 3. Interpolation 

The interpolat ion theorems we give here ger.,~.ralize t5 raig's 
Theorem 1.2 in that  we require that  the implication from ff to X 
hold only for some ~:hoices of  individuals, not  for all. The resulting 

conditions are therefore second-order, biat our results show that  
they are reducible to finitary first-order statements.  

Before proceeding to the results which actually generalize 
Craig's theorem, we require the following, a sort of  "one-s ided" 
interpolation theorem. 

Lemma 3.1. Let 0(R, y) be a formula o f  L(R). Then the following 
are equivalent: 

(i) ~ 3 y V R O ( R , y ) ;  
(ii) 7'here is a formula a(y) o f  L such that 

3 y  o(y) an,~ [= Vy[o (y ) - , -  0 ( R , y ) ]  . 

Proof. From (ii) to (i) is obvious - any y satisfying o works in (i) 
since a does not contain '~. The other  direction is an easy conse- 
quence of  the dual of Theorem 2.3. We know there are formulas 
c~i(y) of L (i ~ I )  such that  for every special mode! 9.g 

9J ~ Vy[ VR 0(R, y) ~ V ~ i ( y ) ]  . 
i E l  

By (i)9~ ~ 3,y V R 0, and so there is some i ~ I such that 
¢2[ ~ 3y  ¢ r  Hence every model yields 3y  4~i for some i E I, and so 
by compactness there are finitely many ¢i, say ¢1, ..-, ¢n, such 
~hat 

3 2  ~01 V .. .  V 3 y  t~ n . 

So, defining a(y) as ~1 (Y) v ... v ~n (Y) the conditions of  (ii) are 
satisfied. 
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As usual, we have simplified the statement of this result. The 
analogues of the remarks at the end of § 2 all hold here too. In 
particular, the single quantifiers 3y and V R could each be replaced 
by sequences of similar quantifiers (Remark (a)), and 0 ~ould be 
an infinite disjunction (Remark (c)). The latter fact implies that if 
T o is any theory of L then the eq~aivalence of (i) and (ii) continues 
to hold if we require the statements to be consequences of T o 
rather than universally valid. Although similar remarks apply to 
the other results of this section and will be used in applications in 
the next section, we will no longer explicitly mention them. 

The next result is our basic generalization of Craig's interpola- 
tion theorem. 

Theorem 3.2. Let v)(R, x, y)  and ×(S, x, y) be formulas of  L(R) 
and L(S) respectively. Then the following are equivalent: 

(i) ~ 3y  VR, S V x [ ¢  ~ xl ; 
(ii) There are formulas o(y) and dp(x, y)  o f  L such that 

3 y a  and ~ V x ,  y ( [ o A ¢ - ~ ' ¢ ] ^ [ 4 J ~ X ] ) ;  

(iii) There is a formul,~ ¢(x, y) o f  L such that 

3y 'fiR, S Vx( [~  --* ¢] A [~-* X]) .  

Proof. (ii) implies (iii) and (iii) implies (i) are clear. To show that 
(i) implies (ii) we first apply Lemma 3.1, where 0 is V x [ ~  -* ×], 
to get a formula a(y) of L such that 

# : lye and ~ V y ( a - * V x [ ~ - * X ] ) .  

The last sentence may be rewritten as 

I= V x , y [ o  ^ ¢ ~ x ]  , 
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and then an application of  Theorem 1.2 yields the desired formula 
¢(x,  y )  of L. 

Instead of  appealing here to Craig's theorem we could derive it 
f rom Theorem 2.3 as follows. Assume that  

@(R, x)  ~ x(S, x ) .  

This is the same as 

t = 3 R qJ(R, x)  ~ 'q Sx(S, x ) .  

By Theorem 2.3 there are formulas c~i(x) of L (i ~ I )  whose con- 
junct ion is equivalent to 3 R qJ(R, x)  on every special 9~, and hence 

9d. ~ [ 3 R $ - :  A q~i] ^ [ A ¢i  ~ V S x ]  • 
i E I  i ~ l  

We may drop the superfluous second-order quantifiers,  and ther~ a 
compactness  argument  shows that  some finite conjunction of  the 
'~i will interpolate between ~ and ×. 

Notice that  (ii) is stronger than (iii) since it yields not  only an 
interpolating formula ~ but  also an L-definable set o f y ' s  for which 
the implications hold. Also, (ii) implies that  ~b -~ X is true for all y.  
Because of  this, one can find examples of an interpolating formula 
4~ which will work in (iii), but  which will not  work in (ii) for any a. 

Also notice that  the following is true: if in (i) the single implica- 
tion qJ -~ × is replaced by a finite conjunction of  implications 
~ki -~ ×i (i = 1, ..., n) then in (ii) we can find interpolating formulas 
¢i (i -- 1, ..., n)  which all work with the same formula a. It is this 
slight generalization of  Theorem 3.2 which is actually used in the 

next  section. 
There are situations which vary somewhat  f lom the one in 

Theoreln 3.2 in which we also may interpolate.  For  example,  there 
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is the following, whichwill also be applied in the next section. 
(We omit the conditions corresponding to (iii).) 

Theorem 3.3. Let ~k(R, x, y) and ×(S, x, y) be formulas o f  L(R) 
and L(S) respectively. Then: 
(a) The following two conditions are equivalent: 

(i) ~ VR 3y  VS V x [ ~  ~ X] ; 
(ii) There are formulas o(R, y) o f  L(R) and ¢)(x, y) o f  L such that 

3yo and 

(b) The following two conditions are equivalent: 
(i) I = VR : l y ' q S V x ( x - *  ~1; 

(ii) There are formulas o(R, y) of  L(R) and dp(x, y) o f  L such #tat 

:l y o and 

~: Vx~y(Ix-+ q~l A [OA~--~ ~ ] ) .  

Praof. (a) is proved just like Theorem 3.2. Thus, in (i) we drop the 
superfluous outer quantifier and apply Lemma 3.1 to get a formula 
o(R, y) of L(R) such that 

p :tyo and 

b V.r ,y[oA ¢J ~ X] • 

Applying Theorem 1.2 to this implication then yields a formula 
~(x, y) of L as interpolanc (b) is the same, except that Theorem 
1.2 is applied to X -'  [o ~ t~]. 

Chang has proved a gcnera!ization of the equivalence of (i) and 
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(iii) in Theorem 3.2. In this generalization, annovnced  in [3] ,  the 

prefix ::ly is replaced by an arb i t ra r j  quantif ier  p.efix,  al!owing 

also second-order quantif iers provided they are uaiversal. We sub- 

sequently succeeded in generalizing Theorem 3.2, including con- 

di t ion (ii), to this situation. In fact, the resulting theorem, Theo- 

rem 3.4, also generalizes Theorem 3.3 above. Our proof, which is 
quite different from Chang's, depends upon first giving a corre- 
sponding generalizaticn of  Lemma 3.1. 

Lemma 3.1".  Let  0(R 0 , ..., R k , Yo,  ..., Yk ) be a formula  o f  

L(R0, ..., R k ). Then the fo l lowing are equivalent: 

(i) I = 3 y  0 "q'R 0 ... 3 y  k V RkO; 

(ii) There are formulas  oi(R0, ..., R i_ 1, Y0, ..., Yi) o f  L(R 0 , ..., 
Ri -  1 ), i = O, ..., k, such that 

3 Y  o o o , 

V y o ,  . . . , Y i [ O i  ~ : t Y i + l O i + l ]  , i = O , . . . , k  1 , 

and ~ 'qY0, "", Yk [Ok -~ O] . 

Proof. As before, from (ii) to (i) is easy. The other  direction is 

proved by repeated applicat ion of  Lemma 3.1. The essential point  

in the p roof  is to notice that ,  by ~ . . . .  " "- '  l,.~J,,~,~ ~ )  of  § 2, we may apply 

Lemma 3.1 to the si tuation in which instead of  having a single 

block of  universal second-order quantifiers,  they are broken up by 

first-order quantifiers.  So, applying this to (i) we obtain a formula 

Oo(Y o) of L such that  

and 

3Y o Oo 

VYo[O o -~ 3y  I VR 1 ..o 3 y  k VR k O] . 
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Since Yl ,  .-.,Yk, R1 . . . .  , R k do not  appear in a 0 this last conse- 
quence is equivalent to 

::lY 1 ~'R 1 ... 3y  k ~tR k [o o ~ 0] . 

Applyiqg 3.1 to this, treating Yo as a constant,  we get a formula 

° ' (Ro ,  Yo, Yl ) o f  L(R o) such that  

3 y  I o' 

and 

that  is 

V y  z (a' -+ 3 y  2 V R  2 ... 3 y  k VRk[O o ~ 0] ) ,  

Vy 1[00 ^0 '~  3y 2VR 2...3y k V R k O ]  ° 

So, defining 01 as o o/x o' we have 

!= 3y  o o o , [= Vy 0 [a  o ~  3 y  l o  1] , 

and 

VY0,Y 1 [a 1 ~ 3Y 2 V R  2 ... 3y  k V R  k O] . 

Cont inuing in this fash~.on we get a0, o l ,  .... o h satisfying (ii). 

From this the desired generalization of  Tiaeorem 3.2 follows 
easily. Changes theorem of  [3] is the equivalence of  (i) and (iii) 
(wi thout  the fur ther  condi t ion on q~). 

Theorem 3.4. Let  ~(Yo, ..., / k  , x )  and X(Yo, ..., Yk ,  x )  be forrvulas 

o f  L(Ro, ..., Rk, S 1 ) and L(Ro, ..., Rk, S 2 ) respectirely. Then the 
fo l lowing are equivalent: 

(i) ~ 3 y  o V R  o ... 3y  k VRk ~,S1 ' 82 V x[ ~b --> X] ; 
(ii) There are formulas oi(Yo, ..., Yi) o f  L(Ro, ..., Ri_ 1 ), 
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i = O, ..., k,  a n d a f o r m u l a  ep(y o, ..., Yk ,  x )  o f L ( R  o , ..., R k ) 

such that  

3Y 0 0 0 , 

and  

V y o ,  ..., y i [o i  ~ 3yi+ 1 oi+ 1 ] , i = O, ..., k -  1 , 

V Y o ,  "", Yk V x ( [ a k  ^ ~ "> dp] A [q} -~ X] ) ; 

(iii) There is a f o r mu la  ¢(Yo, ..-, Yk ,  x )  o f  L(R o , ..., R k ) such that  

: ly  o V R  o ... 3 y k V R  k VSI ,  S 2 V x ( [ ~  ~ q~] A [ ¢ ~  ×])  

Furthermore ,  in (ii) and  (iii) ¢ contains R i only  i f  x does  

(i = O, ..., k). 

Proof. The only direction requiring proof  is from (i) to (ii). First 

apply Lemma 3.1 * to get a 0 , ..., o k as in (ii). Then o k is such that  

~ o k ~ - V x [ ~ X ] ,  i.e., ~ a k ^ ~ X .  

We apply Craig's Theorem 1.2 to this implication to get the inter- 

polating formula ~. Then certain]y ¢ belongs to L(R 0, ..., R k ), and 

moreover ¢ contains only the predicate symbols occurring in both  

o k • ~ and X. In particular, then, ~ contains R i only if X does. 

Remarks 

(a) One carl also give a version of  Theorem 3.4 in which one in- 
stead requires that  ~ contains R i only if ~ does. Condi t ions  (i) and 
(iii) remain the same.~ and (ii) is altered by attaching a k to ¢ rather 
than ~k in the last assertion. Theorem 3.3 (a) is an instance of  the 
original version of  Theorem 3.4, and Theorem 3.3 (b) is an instance 

of  this other version. 
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(b) Tire simplifications made in the statement of Theorem 3.4, to 
make it easier to state, may have made it harder to see what it 
does say in many instances. Especially note that, in general, uni- 
versal first-order quantifiers could appear in the prefix (which we 

rendered without them as 3y 0 V R0 ... BYk V Rk); we have simply 
imagined them as collapsed with the universal second-order quan- 
riflers. In these cases it may not be obvious what the best corre- 
sponding condition (iO is. The following example, however, should 
make the procedure clear. 

If ff(S 1 , Y0, Yl,  z, x) and x(S 2, Y0, Yl,  z, x) are formulas of 
L(S 1 ) and L(S 2 ) respectively, then the following are equivalent: 

(i) ~ 3y o Vz 3y 1 'qS1, S 2 Vx[~k ~ x] ; 
(ii) There are formulas o(y o, Y l ,  z) and 4ffYo, Yl,  z, x) of L such 

that 

and 

3y 0 Vz 3y  1 o 

D V Y o , z , Y l , X ( [ O A O - + ~ I  A [4''+ X]) .  

That (ii) implies (i) is, as usual, obvious. We see that (i) impl;,es (ii) 
by applying Theorem 3.4 while treating z as a constant. This yields 
a formula ao(), o) of L (not containing z) and formulas 
al (Y0, Yl,  z) and ¢(Y0, Yl,  z, x) of L (but also containing z) such 
that 

and 

: t y  0 O 0 , ~ VY0[O 0 -+ ::ly 1 O 1 ] , 

Vyo,Yl([O1 A ~ ]  A [ ~ - ~  X ] ) .  

Because z does not occur in a 0 the second statement leads to 

VYo[ % -+ V z  3y  I o l] . 
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Hence, if we define o(y o, Y! ,  z) to be o 0 ^ 01, co:~dition (ii) above 
is satisfied. 

The remaining remarks concern possible improvements and ex- 
tensions of the results of  this section. 

(c) One question concerning Theorem 3.4 which arises immediate- 
ly is whether one can require (at least in (iii)) that the interpolant 

contains only the non-logical constants occurring in both ~ and 
X. The following example shows that in general this improvement 
is not possible. 

Let L have only identity. Let 0 be the sentence of L saying that 
the uni~,erse has exactly three elements, let r0(P) be the sentence 
of L(P) syaing that P has exactly one element, and let r 1 (Q) be the 
senter.ce of L(Q) saying that Q has exactly two elements. Then the 
following holds: 

~: 'tiP, Q :lyVx(O ^ ro(P ) a [P(y) < , P(x)] 

"-> ['r 1 (Q) ~ Q(x)] ) .  

In fact, given (af, P, Q) ~ 0 ^ r0(P) A r i ( Q )  we may choose y ~ P 
if PC_ Q, y q~ p otherwise (in which case A - P  c_C_ Q); and these are 
the only choices of y satisfying the implication for a~l x. 

If the above conjecture were true, we could interpolate a for- 

mula $(x, y)  of L. Up to equivalence with respect to 0 there are 
only four possibilities: $ is either x = y,  x ~ y,  logically true, or 
logically false. But, given ( ~ ,  P, Q) ~ 0 ^ r0(P ) ^ r 1 (Q) and choos- 
ing y such that the above holds, the consequent of the implication 
is false for some x, the antecedent is true when x = y,  and also the 
antecedent is true for some x different from y (in the case y $ P). 
Therefore no such formula ~ can interpolate in the above impli- 
cation. 

(d) A second question which arises is whether one lzan allow exist- 
ential second-order quantifiers in the prefix and still get a first- 
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order interpolant ~ (at least in (iii)). The following example, which 
looks forward to the definability applications of the next section, 
shows that this also is generally not possib!e. 

Let L have just identity, and let R be a binary predicate symbol. 
Let 0(R) be the sentence of L(R) saying that R is a discrete linear 
order of the universe, Let o(x, y )  be the formula of Ix(R) saying 
that x is the immediate predecessor o f y  in the ordering R. Let 
r(R, P) be the following sentence of L(R, P): 

qx [P(x )  ~- ~- ( 7  ::lz o ( z , x )  

v 3 z , y [ P ( z )  A O(z ,y)  ^ o ( y , x ) ] ) ]  . 

Thus, r(R, P) says that P is the set of "even-numbered" ele- 
ments in the ordering R. For any (91, R) N 0(RT, there is some 
p c._: A such that (91, R, P) N r(R, P); but if R is, for example, a 
well-order then there is exactly one P such that (91, R, P) 
r(R,  P). Hence the following holds: 

3RVP,  Q Vx([O(R)--* r(R, P)A P(x)] 

-~ [r (R,  Q) ~ Q(x) ]  ) .  

More precisely, this implication holds for R if and only if R satis- 
fies 0(R) and there is no infinite descending sequence { ag : k ~ 6o } 
such that a k + 1 is the immediate predecessor of a k. Now, if we 
could get an interpolating formula ~(R, x) of L(R), this would de- 
fine the unique P satisfying r(R, P) for some R for which such a P 
is unique. But whenever A is infinite and (91, R, P) ~ 0(R) A 
r(R, P) we can find ( ~ ' ,  R',  P')  such that (91, R,  P) = (~d', R'~ P'),  
but 

I{P" c_ A " ( P [ ' , R ' , P ' )  ~ (91', R', P")}I = 2 IA'[ 
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Therefore no such P can be first-order definable, a~ad so interpola- 

tion fails. 

(e) One sort of improvement in interpolation results which we 
have not considered is that of relating the syntactical form of the 

interpolant ¢ to that of the formulas ¢ and X between which it 
interpolates. However, by combining the known results of that 
kind with ours, we also obtain some improvements in that line. 

For example, Lyndon [ 12] proved that Theorem 1.2 could be 
improved by adding to (it) that 
(1) a predicate which occurs positively (negatively) in ¢ also occu.'s 

positively (negatively) in both ¢ and ×. 
(See [ 12] for the definition of positive and negative.) Using this 
we can obtain, for example, an improvement of Theorem 3.2 by 

adding to (it) 
(2) a predicate which occurs positively (negatively) in ¢ also occurs 

positively (negatively) in both o ^ ¢ and X; a predicate which 
occurs positively (negatively) in o either occurs negatively 
(positively) in ¢ or positively (negatively) in X. 

In fact, if o and ¢ satisfy (it) of Theorem 3.2, then the implications 
o -+ [ ~k -+ X ], o A ~b -+ X, and ¢ -+ X are all valid. Therefore if o and 

¢ do not satisfy (2) we could apply Lyndon's theorem ( 1 ) to get 
formulas which do. 

We do not know whether any better, or basically different, re- 
]'inements of this sort are possible. 

(f) Notice that in the example given in Remark (d) we can inter- 
poiate the following infinitary formula ¢(R, x): 

-] 3 Z O ( Z , X ) V  V 3 y  O , . . . , y n , z O , . . . , z  n ( - - ] 3 z o ( z , y  O) 
nero 

A A [o(Yi,  Zi) AO(z i ,Y i+ l )  ] A O(Zn,X))  . 
O<i~n 
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Can this always be done? That is, given qJ(R, S 1 , x) and ×(R, S 2 , x), 
finitary first-order formulas such that 

3 R V S  1 , S 2 VX[~// ~ X] , 

can we find some infinitary (first-order) formula ~(R, x) (not con- 
taining S1, $2) such that 

3 R V S  1 , S 2 Vx([qJ --> ~] A [¢--, X])? 

By "infinitary" we intend primarily one of.the classical languages 
L~x or something similar; in the above example ¢ belongs to L 

t~.j 10.~ • 

(For information and further references on infinitary language.,; see 
[21 ] and the volume in ;¢hich [ 10] appears.) We should remark, 
however, that the analogous generalization of Lemma 3.I (that is, 
replacing :ly by a second-order existential quantifier and finding 
an infinitary o) is false. 
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§ 4. Definability 

The main result of  this section is the following gener'dization of  
Beth's  theorem, which will be derived as all application of  Theo- 
rem 3.2. 

Theorem 4.1. F o r  a n y  T a n d  a n y  p o s i t i v e  n ~ w the  f o l l o w i n g  are 

e q u i v a l e n t :  

(i) n F o r  eve ry  ~I, IMr(9.t )1 _< n; 
(ii) n T h e r e  are  f o r m u l a s  o ( v  1 , ..., v k ) a n d  ~ i ( x ,  o I , ..., v~ ), 

1 <_ i <_ n ,  o f  L s u c h  t h a t  

a n d  

T ~  3 v  l , . . . , v  k a  

T ~  V v  1 , ..., v k (o-'> V 
l ~ i ~ n  

V x [ P ( x ) ,  , (~i ] ) .  

Proof.  It is easy to see that  (ii) n implies (i) n - for any 92 pick 
a I , ..., a k ~ A satisfying o; then any P c  Mr(9.I)  must  be one of  

sets defined by ¢ i ( x ,  a 1 , ..., ak ), i = 1, ..., n ,  and so I M r ( f f ) l  <._ n. 
To prove that  (i) n implies (ii) n we first apply compactness and so 
assume that  T is given by a single sentence r(P)  of  L(P). (Actually 
this is not necessary if one is willing to use the infinitary form of  

the interpolat ion results.) What we will do is show, assuming (i) n 

holds, that  

(*) there are formulas I ~ i ( P  , v 1 . . . . .  O k )  of L(P), 
1 _< i _< n, such that 

3 v l  , ..., Vk V P ,  Q V x ( [ z ( P ) - >  V ~i(P)] 
l ~ i < n  

A A ([T(P) A ~i(P)  A POe)] 
1_< i~n 

[ r (Q)  A ~i(Q)-~ Q(x)] ) ) .  
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(*)  says tha t  for  any  9A there  are po in t s  cq,  ..., at, ~ A which  di- 

vide the  sets in M r ( 9 ~ )  i n to  n par ts  by  mzans  of  ~1 ,  ..., ~0n, and  
each such par t  has at mos t  one  member .  

Once we have (*) we app ly  T h e o r e m  3.2 to ob ta in  fo rmulas  

o(o l ,  ..., o k )  and  Oi(x, o~, ~.., o k )  o f  L, 1 _< i <_ n,  such tha t  

31) 1 , . . . , 0  k O ,  T ~ V o  I , .... o k [o -~ V qJe(P)l , 
l<i<__n 

and 

T ~ V u  1 , ..., o k 'q'X[O A I]/i(P) A P ( X )  ~ Oi I , i = 1, ..., n ,  

T ~ V v  I , ..., v k V x ( O  i -* [ ~Ji(P) --> P(x)] ) ,  i = i ,  ..., n, 

changing Q to  P in the  last fine. The  last two lines may  be com-. 

b ined  to y ie ld  

T ~ V u  1 , ..., Ok(O ^ ~//i(P) ~ V x [ P ( x )  ,--'* 0i]  ) ,  

i = 1, . . . , n  , 

which  toge ther  wi th  the  second line gives us 

T P  V v  1, .... ,Ok(O-* V V x [ P ( x ) ÷ ~ 0  i ] ) .  
1_< i <__n 

Thus  the t h e o r e m  is es tabl ished once  we have (*). 

We show (*)  as fol lews.  Fo r  any  91, I M~.(9.I )1 _< n,  so le t  

P1, ..., Pn be a list inc luding  all the  sets in Mr(9.I) .  We m a y  assume 
tha t  

Pn fL Pi for  each  i = 1, ..., n - 1 . 

L e t a i ~ P n  - P i  f o r / =  l , . . . , n -  1 a n d l e t  f f t (P ,  o l ,  . . . , O n _ x ) b e  
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P(o 1 ) A ... A P(O n _ 1 )" qhen  Pn is the only set P c  MT(9~).such that  

( ~ ,  P )  I = ~l(P, al ,  ..., a , _ l ) .  

Similarly we may assume that  

Pn-1  ~ P / f ° r e a c h i = l , - - - , n - 2 ,  

and findan_l+ i E Pn- t  - P i  f o r i  = 1, ..., n - 2. Then, defining 

~2(P, Ol, ..., O2n_ 3 ) to be -I ~t  ^ P(vn)/x ... ^ P(o2n_3) , we know 
that  Pn-1 is the only set P c  M T ( ~  .) such that  

(gJ, P) ~ ffz(P, a l ,  . . . ,a2n_3 ) . 

Continuing in this fashion we obtain all @i, i - 1, ..., n. It is then 

clear from their definit ions that  (*) holds. Therefore the theor~m 

is proved. 

Note that  for n = 1 this does give Beth's Theorem 1. !, and also 

that  the proof  works for T a theory in any language containing 

L(P). 
The problem of finding an equivalent to (i) n was first raised by 

Craig in [ 5 ]. Later he and Daigneault considered this question and 

formulated a condi t ion,  similar to our (ii) n but much more com- 

plicated, which they proved equivalent to (i) n for theories T in 

L(P). Their  methods,  which did not  work for theories T in arbi- 
trary languages containing L(P), are much different and much 
more involved than those used here or in § 6 below. The author  is 
grateful to Professor Craig for sending him an account  of their 
(unpublished) work. 

Just as Svenonius'  theorem may be derived from Beth's, a cor- 

responding generalization of  Sven•nius' theorem may be derived 

from Theorem 4.1. The semantic condi t ion concerns M(9/,  P) 

rather than Mr(91 ), and the syntactical condit ion states that  some 

finite disjunction of  the corresponding condit ions of  Theorem 4.1 
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is a consequence of  T. Combining these two results we obtain  the 

following, which, like the Chang-Makkai theorem, is a generaliza- 

t ion of  both  Beth's and Svenonius'  theorems.  

Theorem 4.2. For any T the following are equiva~'ent: 
(i) For every 92, 1 MT(92)1 < ~ ;  

(ii) Forevery model (92,P) o fT ,  IM(92, P)I < w; 
(iii) For some n, condition (ii) n o f  Theorem 4.1 holds. 

A natural question to ask is whether  the individual parameters 

v 1 , ..., v~c are necessary in (ii) n of  Theorem 4.1, or whether  a dis- 
junct ion  of  explicit definit ions (as in Svenonius'  theorem) would 

suffice. Equivalently,  this asks whether the condi t ion that  

IMT(92 )1 < w for all 92 implies that  IM(9~, P)I = 1 for every model 

( 92, P) of  T. In general, the answer to this question is no, as is 

shown by the following example. 

Assume that  L has just  a binary predicate E. Let T be the theory 

in L(P) which says that  E is an equivalence relation which divides 

the universe into two infinite equivalence classes, and P is one of  

these equivalence classes. Then T is a complete theory satisfying 

the condi t ions  in Theorem 4.1 with n = 2, but  P cannot  be defined 

wi thout  parameters (there are models ( 92, P) of  T such that  

IM( 9~, P)I = 2). A defini t ion of  P with parameters is given by 

T~= V Vl (VX[P(x) ,  , E(x, o l ) ]  

v Vx[P(x)  +-~ -q E(x, 0 1 )l ) .  

However, there is a large class of theories T for which the param- 

eters are not  necessary. This is the case whenever T satisfies the fol- 
lowing "cho ice"  condi t ion:  

(C) For  every formula O(x) of  L there is some formula if(x) of  

L such that  
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T ~ :Ix 0 -~ :1 !x(O ^ 4 ) .  

For, if T satisfies (C) and also (iOn of Theorem 4. !, then repeated 
applications of (C) to o yield a formula o' of L w2ich pic~:s out 

exactly one k-tuple of elements satisfying o. It figllows that when- 

ever (gff, P) is a model of T. P must be definable by one of the for- 

mulas :!o 1 , ..., o k [o' ^ q~i], i = 1, ..., n, which have no parameters. 
In this case, then, the conditions in Theorem 4.2 and Svenonius' 

theorem are all equivalent. 

Theorem 4.3. I f  T satisfies (C), the:2 the conditions in Theorem 1.3 

may be added to the list o f  equivalent conditions in Theorem 4.2 

It should be noted that whether or not T satisfies (C) depends 

only on the consequences of T in L. So if T O is any theory of L 

~atisfying (C), then any extension of T O in any language also satis- 

fies (C). This is the case, for example, wher~ T O is Peano arith- 

metic. 
Before going on to a few other applications, let us survey some 

of the kinds of model-theoretic condition concerning a predicate 
P which are equivalent to some condition stating the e×p!icit de- 

finability of P. In what follows we drop our notation about 

M r (~[) and instead write the conditions as second-order sentences; 
r here is a first-order formula which varies from condition to con- 

dition. The equivalent definability conditions have either been 
given previously or are easily obtainable from what we have done 

previously. 
Thus, Beth's theorem gives a definability condition equivalent 

to 

(1) p 3 -<l P r .  

The immediate effect of our interpolation Theorem 3.2 is to enable 

us to give a definability equivalent also to 
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(2) ~ 3y  3 ~ l  P r .  

But we showed in Theorera 4.1 that using a variant of (2) we actu- 
ally find a condition equivalent to 

(3) ~ 3 -<n P r .  

Using Theorem 3.4 instead of 3.2 we get a definability equivalent 
to 

(4) ~ 3y~j VR 0 ... 3y  k ~/R k =t <n P r .  

Craig's improvement in Beth's theorem may be expressed here as 
generalizing ( 1 ) to 

(1') ~ 3 - < ~ P 3 S r ,  

and adding that the definition of P does not involve S. More geaer- 
ally, recalling Remark (e) from § 2, we can replace 3 S by any se- 
quence of quantifiers, provided the second-order quantifiers are all 
existential. In particular, then, (4) becomes 

;4') ~ ( 3 y  0 VR 0 ... 3y  k VRk) 3 -<n P 

(VZ 0 3 5 0 . . . V z  m ::iS re)T, 

and in the corresponding definability condition the definition does 
not involve Zo, .~., z , n ,  SO, ..., S m . 

By combining these arguments with those of the Chang-Makkai 
theorem we obtain corresponding results for 3 -< IAI p (~j[ infinite) 

in place of 3 -<n p. Also, all of these results have corresponding 
Svenonius forms. 

Note the following: 
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(a) A standard sort of compactness argument s ~ows that for any 
T, either IMr(°~.:)l< co for every 9i, or there is oome in'inite 9I 
such that IMT(9~)I_> IAI; in the latter case, in fact, there is an in- 
finite model (92, P) of T such that IM(gA, P)I >_ IA Io Therefore no 
cardinality restrictions on M T (92) (or on M ( 92, P) for P ~ M r ( ~ ) )  
other than those in the previous theorems and the Chang-Makkai 
theorem can possibly hold. It follows that those are also the only 
possible cardinality restrictions on P in ( 1 ) - ( 4 ' )  above. Hence 
they cannot be further generalized by altering the cardinality con- 
dition. 

(b) The example in Remark (d) of § 3 shows that ~ 3 R 3 -<1 p r 
need not imply that P is first-order definable (in terms of some R). 
Hence (4) and (4') cannot be generalized by allowing existential 
second-order quantifiers to the left of P. One may similarly show 
that universal second-order qufintifiers cannot be allowed to the 
right of P. However, the question of the infinitary definability of P 
in these cases, as raised in Remark (f) of the last section, is open. 

In general it seems that obtaining further definability results re- 
quires looking at different types of conditions than those above° 
Indeed, very many different types of results follow simply from 
other applications of the interpolation theorems. Without attempt- 
ing any comprehensive survey of such results, we give here two 
interesting and related examples of such appiications. 

The first re, suit is an apparently new consequence of Craig's 
interpolation theorem. 

Theorem 4.4. Fbr any T the following are equivalent: 
(i) For every 9I, i f  P, P' c M r ( ~ )  and P 4: P' then P c~ p '  = 0; 

(ii) There is a formula ~(x, y) o f  L such that 

TN Vy(P(y) ~ Vlx[P(x), ~ ~b(x,y)]). 

Proof. ¢ is obtained from Theorem 1.2 as the interpolating formula 
for the valid implication 
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[T(P) AP(y)  AP(x)] ~ IT(Q) n Q(y)  ~ Q(x)] . 

The other  result, an application of  Theorem 3.3, also deals with 

a particular way in which P can be definable with parameters.  

Theorem 4.5. For any T the fo l lowing are equivalent: 

(i) For eveo'  '= ~ f f ' P ~  MT(9.I) then there is some a E Psuch  that 

P is the on(v set in MT(93) containing a; 

(ii) There is a /brmula eD(x, y )  o f  L such that 

atzd 

T ~  : ty (P(y)  A V x I P ( x ) ,  , dp(x',y)]) 

7"~ V x , y [ P ( x )  A P(y)-~ #5(x,y)] . 

Proof. We first show that  (ii) implies (i). Assuming (ii), let 

P ~ 41T( ~ ) and let a be a point  in P which defines P as in the first 

line of  (ii). Assume that  a ~ P:~¢ MT(gJ). Ther: by the second line 
of  (ii) we have 

(gA, P'~ ~ Vx[P(x)  --~ ~6(x, a)] 

and so P' c_ p. Repeating the argument  with a point  a' ~ -P' we 

find that  also P c_= p '  and so P = P',  which shows (i). 
To show that  (i) implies (ii) notice that  (i) implies 

(1) ~ VP 3 y  VQ V x [ [ T ( P ) - ,  P(y)] 

A ([T(Q) n Q(y)  ^ Q(x)] ~ [T(P) -," P(x)] )] . 

So applying Theorem 3.3(b) we get formulas o(P, y )  of  L(P) and 
~(x, y )  of  L such that  
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(2) (a) 

(b) 

T ~  3 y  o A V y [ o  o P(y)] , 

T ~ V x ,  y [ P ( y )  A P(x) ~ ¢(x,  y)]  

(after changing Q to P)~ and 

(c) T ~  V x ,  y [ o ( P , y ) A c k ( x , y ) ~  P(x)l  . 

Combining (2) (a) and (c) we ~et 

T ~- 3 y ( P ( y )  ^ V x [ ¢ ( x ,  ) ) -* P(x)] ) ,  

w!hich because of (2) (b) yields 

T ~ 3 y ( P ( y )  ^ V x [ $ ( x , y "  ~ P ( x ) ] ) ,  

which completes the proof.  
Finally, we also have the following result which, a l though not  

explicitly mentioning definability, is a consequence of  Theorem 
4.1. 

Theorem 4.6. Let T be a theory o f  L(P). Let  9.t be such that 

M r ( ~ t )  = 0 but  for  some 91' =-- 91,Mr(91')  4= O. Then there is some 
~) = 91 svch that 

IMT(~) I  _> IBI _> co. 

Proof. Let T O be the set of  all sentences of  L true on 9I. Let ~3 be 
a special model of  T o ( that  is, a special model  elementari ly equiv- 
alent to 91). If  ~ does not satisfy the conclusion of  the theorem, 
then for every model 91' of  To, I M r ' ( ~ ' ) t <  ¢o: Therefore we can 

apply Theorem 4.1 to T o u T to obtain formulas  o (o l ,  ..., o k) and 
eOi(x, 01 , ..., o k) of  L (i = I,  ..., n) such that  
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7 o U.Tl= ~lv 1, .... , Y E a  

and 

To U Tf= V v l , . . . , V k  ( O ~  V 
l<_i<n 

Vx[P(~:) -'-~ ~i ] ) 
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The hypothesis that Mr (9J ' )  :/: 0 for some 92' - ~ implies that 
M r ( ~ )  ¢ 0 (since ~ is relation-universal). Let P 0 ~- M r ( ~ ) ,  so 
that ( ~ , P 0 ) ~  T o u T. ~ ~ 301 , ...~ OkO since g--" ~ ,  so let 
a I . . . . .  , a ,  ~ A satisfy a in .~. Since ~ is special there are 

b I , ..., b k ~ B such that 

(+) ( ~ , b l , . . . , b k ) = ( ~ , a l , . . . . , a k ) .  

In particular, b I , ..., b k satisfy o, so for some i 0 

( ~ , P 0 )  ~ Vx[P(x)  ~- ~ ¢i0(x, b l ,  ..., bk)l 

Define P ": { a ~ A : 9J ~ ~i0 (a, a l ,  "", ak ) }" Then, by (+), 
( ~ ,  P) -= ( ~ ,  P0) and therefore ( 91, P) ~ T, contradicting our 
hypothesis that M r ( 9~ ) = 0. Therefore ~ satisfies the conclusion 
of the theorem. 

Notice that this result clearly fails if T is allowed to be a theory 
in a language containing L(P). The theorem with the weaker con- 
clusion that I M r ( ~ ) l  _> 2 is an immediate consequence of  Beth's 
theorem. It is given and applied oy K.L.de Bouv~re in his book 
[24] .  

For other sorts of results the reader is also referred to Chang 
[ 2],  which includes some theorems on the comparability of  the 
sets in Mr(gA ). Some results of  [2] are new consequences of  
Craig's theorem, and others (including the Chang-Makkai theorem) 
follow from Chang's Main Theorem, which may be'considered as a 
sort of interpolation theorem. 
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§ 5. Intersection of elementary submodels 

Let ~[ be a model  for L and let Y c_ A. Then by ~;~ t Y wc mean 

the submodel of  ~ whose uniwerse is Y (if our language has func- 

tions then we use submodel in the weak sense in which a submodel 

need not  be closed under  the functions of  the language). We define 

D(92, Y) to be the set of  all a ~i-- A such that  for some 

$(x, v I , ..., o k) of  L and some b 1 , ..., b e ~ Y we have, for some n, 

92 ~ q~(a, b 1 , . . . ,  bk  ) ^ 3~n x dp(X, b :  , . . . ,  b k )  . 

Thus, D(92, Y) is the set of  all points  of  A definable in the sense of  

Ttleorem 4.1 from points  of  Y. 

Notice that  if 9J t Y -< ~ then D(~A, Y) = Y, but that  the con- 

verse fails in general. T~aose ti:eories for whose models the con- 
verse holds are characterized in Theorem 5.3. 

Let T be the theory ot L(P) such that  ( 9A, P) ~ T if and only if 

t P -< 92. Ther ,  applying the Main Lemma to this theory T we 
obtain 

Lemma 5.1. Let  9J be special. Then the intersection o f  all elemen- 
tary submodels of" 92 has universe D(92, 0). 

Proof. The universe of  this intersection is precisely fl M r ( 92 ), by 

the defini t ion of  T. By the dual of  the Main Lemma there are for- 

mulas ePi(x) of  L (i ~ I )  such that  

N M r ( 9 ~ ) = { a ~ A ' 9 t ~  V ¢ i ( a ) } .  
i E l  

Now, it is easy to see that  D ( ~ ,  0) K fl Mr (9 / ) ,  so to get equali ty 

it will be enough to show that  for each i ~ i, ?t ~ 3 ~n x (Pi(x) for 
some n. 

Since the formulas 4~i Oo not  depend en the particular special 
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model in question we may assume t~lat IAI > I LI u co. Then, by 
the downward  L~Swenheim-Skolem theorem we see that  

and so 

I D, MT( 911)1 < IAI , 

I{a ~ A : 9.I ~ ~bi(a)} I<  IAI for each i ~ I .  

But a definable set in a special naodel either has the power  of  the 

model or is finite (since special models are universal; cf. [ 1 f]  
Theorem 3.7). Hence for each i there is some n such that  
~ ~ 3 <_n x ¢i(x),  which proves the Lemma.  

As an almost  immediate consequence of  this Lemma we derive a 
theorem of Park characterizing the sets Y c__ A closed under  the 
above notion of  defipability. 

Theorem 5.2 (Park [ 1 6, i 7 ] ). 1. et Y c_ A. The fo l lowing are equiv- 
alen t: 

li) D ( ~ ,  Y ) =  Y; 
(ii) There some 2~ and sore- collection { ~ j  : j ~ J }  o f  elemen- 

tary submodels  o f  ~ such that 

Pt-< ~ a:?d ~ t Y = q 23j. 
/ E J  

Proof.  From (ii) to (i~ is easy. To show the other  direction we first 

expand the language L by a~ding an individuaI constant  symbol  
for every element of  Y. Call ;he resulting expansion of  ~ ,  9/*. 
Then 

D ( ~ 2 1 * , 0 ) = D ( ~  Y ) = Y ,  

where D(9.1 *, 0) refers to definabili ty in the expanded language. 
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Let ~ *  be a special elementary extension of 92", and let 
{ ~ f  : j ~ J} be the set of all elementary submodels ~)f ~":. Clearly 
D ( ~ * ,  0) = O(92 *, 0), so by Lemma 5.1 (for modei~ of the ,~x- 
panded language) 

~ *  t Y = N ~ .  
j E j  

Throwing away tkz adtacd constants, { ~1 : j ~ J} is the set of all 
elementary submodels of ~ which contain Y, and ~ t Y = N ~i" 

Using Theorem 5.2 one may derive another result of Park, char- 
acterizing those theories such that the inters,action of any collec- 
tion of elementary submcdels of any mcdel 9,( of the theory is 
again an elementary sub.model of 9/. 

Theorem 5.3 (Park [ 1 6, 1 7 1 ). Let  T O be a theory o f  L. Then the 

fol lowing are equivalent." 

(i) For every 92 ~ T O and every set { 92 / " j ~ J } o f  elementary 

submodels o f  g.l 

n 92/ .~;  
/ E j  

(ii) For every 92 ,~ T O and every Y c_ A 

92 t D(9.I, Y)-< 92 ; 

(iii) For every formula ~b(x, ol ,  ..., o k ) o f  L there is some formula 

~b(x, v 1 . . . .  , o k ) o f  L such that for  some n 

T O ~ , - V v l , . . . , v k [ 3 x $ - + 3 x ( ¢ ^ ~ k ) ^ 3 < n x $ l  

Proof (see ?lso [ 16] ). The equivalence of (i) and (ii) is immediate 
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from Theorem 5.2. The implication from (iii) to (ii) is straight- 
forward (since D(gA, D( 9I, Y)) = D(9~, Y)). We giv~ only a very 
brief indication of the proof of the remaining direction, from (ii) 
to (iii). Notice that, by compactness, to show (iii) it is sufficient 
to show 

(iii') For every formula ¢(x, 01, . . . ,  Ok) of L, for every 9/I = To, 
and every bl  , ..~, b E ~ A such that 9./~ ' Ix  O(x, b 1 , ..., bk ), 
there is some ~ ( x ,  o 1 , ..., o k )  of L such that 

and 

~ : l x [¢ ( x ,  h l , . . . ,  b k )  ^ ~O(x, b l , . . . ,  bk)] 

~ ~ 3 <-n X Ill(X, b 1 , . . . ,  b k)  f o r  s o m e  n .  

But (iii') follows easily from (ii). Thus, we know 

9[ t D(~., { b l ,  ..., b k }  ).z, 

and hence if 9.I ~ 3 x  ¢(x, b 1 , ..., bg ) there is some 

a ~ D(gd, { bl ,  ..., bk} ) such that ~l ~ ~(a, b 1 , ..., bk) .  This point 
a is then defined by some ~k which will work in (iii'). 

Earlier results similar to Theorem 5.3 may be found in [ 19] and 
[14l .  
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§ 6. A syntactical proof of Theorem 4.1 

We give here a syntactical p roof  of  the implication frorr. (i) ,  to 
(ii) n of  Theorem 4.1. It proceeds roughly as fellows. We ~,'st appI /  
compactness to reduce the theory T to a single sentence r. Then 
we give a direct argument,  using only Craig's interpolat ion theo- 
rem, to obtain the fornmlas o and ¢i, 1 _< i _< n, used in defining P. 
In particular, there are no fur ther  applications of compactness.  

Aside from the usual interest of  effective syntactical proofs,  this 
proof  is of  interest because of  its applicability to L,ol,o, an infini- 
tary language allowing countable conjunctions and disjunctions 
(see Scott  [ 21 ] ). Lopez-Escobar [ 11 ] has shown that  Craig's theo- 
rem holds for L~o~,o, and therefore so dc, es Beth's theorem,  for 
theories given by a single sentence of  L~o~o. Thus this p roof  shows 
that Theorem 4.1 holds in L,o~,o for theories given by a single sen- 
tence. Other  sorts of  infinitary definability results are given in [ 2 ! ] 
and [ 10]. 

Actually the proof  given is not purely syntactical,  bu it could be 
rewrit ten as such a proof.  This would, of  course, involve stating 
(i) n syntactically. 

We remark that we do not know to what extent  tl.c interpt)la- 
tion theorems in § 3 have syntactical proofs,  nor whether  they 
hold for k~ol,~ • 

Our proof  that  (i) n implies (ii) n proceeds by induction on n. We 
assume the result is known for all k < n, for any choice of  the 
language L. Let T be a theory such that ti) n holds; by compact-  
ness we may assume that  T is given by a single sentence r (P)  of  
L(P). (Essentially the same proof  also works if T, and hence r, 
belong to any language containing L(P).) We first show 
( 1 ) There  is a f o r m u l a  ×(x ,  v l ,  ..., v n__l ) o f  L such  tha t  ]'or any  f[ 

wi th  tMT('g )1 = n, there  is s o m e  P E  MT(9[ ) such t ha t  

(~[, P) ~ 3v  I . . . . .  v . _  l V x [ P ( x )  ~ X] • 
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P r o o f .  Let  P1, ..., Pn be n e w  unary  pred ica te  symbols .  Let  0 be 

the  sen tence  o f  L(P  1 , ..., Pn ) de f ined  as 

f ( e l )  A... AT"(Pn ~^ A -] V x [ P i ( x )  ~--~ P/(x)]  
l<__i<j~n 
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Then  the  fo l lowing  impl ica t ion  is valid. 

[0 ^ - I  P I ( O l ) A  ... A'-]Pr ,_I (Vn_I)APn(X)]  

['/'(P) ~ "-] e (v  1 ) v ... v --] P(On_ 1) V P(x)]  

Apply ing  T h e o r e m  1.2 we get  a fo rmula  X(X, v 1 , ..., v~_ l ) o f  L 

in te rpo la t ing  b e t w e e n  the  a n t e c e d e n t  and  the  c o n s e q u e n t  o f  this 

impl ica t ion .  

Let  P{ be such that  IMT¢ ?~)1 = n, say M r ( ~ { ) =  {Pl . . . .  , I n } '  We 

may  assume that  Pn is maximal ,  and  so f ind a i E Pn - Pi for  each 
i=  1 . . . . .  n -  l. Then  

and 

( 9[, Pn ) ~ 'qx[ Pn (x)  ~ X(x ,  a 1 . . . . .  an_ 1 )] , 

t'~[,P~ ~ V x l x ( x , a  1, . . . , an_ l l  

-1P(a 1 ) v ... v -1P(an_ l ) v P(x)]  

for each P c  MT(gJ ). F c r P  = Pn n o n e  o f - ]  P(a I ), .... 

hold ,  and hence  

( ~ I , P )  ~ q x [ P ( x )  < , x ( x ,  a l ,  . . . , a n _ l )  ] , 

which  proves ( 1 ). 

-1 P(a n_ 1 ) can 

We defin,: r ,  (v t , ..., on_ 1 ) to  be the  fo rmula  o b t a i n e d  f rom r(P)  
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by replacing every occurrence in r of  P(t), for any  term t, by  

X(t, v l ,  ..., On_l "~, it being assumed that  none of  0 1 , ..., On_ 1 c "cur 

in r(P). Then fc :  any ~ and any a 1 , ..., an_ 1 ~ A 

9~ ~ r 1 (a I , ..., an_ 1 ) iff ( 9[, P) ~ r(P) ,  

where 

P= { a ~ A  : ~  [= x ( a , a  1, . . . , an_ l )  } . 

Let 0 be the formula 

3 Y l ,  "", Yn-1  7"1 ( Y I '  "" '  Yn-1  ) ~ ~'1 ( ° l '  "" '  On--1 ) " 

Note that  ~1 and ¢ are both  formulas of  L and that  

3vx,  ..., Vn_l '~. 
Now we expand L to a language L* by adding n - 1 new indi,  

vidual constant  symbols,  e l ,  ..., en_ 1 . We consider the theory  T* 

in the language L*(P) given by 

r(P)  ^ q  V x [ P ( x ) ,  , X(X, c 1 , " ' - % - 1 ) ]  ^ $ (c l  ' " "Cn-1 ) "  

Then we have 

(2) Let 91" = (91, a 1 , ...,an_ l) beany modelJbr L*. Then. 
(a) if92 ~ ~/~(al, ..., an_ 1 ) then 

Mr*(91*)c- Mr(91:) c- Mr*(91:*)° {P0} ,  

where 

P0 = { a ~ A : 9 1 ~ X ( a ' a  1 , . . . , an_  1)} • 

(b) IM~r, (91")1 _< n - 1 . 

Proof. (a) is clear from the defini t ion of  T*. (b) Assume that  

Mr,(91*)  4: O. Then a I , ..., an_ 1 satisfy ~, and so (a )ho lds .  But, 
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by the defini t ion of  T*, P0 ~ M T * ( ~ * ) ;  hence i f P  0 ~ M T ( 9 2 )  

then (a) implies that  M r • (9.1 *) = M r (  ~ ) -  {P0 }, and so it can 

have zt most  n - 1 elements. On the other  hand,  i f P  o q~ M r ( ~ )  

then no set in M r ( 9 / )  is definable by X with any choice of  i~di- 

vidual parameters.  Therefore by (1), M T ( ~  ) cannot  have n mem- 

bers, ~'ad so I M r . ( f f * ) f _ <  n -  1. 

Now by (2) (b) we can apply our  inductive hypothesis  to T* to 

get formulas o*(Vl,  ..., On_ 1 , On , . . . ,  o k )', Oi(x ,  v 1 , ..., o k ), 

1 _< i _< n - 1, of  L such that  

(3) 

and 

T* ~ 3 v  n , ..., v k o*(e I , . . . ,  O n _ l ,  On, ..., Ok) 

T* ~ V v  n , ..., Vk(O*(c I , ..., Cn_ 1 , On, ..., V, ) 

V V x [ P ( x )  ~-~ ¢ i ( x , c l , . . . , c n _  1 ,on ,  ..., Vk)] ) .  
1 <-- i <- n-1 

Since T* ~ ~(c 1 , ..., cn_l),  (3) cont inues to hold when o* is 
replaced by the formula o** defined as 

O * ( 0 1 ,  . . . ,  O k)  A I~(01 ,  . . . ,  On_ 1) . 

• 4ow define ¢n to be X(X, v I , ..., vn_ 1 ). Then 

(4) 7 ' ~  VVl,  ..., o k ( o * *  ~ V ~qx[P(x) ~ ~i 1) .  
l<_i<_n 

(4) is clear from the defini t ion of  o**,  (2) (a), (3), and the defini- 

t ion of  Cn. 

In general, however, 3 o l ,  ..., v k o * *  may not  follow from T. But 

if 9.I ~ --1 301, ..., oko** then it follows from (3) that  for every 

al  , ..., an_ 1 ~ A we have M T , ( (  9.I, al  , ... , an_ 1 ) )=  0. So if  
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Mr(9t) ~ 0 it fo! lows f rom (2) (a) tha t  

Mr(~)= {{a E A :2I ~ x ( a , a  1, . . . ,a,,_ 1)}} 

for any  a I , ..... a,,__~ sa t i s fy ing ~.  So, def ine a(v I , ..., o k ) to be 

O*'*(1Ol, ..., Ok)V [-7 :Iu1,  ..., l)ka** A ~(Ol ,  ..., On_l )] 

Then  wha t  we, have said above shows tha t  (ii) n holds  for  this  a and 

the previously  def ined ~ l ,  ..., ~n" Therefore  the p roof  is c o m p l e t e d  
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