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In this paper we present various results on interpolation and
definability which generalize the well-known theorems of Craig
[5] and Beth [1]. The proofs are almost entirely model-theoretic,
and rely heavily on the use of special moduls (see [15]). State-
ments of some known results we will refer to are included in §1.
Our basic result is the Main Lemma 2.2 of § 2 characterizing sub-
sets of special models definable by infinite conjunctions. The Main
Lemma is reformulated as Theorem 2.3 on E}-definable subsets.
These results are applied in §3 to yield interpolation-type theo-
rems, such as Theorem 3.2, which concern certain second-order
conditions whose only second-order quantifiers are universal. In
§4 we obtain some definability results using interpolation theo-
rems. In particular, by applying Theorem 3.2 we obtain Theorem
4.1, a generalization of Beth’s theorem treating conditions inter-
mediate between those in Beth’s theorem and the theorem of
Chang { 2] and Makkai [13]. The Main Lemma is applied in §5 to
intersections of elementary submodels, yielding a proof of some
results of Park [16, 17]. In the last section we give a syntactical
proof of Theorem 4.1.

Many of the results of this paper appeared in the author’s doc-
toral dissertation [9] written under Professor C.C.Chang. Theorem
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4.1 was also announced in [8]. The author wishes to express l.is
appreciation to Professor Chang for many helpful comments and
suggestions for improvements concerning t}.: results of this paper.
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§ 1. Preliminaries

We consider a finitary first-order predicate language L (with
identity) which is fixed throughout the paper. Models for the
language L will be denoted by U, B, ... . We will follow the con-
vention that the universe of ¥ is 4, that of B is B, etc. We assume
familiarity with the basic concepts of model theory, and also the
notion of special model (from [15]). Foi the most part we employ
standard terminology and notations; for example, we use = for
isomorphism, = for elementary equivalence, < for elementary sub-
model, and | X!I for the cardinality of a szt X. We use = both for
the relation of satisfiability in a model (% k& ¢(a,, ..., a; ) where
ai, ..., a; € A)and for the (semantic) relation of consequence
(T E ¢ where T is a theory). In the rest of this section we explain
some other notations and conventions, give some facts about
special models, and state some known results on definability nd
interpolation.

If R is a k-place predicate symbol not belonging to L, then L(R)
is the new language formed by adding R to L. Models for L(R) will
be written as (%, R), where R is a k-place relation on 4. Similarly,
if we are given a sequence Ry, Ry, ... of new predicates, we form
the new language L(Ry, Ry, ...), whose models are written (%, Ry,
Ry, ..).

We will assume throughout that P, Q, R, and S {(sometimes with
subscripts) are distinct predicate symbols which do not occur in L.
In addition, P and Q are assumed to be unary.

In writing formulas of these expanded languages we will some-
times exhibit the new predicate symbols. For example, a formula
¢ of L(P) may be written as ¢(P). $(Q) would then be the formula
of L(Q) obtained by substituting Q everywhere in ¢ for P. Added
predicates will also be treated at times as second-order variables,
and we will form second-order sentences such as 3P o(P).

We also sometimes exhibit the free (individual} variables of a
formula, writing ¢y, ..., vy ) for ¢. Using the notation oy, ..., 0)
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will imply that the only free variables of ¢ are », ..., v, (but
v;. ..., Uy need not all occur free in ¢). We also use x, v, and z for
variables.

Given formulas ¢, ..., ¢, we will write A  ¢,anc V ¢;

I<ign I<ign
for; A ... A, and ¢, v...v @, respectively. More generally, if
{¢,:iel} isany tamily of formulas, we use A ¢, and V ¢, for

i€l iel
the (possibly infinite) conjunction and disjunction of all the for-
mulas ¢;. The satisfaction of these infinitary formulas in a model
is defined by the obvious extension of the usual definition for
finitary formulas.

We use 3= x ¢ as an abbreviation for an expression meaning
“there are at most n x such that ¢”’. Similarly, 3!x ¢ means “there
is exactly one x such that ¢”’. We always use n, k, and m to denote
natural numbers, that is, elements of w. The empty set is denoted
by 0.

If T is a theory of L{P) and % is any model (that is, model for
L) then we define

MT(‘)I)={P§A A,PYETY.

Meore generally, if T is a theory of some language containing L(P),
say L(P, R, ...), then by M (% we mean the set of all P C A4 such
that (9, P) can be expanded to some model (A, P, R, ...) of T.
We assume throughout that 7 is a theory in L(P) or in some
language containing L(P). Hence for any 7 the set M,(% ) is un-
ambiguously defined for every % .
If (A, P) is any model for L{P) then we define

MU PY={P CA (U PY=(AP)}.

Therefore P e M(¥U, P) if and only if there is an automorphism of
9 mapping P onto P'. Notice that P is always an element of
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M(, P), but that M;( ) may be empty. But if (¥, P) is a model
of T, then M(, P) S My ().

We will freely use some facts frcm [15] about special models
without explicit mention. Among them are the facts that every
consistent theory has special models (‘“‘existence”), that elemen-
tarily equivalent special models of the same power are isomorphic
(“‘uniqueness’), and that if U is special and a € 4 then (%, a) is
also special. We also use the fact that special models are “‘relation-
universal”, that is:

If % is special and ¥ = U’, then for any relation
(U) R’ on A' there is some relation R on A such that
(A,R)=(A",R").

Now, actually it is only proved in [15] that special models of
certain cardinalities are relation-uriversal (namely those cardinali-
ties in which any theory ¢ he language has a special model, in
which case it is immediate by uniqueness). This would be enougb
for most of our purposes, only making it necessary to add this
cardinality restriction to the Main Lemma 2.2 and Theorem 2.3.
However, (U) is true in general, so we here indicate the proof.

Let 9 be special, and assume for simplicity that k = (4| >
ILTU w. Let A" = A and R’ be given. By the downward Ldwen-
heim-Skolem theorem we may assume that 14"l < 141. We con-
struct a sequence { (%, R,)} of models and a sequence { f, } of
functions, each of length « (or cofinality of k if k is singular) such
that the following hold:

(910,R0)= (QI,,R’) .
(A,.R,)<(A,, R, )forv<p,

4,1 <k,
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[, is an elementary map of ¥, into U,

fvf;fu for v<u,

and every a € 4 is in the range of some f,,.

The construction of these sequences offers no serious difficulties,
using, say, the characterization of special models given by remark
(5)in [15].

Now let

a"=yA,, R'=UR,, g=Uf,.
v

Then (%', R) < (A", R") and g is an isomorphism of A" onto A.
Letting R be the image of R"” under g, we have (%,R) = (A", R"),
and so (U, R)= (A', R') as desired.

The case 141 = LIV w offers a few more complications but is
not essentially different.

The case w < 141 < I LI can be reduced to the previous cases by
finding a language L' € L such that iL'lU w < |4l and every sym-
bol of L — L' is definable in « by those of L' alone. This reduction
depends on the fact thai ¥, being special, must realize every type
in finitely many variables which is consistent with it. Hence, there
can be ai most 14! maximal tvpes, and therefore by compactness
at most 141 non-equivalent predicates in L. (Recall that a rype in
Uy, ..., Uy is a set & of formulas with just vy, ..., v, free, and that
the type ® is realized in U if there are ay, ..., a; € A such that
A E ¢lay, ..., a; ) for every ¢ € D.)

If 141 < w, of couise, (U) is obvious.

In our notation we may state Beth’s definability theorem as fol-
lows.

Theorem 1.1 (Beth [1]1). For any T the following conditions are

equivalent:
(i) For every U, IMy (W) < 1;
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(ii) There is a formula ¢(x) of L such that
T = Vx[P(x) <> ¢(x)] .

Beth proved this theorem only for theories T in the language
L(P). The extension to theories T in any language containing L(P)
is due to Craig [ 5], and follows naturaliy from his proof of the
theorem using his interpolation theorem.

Theorem 1.2 (Craig [5]). Let Y(R) be a formula of L{R} and x(S)
a formula of L(S). Then the following are equivaient:

(i) F Y(R) = x(S);

(ii) There is some formula ¢ of L such that

E yY(R)~>¢ and F ¢~ x(S).

Reth’s theorem is true also for predicates of any (finite) number
of places, not just unary predicates. The same is true for all the
other definability results ir: this paper. We have stated them just
for unary predicates solely for ease of presentation. Similarly, in
Craig’s theorem R and S could be replaced by sequences of new
and all different predicates (also, of course, functions and indi-
vidual constants). This comment also will apply to the interpola-
tion results we will give later. '

Notice that the strongest condition. cn the interpolating formula
¢ of Theorem 1.2 is obtair.ed ty taking L to be the language con-
taining only the non-logical constants (that is, the predicate, func-
tion, and individual constant symbols) which occur in both ¥ and
X- Thus, 4 contains only the non-logical constants common to ¥
and x.

The following theorem is similar to Theorem 1.1 but concerns
M(U, P); condition (i) says that P is left fixed by the automor-
phisms of ¥.
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Theorem 1.3 (Svenonius [22]). For any T the following are equiv-
alent:

(i) For every model (A, P)of T, IM(U,P)I=1;

(ii) There are formulas ¢,(x), ..., ¢, (x) of L such that

TE V Vx[Px)—¢,(x)].
Igign

Svenonius’ theorem also holds for theories T in any language
containing L(P), it being understood in this case that the require-
ment in (i) that (A, P) is a model of T means that P e My (%).
Theorem 1.3 may be derived from Beth’s theorem by showing that
if T satisfies condition (i) of 1.3 then every complete extension of
T satisfies condition (i) of 1.1; this follows from a simple special
model argument (essentially remark (7) of [15]).

Finally there is the following theorem, due independentlv to
Chang and Makkai, which is an infinite generalization of both
Theoremis 1.1 and 1.3.

Theorem 1.4 {(Chang [ 2], Makkai {13}). For any T the following
are equivalent:
(i) For every infinite %, |Mp( A< 1Al
(ii) For every infinite %, IMp(9)1 < 2Ml,
(iit) For every infinite model (N, P)of T, IM(AU, P)I < 141,
(iv) For every infinite model (N, Pyof T, |M(%U, P)I < 214l
(v) There are ;ormulas ¢(x, vy, ..., v;), 1 <i< n,of Lsuch that

TE V F9, .. ‘v’x[P(’x)<——>¢i].
1<ign

Among other results concerning definability we mention just
Robinson’s consistency lemma ([ 18, 20} ), which is equivalert to
Craig’s interpolation theorem, and thus also suffices to yieid Beth’s
theorem. There are also several results improving Craig’s theorem
(e.g. 16, 12]), which have, however, little direct connection with
the results we will give.
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§ 2. Subsets of special models

Before proceeding to the main results of this section, we first
note the following.

Lemma 2.1. Let U be special and let PC A. Then the following
are equivalent:

(i) IM(U, Pil=1;

(iiy There are formulas ¢, i(X) of L{iel, jelJ)such that

(A AAEVx[P(xj«— V A ¢,-,-(x)]-
i€l jEJ 7

Proof. It is enough to show that (i) implies (ii). Let ¢, b € A and
assume that (%, a) = (U, b). Then (U, a) = (A, b) since A is
special, and hence @ € P if and only if b € P by (i). So, let
{a;:i€ I} enumerate the elements of P. For each i € / let
{q&f’j(x) :J € J} enumerate all the formulas ¢(x) of L satisfied by
a;in U. Then b € Pif and only if (&, b) = (U, a;) for some i € ],
that is, if and only if

UE A ¢l.l.(b) forsomeie[.
jies

Hence (ii) holds.

If (A, P) is also special then a compactness argum:nt can be
used to show that in (ii) 4 single formula ¢(x) suffices to define .
From this fact, as is well-known, one can derive Beth’s and Sveno-
nius’ theorems. |

Main Lemma 2.2. For any T there are formulas ¢;(x)of L (igs])
such that for every special mode! U, if Q=U M 7(oA) then

(A. Q) E Vx[QKx) /e\ ¢,(x)] .
il
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Conversely, given Q so definable there is such a theors T.

Proof. Let {d),-(x) : i € I} enumerate all the formulas ¢(x) of L
sich that

TEVx[P(x)—> ox)] .
Let 9 be special and let g =U My (%). Then we have

(%, Q) E ¥x[Q(x)~ -21 9,(x)]

since that implication is true of every P € M, (). So we will be
through once we show

(D (A, Q) EVx[1Qx)~ 22’ T9,(x)] .
€1

Assumea € Q. Let {x;(x):j€J } enumerate all the rormulas of
L satisfied by a in %. Notice IM( U, C)I = 1. Hence by the proof of
the previcus lemma we know

(2) ifAE A xl.(b) then b€ Q and so
JEJ

if(A,PET, bEP.

Let T be the complete theory consisting of all sentences of L
true on A. We first show

3) T,vTu{ x’.(x) AP(x):je€J} isinconsistent.

If not, there would be some model (%', P') of Ty U T and some
b' € P’ satisfying all x; in A’. But then A = %’ and therefore, since
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9 is relation-universal, we could find PC A4 and b € P such that
(A PETand AF A x;(b), thus contradicting (2).
JE€J
Applying compactness to (3) we obtain some j € J and some
sentence ¢ of L such that

Ty Eo and TE 1[oAx;(x)APX)],
hence
TE Vx(P(x)~> [0~ Tx;00)]) .

It follows that o - 71 X; is some ¢;. But UEon xj(a), hence % k=
71 ¢,(c) and so we have shown (1).

The converse is clear, since given the definition of Q by the ¢,,
we could take

T={VYx[P(x)>¢,x)]:i€l}.

A few comments are in order. First, P need not be a unary predi-
cate, and T may be a theory in any language containing L(P), pro-
vided we add the restriction that |41 is at least as large as the num-
ber of new symbols added. These improvements are both clear
from the proof. Also, the dual of the Lemma, obtained by replac-
ing U by N and A by V, cleatly holds. Notice that the hypothesis
on @ is that it be defined by the second-order (and in general in-
tinitary) formula 3P[{7T(P) A P(x)}. The following theorem is a re~
formulation of the Main Lemma treating the case of an arbitrary
Zi formula.

Theorem 2.3. Let (R, y) be a forinula of L(R). Then there are
formulas ¢;(y) of L i € I} such that for every special model %

¥E VIIROR,Y) = A )]
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Proof. Define a theory T in L(P, R) by T = { Vx[P(x) < 0(R, x)]}
Applying Lemma 2.2, in view of the comments following it, we
obtain formulas ¢,(y) of L (i € 1) such that for eve 'y specia! U the
set @ = U M (%) is definable by . ¢;(»). But Q is also definable
by i€l

AP AR (P(y) A Vx[P(x) — €(R, x}1),
that is, oy AR (R, y). Hence the conclusion holds.

Remarks. (a) Instead of R we could:have any sequence of new
predicates, and 8 could have, instead of the single free variable y,
any number of free variables. Alsc, the dual of Theorem 2.3 holds.
These facts are clear from the corresponding comments about
Lemma 2.2.

(b) Notice that the formulas ¢, depend only on the symbols of
L which actually occur in 8, and the identity. Therefore we can
take I = w.

(¢) In place of 6 we could have an infinite conjunction of Jor-
mulas 0]-, j € J. In this case we take T to be the theory

{V¥x[P(x)~> Oj(R, x):jeJd}.

(d) Chang and Moschovakis have recently found a proof of
Theorem 2.3 very different from what we have given here. Their
proof also yields an improved form, announced:in [4], in which
the set { ¢i{x):i€ 1} of defining formulas may be taken to be
primitive recursive.

In this connection the author wishes to mention that the formu-
lations given here of the Main Lemma and Theorem 2.3 have been
much improved by comments and suggestions of C.C.Chang.

(e) Let 8(S) be a formula containing a k-place predicate S. Let
S* be a new (k + 1)-place predicate. Recall the well-known equiv-
alence
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k= ¥z 3S 0(S) <= AS*Vz 0*(S*),

where 0* is the formula resulting from 6 by replacing S(¢, ..., fz)
everywhere by $*(z, ¢, ..., f; ), for any terms 1, ..., t,, assuming
z is not bound in 8. The effect of this is te show that if

6(Ry, ..., R, v, 2y, ..., 2,,) is a formula of L(Ry, ..., K;), then any
second-order formula obtained from 6 by quantifying Ry, ..., Ry,
zy, ..., 7, inany order, provided the R; are quantified existen-
tially, is equivalent to a formula IR} ... AR] 6%, where 6% is a
(first-order) formula of L(RY, ..., R;) with just y free. Therefore,
by Remark (a), Theorem 2.3 applies also to such more general
second-order formulas. This remark will be used in the next sec-
tion in deriving Lemma 3.1%.

() Notice that the equivalence in the Main Lemma or Theorem
2.3 does not hold in general for models which are not spec:al.
Also, in Theorem 2.3 we may not allow universal second-order
quantifiers to occur in addition to the existential ones. In this
connection we refer the reader to Svenonius [23] for a reduction
of 2{ sentences on countable models. Also, it is interesting to
note that, assuming we have only predicate symbols, any second-
order sentence which can be written in prenex form with only
universal first-order quantifiers (but arbitrary second-order quanti-
fiers) is logically equivalent to an infinite conjunction of uriversal
first-order sentences (see [ 7] page 141). This fact depends sssen-
tially on the well-known special properties of universal first-order
formulas.
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§ 3. Interpolation

The interpolation theorems we give here genralize Craig’s
Theorem 1.2 in that we require that the implication from ¢ to x
hold only for some choices of individuals, not for all. The resulting
conditions are therefore second-order, but our results show that
they are reducible to finitary first-order statements.

Before proceeding to the results which actually generalize
Craig’s theorem, we require the following, a sort of “one-sided”
interpolation theorem.

Lemma 3.1. Let O(R, y) be a formula of L(R). Then the following
are equivalent:

() 3y VROR,y);

(ii) There is a formula o(y) of L such that

F3dyo(y) and EVylo(y)»>6(R,p)].

Proof. From (ii) to (i) is obvious — any y satisfying o works in {i)
since ¢ does not contain '“. The other direction is an casy conse-
quence of the dual of Theorem 2.3. We know there are formulas
¢;(») of L (i € I) such that for every special mode! 9

AEVY[VROR,y) — 'gz o,(»)] .

By ()% = 3y VYR 8, and so there is some i € [ such that

% = Iy ¢,. Hence every model yields 3y ¢, for some i € /, and so
by compactness there are finitely many ¢;, say ¢,, ..., ¢,,, such
that

E= 3y, v..vidye, .

So, defining o(y) as ¢, (¥) v... v¢, (y) the conditions of (ii) are
satisfied.
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As usual, we have simplified the statement of this result. The
analogues of the remarks at the end of §2 all hold here too. In
particular, the single quantifiers 3y and VR could each be replaced
by sequences of similar quantifiers (Remark (a)}, and @ <ould be
an infinite disjunction (Remark (c)). The latter fact implies that if
T, is any theory of L then the equivalence of (i) and (ii) continues
to hold if we require the statements to be consequences of T
rather than universally valid. Although similar remarks apply to
the other results of this section and will be used in applications in
the next section, we will no longer explicitly mention them.

The next result is our basic generalization of Craig’s interpola-
tion theorem.

Theorem 3.2. Let Y(R, x, y) and x(8, x, y) be formulas of L(R)
and L(8) respectively. Then the following are equivalent:

() E3Iy VR, SVYx[Y - x];
(ii) There are formulas o(y) and ¢(x, y) of L such that

Edye and EVx,y(loAny>¢lalg—>xl);
(iii) There is a formutz ¢(x,y) of L such that

3y VR, SVYx([Y >l nlo—>x]).
Proof. (ii) implies (iiiy and (iii) implics (i) are clear. To show that
(1) implies (ii) we first apply Lemima 3.1, where 6 is Vx[y - x],
to get a formula o(y) of L such that

E3dyo and F Vy(o-> Vx[y->x]).

The last sentence may be rewritten as

EVx,ylony - x],
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and then an application of Theorem 1.2 yields the desired formula
o(x,y) of L.

Instead of appealing here to Craig’s theorem we could derive it
from Theorem 2.3 as follows. Assume that

E YR, x) > xS, x) .
This is the same as
F IR YR, x)~> VSx(S.x).

By Theorem 2.3 there are formulas ¢,(x) of L (i € I') whose con-
junction is equivalent to 3R Y(R, x) on every special %, and hence

Ak [ARY= A ¢1A[ A ¢, >VSx].
ic/ i<l

We may drop the superfluous second-order quantifiers, and then a
compactness argument shows that some finite conjunction of the
¢; will interpolate between ¥ and x.

Notice that (ii) is stronger than (iii) since it yields not only an
interpolating formula ¢ but also an L-definable set of y’s for which
the implicatiohs hold. Also, (ii) implies that ¢ - x is true for all y.
Because of this, one can find examples of an interpolating formula
¢ which will work in (iii), but which will not work in (ii) for any .

Also notice that the following is true: if in (i) the single implica-
tion Y — x is replaced by a finite conjunction of implications
Y; > x; (i=1, ..., n) then in (ii) we can find interpolating formulas
¢; (i=1, ..., n) which all work with the same formula o. It is this
slight generalization of Theorem 3.2 which is actually used in the
next section.

There are situations which vary somewhat from the one in
Theorerm 3.2 in which we also may interpolate. For example, there
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is the following, which will also be applied in the next section.
(We omit the conditions corresponding to {iii).)

Theorem 3.3. Let Y(R, x, y) and X(S, x, y) be formulas of L(R)
and L(S) respectively. Then:
(a) The following two conditions are equivalent:
() = VRIy VS Vx[y - x];
(ii) There are formulas o(R, y) of L(R) and ¢(x, y) of L such that
E dyo and
EVx,y(lorny > ¢l Alp~>x]).
(b) The following two conditions are equivalent:
(1) EVYRIYyVSVx(x~> yl;
(ii) There are formulas o(R, y) of L(R) and ¢(x,y) of L such that
E=3yo and
FVx, y(x—=> ¢l rAlong—>yl).
Proof. (a) is proved just like Theorem 3.2. Thus, in (i) we drop the
superfluous outer quantifier and apply Lemma 3.1 to get a formula
o(R, y) of L(R) such that
E3dyo and
FV,yloay-x].
Applying Theorem 1.2 to this implication then yields a formula
@(x, y) of L as interpolani. (b) is the same, except that Theorem

1.2 is applied to x - [0 > Y].

Chang has proved a generalization of the equivalence of (i) and
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(iii) in Theorem 3.2. In this generalization, annouvnced in [3], the
prefix Iy is replaced by an arbitrary quantifier y.efix, al'owing
also second-order quantifiers provided they are uaiversal. We sub-
sequently succeeded in generalizing Theorem 3.2, including con-
dition (ii), to this situation. In fact, the resulting theorem, Theo-
rem 3.4, also generalizes Theorem 3.3 above. Our proof, which is
quite different from Chang’s, depends upon first giving a corre-
sponding generalizaticn of Lemma 3.1.

Lemma 3.1%. Let 0(Ry, ..., Ry, yg, ..., ¥i ) be a formula of
L(Ry, ..., Rg). Then the following are equivalent:
() F3yy VRy ... Ay, VR, O;
(ii) There are formulas 0,(Ry, ..., R;_1,¥g, ..., ¥;) of LRy, ...,
R;_1),i=0, .., k,such that

E3y,04,
EVyg, nylo;,>3Ay,,0,,1, =0,k -1,
and EVyy, .,y lo, -~ 01 .

Proof. As before, from (ii) to (i) is easy. The other direction is
proved by repeated application of Lemma 3.1. The essential point
in the proof is to notice that, by Remark {s) of §2, we may apply
Lemma 3.1 to the situation in which instead of having a single
block of universal second-order quantifiers, they are broken up by
first-order quantifiers. So, applying this to (i) we obtain a formula
0o9(y¢) of L such that

F 3.}’0 Oy
and

EVyslo,~ 3y, VR, ... 3y, VR, 0] .
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Since y1, ..., g, Ry, ..., Ry do not appear in o this last conse-
quence is equivalent to

E 3y, VR, .. Jy, VR, o, = 0] .

Applying 3.1 to this, treating y as a constant. we get a formula
0'(Ry, yg, 1) of L{R;) such that
=3y, 0
and
F Vy,(¢'> 3y, VR, .3y, VR, [0, > 0]),
that is
F Vy logao’~ 3y, YR, .. 3y, VR, 0] .

So, defining 0 as 6y A ¢’ we have

=3yy0y. EVyylog- 3y 0,1,
and

FEVyyylo, 3y, VR, ... Ay, VR, 0] .
Continuing in this fashion we get Gy, 0y, .... 0, satisfying (ii).

From this the desired generalization of Theorem 3.2 follows
easily. Chang’s theorem of [3] is the equivalence of (1) and (iii)
(without the further condition on ¢).

Theorem 3.4. Let Y(Yg, s yg» X) and X(Yo, «os Vi » X) be forrulas
of L(Ry, ..., Ry, Sy) and L(Ry, ..., Ry, S;) respectively. Then the
following are equivalent:

(i) F 3yy VR, ... 3y, VR, VS,,S, Vx[y->x];

(i) There are formulas o,(yy, ..., v;) of LRy, ..., R;_ 1),



442 D.W.Kueker, Generalized interpolation and definability

i=0, ..., k,and a formula $(yy, .., V¢, x) of LRy, ..., Ry}
such that

F3ry00,

5 S U [ Y41 001> 1= 0,...k—-1,
and

E Vg, oV V(o A =8l Alo>x]);
(iii) There is a formula ¢(y, ..., yi, Xx) of L(Rg, ..., Ry ) such thar
=3y, YRy ... 3y, VR, VS, S, Vx([y ~> 6] Ao~ x])

Furthermore, in (ii) and (iii) ¢ contains R; only if X does
(i=0,..,k).

Proof. The only direction requiring proof is {from (i) to (ii). First
apply Lemma 3.1* to get g, ..., 04 as in (ii). Then ¢, is such thai

Eo, > Vxly->x], ie, Eo, Ad—>x.

We apply Craig’s Theorem 1.2 to this implication to get the inter-
polating formula ¢. Then certainly ¢ belongs to L(Ry, ..., R;), and
moreover ¢ contains only the predicate symbols occurring in both
0y A ¥ and x. In particular, then. ¢ contains R; only if x does.

Remarks

(2) One can also give a version oi' Theorem 3.4 in which one in-
stead requires that ¢ contains R; only if ¥ does. Conditions (i) and
(iii) remain the same. and (ii) is eItered by attaching o, to ¢ rather
than { in the last asszrtion. Theorem 3.3(a) is an instance of the
original version of Theorem 3.4, and Theorem 3.3(b) is an instance
of this other version.
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(b) The simplifications made in the statement of Theorem 3.4, to
mzke it easier to state, may have made it harder to see what it
does say in many instances. Especially note that, in general, uni-
versal first-order quantifiers could appear in the prefix (which we
rendered without them as 3y, V R ... 3y, V R); we have simply
imagined them as collapsed with the universal second-order quan-
tifiers. In these cases it may not be obvious what the best corre-
sponding condition (i1) is. The following example, howevezr, should
make the procedure clear.
If (Sy,¥0,¥1>2,x)and X(S;,¥q, 1,2, x) are formulas of
L(S;) and L(S,) respectively, then the following are equivalent:
() FE 3y Vz 3y, VS, S, Vx[y - x]; '
(ii) There are formulas o(yq, ¥, z) and ¢(yy, ¥y, 2z, x) of L such
that

F3y,Vz3y, 0
and

EVyy 2,y xUony >l Alo->x]).
That (ii) implies (i) is, as usual, obvious. We see that (i) implies (ii)
by applying Theorem 3.4 while treating z as a constant. This yields
a formula 05(y¢ ) of L (not containing z) and formulas
0;(¥g,¥1.2)and ¢(yq, ¥y, 2z, x) of L (but also containing z) such
that

E3y,0,, FE Vy,lo,->3y,0,1,
and

E Yy, v o, Ay >0l ale—>x]).

Because z does not occur in g the second statement leads to

F Vyylo,>Vz3y,0,].
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Hence, if we define 0(ygy, 5, 2) to be oy A 0, condition (ii) above
is satisfied.

The remaining remarks concern possible improvements and ex-
tensions of the results of this section.

(c) One question concerning Theorem 3.4 which arises immediate-
ly is whether one can require (at least in (iii)) that the interpolant
¢ contains only the non-logical constants occurring in both ¢ and
X- The following example shows that in general this improvement
is not possible. _

Let L have only identity. Let 6 be the sentence of L saying that
the universe has exactly three elements, let 76(P) be the sentence
of L(P) syaing that P has exactly one element, and let 7, (Q) be the
senter.ce of L(Q) saying that Q has exactly two elements. Then the
foliowing holds:

EVP,QIyVx(0A7y(P)A[K(y) > P(x)]
= [1,(Q)~> Q)] .

In fact, given (A, P, Q) = 6 A 75(PYA 7,(Q) we may choose y € P
if PC Q, y ¢ P otherwise (in which case 4 — PC Q): and these are
the only choices of y satisfying the implication for all x.

If the above conjecture were true, we could interpolate a for-
mula ¢(x, y) of L. Up to equivalence with respect to 6 there are
only four possibilities: ¢ is eitherx =y, x # y, logically true, or
logically false. But, given (%, P, Q) 0 A 74(P) A 7, (Q) and choos-
ing y such that the above holds, the consequent of the implication
1s false for some x, the antecedent is true when x = ¥, and also the
antecedent 1s true for some x different from y (in the case y ¢ P).
Therefore no such formula ¢ can interpolate in the above impli-
cation.

(d) A second question which arises is whether one can allow exist-
ential second-order quantifiers in the prefix and still get a first-
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order interpolant ¢ (at least in (iii)). The following example, which
looks forward to the definability applications of the next section,
shows that this also is generally not possible.

Let L have just identity, and let R be a binary predicate symbol.
Let 6(R) be the sentence of L(R) saying that R is a discrete linear
order of the universe. Let a(x, y) be the formula of L(R) saying
that x is the immmediate predecessor of y in the ordering R. Let
7(R, P) be the following sentence of L(R, P):

vx[P(x) <« (71 3z0(z,x)
v3z, y[P) roz,y)ne(y,x)]] .

Thus, 7(R, P) says that P is the set of “‘even-numbered” ele-
ments in the ordering R. For any (U, R) &= (R there is some
P T A such that (¥, R, P) E (R, P); but if R is, for example, a
well-order then there is exactly one P such that (%, R, P) =
7{R, P). Hence the following holds:

= 3RVP, QVx([6(R)~> 7(R,P)A P(x)]
»> [7(R, Q) ~» Q(x)]) .

More precisely, this implication holds for R if and only if R satis-
fics 8(R) and there is no infinite descending sequence {a; : kK€ w}
such that a;,; is the immediate predecessor of q; . Now, if we
could get an interpolating formula ¢(R, x) of L(R), this would de-
fine the unique P satisfying 7(R, P) for some R for which such a P
is unique. But whenever A is infinite and (A, R, P) = 0{R) A

(R, P) we can find (%', R’, P') such that (A, R, P)= (A',R". P),
but

[{P"C A":(A', R, Py= (U, R, P")} = 214"!



446 D.W.Kueker, Generalized interp« lation and definability

Therefore no such P can be first-order definable, and so interpola-
tion fails.

(e) One sort of improvement in interpolation results which we
have not considered is that of relating the syntactical form of the
interpolant ¢ to that of the formulas { and x between which it
interpolates. However, by combining the known results of that
kind with ours, we also obtain some improvements in that line.

For example, Lyndon [12] proved that Theorem 1.2 could be
improved by adding to (ii) that

(1) a predicate which occurs positively (negatively) in ¢ also occu.s
positively (negatively) in both y and x.

(See [12] for the definition of positive and negative.) Using this

we can obtain, for example, an improvement of Theorem 3.2 by

adding to (ii)

(2) a predicate which occurs positively (negatively) in ¢ also occurs
positively (negatively) in both o A Y and x; a predicate which
occurs positively (negatively) in o either occurs negatively
(positively) in Y or positively (negatively) in x.

In fact, if 0 and ¢ satisfy (ii) of Theorem 3.2, then the implications

o-[y~->x],0AY~x,and ¢ — x are all valid. Theretore if 0 and

¢ do not satisfy (2) we could apply Lyndon’s theorem (1) to get
formulas which do.

- We do not know whether any better, or basically different, re-

finements of tiis sort are possible.

(f) Notice that in ihe example given in Remark (d) we can inter-

poilate the following infinitary formula ¢(R, x):

T3zo(z,x)v V. 3y, ¥, 2y 2, (13202, )

n<w

/\OS/?QI o, z)No(z, vy )l Aoz, x]) .



§3. Interpolation 447

Can this always be done? That is, given Y(R, S;, x) and x(R, §,, x),
finitary first-order formulas such that

= IRVS,,S, Vx[¥ > x],

can we find some infinitary (first-order) formula ¢(R, x) (not con-
taining S;, S, ) such that

= ARV S,, S, Vx(iy ~ ¢l Ao~ x1)?

By “infinitary” we intend primarily one of the classical languages
L, or something similar; in the above example ¢ belongsto L , .
(For information and further references on infinitary languages see
[21] and the volume in which [10] appears.) We should remark,
however, that the analogous generalization of Lemma 3.1 (that is,
replacing 3y by a second-order existential quantifier and finding
an infinitary o} is false.
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§ 4. Definability

The main result of this section is the following generalization of
Beth’s theorem, which will be derived as an application of Theo-
rem 3.2.

Theorem 4.1. For any T and any positive n € w the following are
equivalent:
(i), Forevery U, IMz ()| < n;
(ii), There are formulas o(vy, ..., v; ) and ¢;(x, vy, ..., Uy ),
1 <i< n,of Lsuch that

TE3Jv,...y0
and

TE Yy, .., v (0= \% Vx[P(x) < ¢,1).

1<i<n

Proof. It is easy to see that (ii), implies (i), — for any ¥ pick

ajy, ..., a; € A satisfying o; then any P € My(%) must he one of
sets defined by ¢,(x,ay,...,a;), i=1,..,n,and so IMp(A)I< n.
To prove that (i), implies (ii), we first apply compactness and so
assume that 7T is given by a single sentence 7(P) of L(P). (Actually
this is not necessary if one is willing to use the infinitary form of
the interpolation results.) What we will do is show, assuming (i),
holds, that

(*) there are formulas ¥,(P, vy, ..., v;) of L(P),
1 < i< n, such that

3, .., 0, VP, QUx([7(P)> V  y,(P)]
1<i<n

A A (@) AY(P) APK))]
1£i<n

> [7(Q) A ¥,(Q) > Q1)) .
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(*) says that for any Y there are points ¢, ..., 4, € A which di-
vide the sets in My (¥ ) into n parts by m2ans of ¢, ..., ¥,, and
each such part has at most one member.

Once we have (*) we apply Theorem 3.2 to obtain formulas
o(vy, ..., v ) and ¢;(x, v1, ...,y ) of L, 1 < i< n,such that

F3v,..vy0, TEVy,.,yle> V ¢ P)],

1<i€n

TEVYv,.,0 VxloAyP)APKX)> @], i=1,..,n,
and

T F Vul 3 erey vk Vx(¢i - i¢ll(P) d P(X)l ) s = ia cees 1y

changing Q to P in the last line. The last two lines may be com-
bined to yield

TE Yo, .., (0 A Y(P) > VX [P(x} > ¢,1),
i=1,..,n,
which together with the second line gives us

TEVu, . .,nlc=> V Vx[Pkx)« ¢i]).

1< i<n

Thus the theorem is established once we have (*).

We show (*) as follews. For any %, | M-(%)I < n, so let
Py, ..., P, be alist including all the sets in M, (% ). We mav assume
that

P iPi foreachi=1,...,n—1.

Leta;e P, —P;fori=1,..,n—landlet y,(P,v,,..,v,_;) be
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P(uiYA... AP, _{). Then P, is the only set P€ My (% ) such that
(U, P)=y¢,(F,a,...,a,_,).
Similarly we may assume that
P, ¢p foreachi=1,..,n—2,
and finda, ;€ P,_| —P,fori=1, .., n— 2. Then, defining

Yo(Puy, o, Uy, 3)tobe 1Y AP, ) A ... APy, 3), we know
that P, _, is the only set P € M, () such that

(QI,P)f: 11/2(1356119"'sazn_.:;)'

Continuing in this fashion we obtain all y;, i =1, ..., n. It is then
clear from their definitions that (*) holds. Therefore the theor=m
18 proved.

Note that for n = 1 this does give Beth’s Theorem 1.1, and also
that the proof works for T a theory in any language containing
L(P).

The problem of finding an equivalent to (i), was first raised by
Craig in [5]. Later he and Daigneault considered this question and
formulated a condition, similar to our (ii), but much more com-
plicated, which they proved equivalent to (i), for theories T in
L(P). Their methods, which did not work for theories T in arbi-
trary languages containing L(P), are much different and much
more involved than those used here or in §6 below. The author is
grateful to Professor Craig for sending him an account of their
(unpublished) work.

Just as Svenonius’ theorem may be derived from Beth’s, a cor-
responding generalization of Svenunius’ theorem may be derived
from Theorem 4.1. The semantic condition concerns M(¥%, P)
rather than M (%), and the syntactical condition states that some
finite disjuncticn of the corresponding conditions of Theorem 4.1
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is a consequence of 7. Combining these two results we obtain the
follecwing, which, like the Chang-Makkai theorem, is a generaliza-
tion of both Beth’s and Svenonius’ theorems.

Theorem 4.2. For any T the following are equivaient:
(i) For every %, I My (MW < w;

(ii) For every model (%, P) of T, IM(¥, P)| < w;

(iii) For some n, condition (ii),, of Theorem 4.1 holds.

A natural question to ask is whether the individual parameters
V), ..., Uy are necessary in (ii), of Theorem 4.1, or whether a dis-
junction of explicit definitions (as in Svenonius’ theorem) woulid
suffice. Equivalently, this asks whether the condition that
|Mp(UA) < w for all A implies that IM(Y, P)I =1 for every model
(A, P) of T. In general, the answer to this question is no, as is
shown by the following example.

Assume that L has just a binary predicate E. Let T be the theory
in L(P) which says that E is an equivalence relation which divides
the universe into two infinite equivalence classes, and P is one of
these equivalence classes. Then T is a complete theory satisfying
the conditions in Theorem 4.1 with n = 2, but P cannot be defined
without parameters (there are models (%, P) of T such that
IM(A, P)l=2). A definition of P wit.l parameters is given by

Tt= Vo (Vx([P(x) < E(x,v,)]
v ¥x[P(x) <= T E(x,v))]).

However, there is a large class of theories T for which the param-
eters are not necessary. This is the case whenever 7T satisfies the fol-
lowing “‘choice” condition:

(C) For every formula 8(x) of L there is some formula y/(x) of
L such that
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T 3x0-> 3106 AY).

For, if T satisfies (C) and also (ii),, of Theorem 4.1, then repeated
applications of (C) to o yield a formula ¢’ of L wi ich picks out
exactly one k-tuple of elements satisfying o. It foliows that when-
ever (%, P) is a model of T, P must be definable by one of the for-
mulas vy, ..., v [0' A§;],i= 1, ..., n, which have no parameters.
In this case, then, the conditions in Theorem 4.2 and Svenonius’
theorem are all equivalent.

Theorem 4.3. If T satisfies (C), the:: the conditions in Theorem 1.3
may be added to the list of equivalent conditions in Theorem 4.2

It should be noted that whether or not T satisfies (C) depends
only on the consequences of T in L. So if Ty is any theory of L
satisfving (Z), then any extension of 7, in any language also satis-
fies (C). This is the case, for example, when T, is Peano arith-
metic.

Before going on to a few other applications, let us survey some
of the kinds of model-theoretic condition concerning a precicate
P which are equivalent to some condition stating the explicit de-
finability of P. In what follows we drop our notation about
My (%) and instead write the conditions as second-order sentences;
7 here is a first-order formula which varies from coxndition to con-
dition. The equivalent definability conditions have either been
given previously or are easily obtainable from what we have done
previously.

Thus, Beth’s theorem gives a definability condition equivalent
to

(1) E=3sipr.

The immediate effect of our interpolation Theorem 3.2 is to enable
us to give a definability equivalent also to
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(2) 3y 3=ipr.

But we showed in Theorem 4.1 that using a variant of (2) we actu-
ally find a condition equivalent to

(3) E3snpr.

Using Theorem 3.4 instead of 3.2 we get a definability equivalent
to

(4) = 3y, VR, ... 3y, YR, 35" Pr.

Craig’s improveinent in Beth’s theorem may be expressed here as
generalizing (1) to

(1) =3Si'p3sSt,

and adding that the definition of P does not involve S. More gener-
ally, recalling Remark (e) from §2, we can replace 38 by any se-
quence of quantifiers, provided the second-order quantifiers are al}
existential. In particular, then, (4) becomes

(4" E (3y, VR, ... 3y, VR,) 3= P
(Vz, BSO - Vz, ElSm)r ,

and in the corresponding definability condition the definition does
not involve zy, ..., z,,, 8¢, ..., S, .

By combining these arguments with those of the Chang-Makkai
theorem we obtain corresponding results for 3 =41 p (A infini‘e)
in place of 3" P. Also, all of these results have corresponding
Svenonius forms.

Note the following:
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(a) A standard sort of compactness argument s10ws that for any
T, either M4 (™)< w for every %, or there is vome in inite A
such that iM, (%)= |Al; in the latter case, in fact, there is an in-
finite model (U, P) of T such that IM(U, P)| > 1 Al. Therefore no
cardinality restrictions on M (%) (or on M(¥U, P) for P€ M4 (A))
other than those in the previous theorems and the Chang-Makkai
theorem can possibly hold. It follows that those are also the only
possible cardinality restrictions on P in (1)—(4") above. Hence
they cannot be further generalized by altering the cardinality con-
dition.
(b) The example in Remark (d) of §3 shows that = JRISIP ¢
need not imply that P is first-order definable (in terms of some R).
Hernce (4) and (4') cannot be generalized by allowing existential
second-order quantifiers to the left of P. One may similarly show
that universal second-order quantifiers cannot be allowed to the
right of P. However, the question of the infinitary definabiiity of P
in these cases, as raised in Remark (f) of the last section, is open.

In general it seems that obtaining further definability results re-
quires looking at different types of conditions than those above.
Indeed, very many different types of results follow simply from
other applications of the interpolation theorems. Without attempt-
ing any comprehensive survey of such results, we give here two
interesting and related examples of such appiications.

The first result is an apparently new consequence of Craig’s
interpolation theorem.

Theorem 4.4. For any T the following are equivalent:
(i) Forevery U,if PP €My (A)and P# P' then PN P’ =0
(ii) There is a formula ¢(x,y) of L such that

TEVy®(y)-> x[P(x) < ¢(x,y)] .

Proof. ¢ is obtained from Theorem 1.2 as the interpolating formula
for the valid implication
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E [T(P) AP(y) APG)] ~» [T(Q) A Q(y) ~> Qx)] .

The other result, an application of Theorem 3.3, also deals with
a particular way in which P can be definable with parameters.

Theorem 4.5. For any T the following are equivalent:
(i) Forevery © if P€ My () then there is some a € P such that
Pis the only set in My (W) containing a;
(i1) There is « formula ¢(x, y) of L such that

TE JyP(y) aVx[P(x) < ¢(x, ¥)])
and

TE VX, y[P(x)AP(Y)~> ¢(x, )] .

Proof. We first show that (ii) implies (i). Assuming (ii), let

P € My (%) and let ¢ be a point in P which defines P as in the first
line of (ii). Assume that a € P € M (%). Ther. by the second line
of (i1) we have

(A, P") F Vx[P(x)~> ¢(x, a)]
and so P' C P. Repeating the argument with a pointa' € F' we
find that also P < P’, and so P = P', which shows (i).
To show that (i) implies (ii) notice that (i) implies
(1) EVP3IyVvVQVx[[T(P)~ P(y)]
ANITQ) A Q) A Q)] ~ [T(R) > P(x)])] .

So applying Theorem 3.3(b) we get formulas o(P, ) of L(P) and
¢(x, y) of L such that
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()@ TE3IyoaVylo=PO)I,
(b) TEVx,yiP(y)APXx)~> ¢(x,»)]
(after changing Q to P}, and
(¢) TEVx,ylo® y)aex,vi—>Px)].
Combimng (2) (a) and (c) we get
T= 3yPYIAVYxig(x, 1)~ Px)]),
which because of (2) (b) yields
TE3IyPO)AVx[px,y) = P(x)]),
which completes the proof.

Finally, we also have the following result which, although not
explicitly mentioning definability, is a consequence of Theorem
4.1.

Theorem 4.6. Let T be a theory of L(P). Let ¥ be such that
M () =0 but for some A' = A, My (U') # 0. Then there is some
B = U such that

1M (B2 1B 2 w.
Proof. Let T, be the set of all sentences of L true on %. Let B be
a special model of T, (that is, a special model elementarily equiv-
alent to ). If B does not satisfy the conclusion of the theorem,
then for every model %' of Ty, IMp(A') < w. Therefore we can

apply Theorem 4.1 to T U T to obtain formulas o(vy, ..., v ) and
$;(x, vy, ..., )of L(#=1, ..., n)such that
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T, UTE3u, .. 00
and

ToUTEVY, ..,y (0~ V. Vx[P(x) < ¢,])
1<i<n

The hypothesis that M, (') # O for some %' = ¥ implies that
My (%) # 0 (since B is relation-universal). Let Py € My (), so
that (B, Py) E Ty U T. A v, ..., v, 0 since X = B, so let
ay, ..., @ € A satisfy o in o. Since B is speciel there are

by, ..., by € B such that

+) (B,b),...b)=(%,a,..,4,).
In particular, by, ..., b satisfy o, so for some i,

DefineP={a€A:UAE digla,a;, ..., a;)}. Then, by (+),

(%A, P)= (8B, Py) and therefore (A, P) = T, contradicting our
hypothesis that M, (%) = 0. Therefore B satisfies the conclusion
of the theorem.

Notice that this result clearly fails if 7 is allowed to be a theory
in a language containing L(P). The theorem with the weaker con-
clusion that IM;(®B)! > 2 is an immediate consequence of Beth’s
theorem. It is given and applied oy K.L.de Bouvére in his book
[24].

For other sorts of results the reader is also referred to Chang
[2], which includes some theorems on the comparability of the
sets in M, (A ). Some results of [2] are new consequences of
Craig’s theorem, and others (including the Chang-Makkai theorem)
follow from Chang’s Main Theorem, which may be considered as a
sort of interpolation theorem.
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$ 5. Intersection of elementary submodels

Let 9% be amodel for L andlet Y € A. Then by ¥{ t Y w¢ mean
the submoedel of % whose universe is Y (if our language has func-
tions then we use submodel in the weak sense in which a submodel
need not be closed under the functions of the language). We define
D(U, Y) to be the set of all @ &€ A such that for some
d(x, vy, ...,v)of L and some b,, ..., b, € Y we have, for some n,

Uk ¢, by, ..., b} A IS X ¢(x, by, ..., by) .

Thus, D(YU, Y) is the set of all points of 4 definable in the sense of
Theorem 4.1 from points of Y.

verse fails in general. Those tiieories tor whose models the con-
verse holds are characterized in Theorem 5.3.

Let T be the theory ot L(P) such that (%, P) &= T if and only if
U tP<U. Ther, applying the Main Lemma to this theory T we
obtain

Lemma 5.1. Let % be special. Then the intersection of all elemen-
tary submodels of 9 has universe D(9, 0).

Proof. The universe of this intersection is precisely N M, (%), by
the definition of 7. By the dual of the Main Lerama there are for-
mulas ¢,(x) of L (i € I) such that

NM(%)={acA:AE V ¢(a)}.
i€1

Now, it is easy to see that D(9(,0)C N My (), so to get equality
it will be enough to show that for eachi €/, % = <7 x ¢,(x) for
some n.

Since the formulas ¢; do not depend cn the particular special
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model in question we may assume that | 41> |LIU w. Then, by
the downward Lowenheim-Skolem theorem we see that

N MT(QI)K 141,
and so

Ha€Ad:%F ¢a)} | < 1Al foreach iel.

But a definable set in a special raodel either has the power of the
model or is finite (since special models are universal; cf. [ 1]
Theorem 3.7). Hence for each i there is some »n such that
AEISnx ¢;(x), which proves ihe Lemma.

As an almost immediate consequence of this Lemma we derive a
theorem of Park characterizing the sets Y € A closed under the
above notion of defirability.

Theorem 5.2 (Park [16,17]). Let Y € A. The foliowing are equiv-
alent:
DDA, Y)=Y;
(11) There ~some B and som~ collection {B;:je J '} of elemen-
tary submodels of B such that

A<B and BrY= B..
=

Proof. From (ii) to (i) is easv. To show the other direction we first
expand the language L by adding an individua! constant symbol
for every element of Y. Call -he resulting expansion of 9, 9 *.
Then

D(A*, 0)=D(A . Y)=Y,

where D(% *, 0) ref=rs to definability in the expanded langnage.
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Let B* be a special elementary extension of % *, and let

{ ?B;f‘ :j€ J} be the set of all elementary submodels »>f B”. Clearly
D(%B*, 0)=D(A*, 0), so by Lemma 5.1 (for mode;s of the :x-
panded language)

XY= N 87,
i€eJ

Throwing away the wdacd constants, { B j i €J} is the set of all
elementary submodels of 8 which contain Y, and 8t Y = . 2,/ Z;.
]

Using Theorem 5.2 one may derive another result of Park, char-
acterizing those theories such that the intersection of any collec-
tion of elementary submcdels of any mcdel ¥ of the theory is
again an elementary submodel of U.

Theorem 5.3 (Park [16,17]). Let Ty be a theory of L. Then the
following are equivalent:
(i) For every A = Ty and every set { %, :j € J } of elementary
submodels of N

N QI].-<91;
jieJ

(ii) For every A = Ty and every Y € A
ALD(A, <A,

(iii) For every formula ¢(x,v,, ..., vy ) of L there is some formula
Y{x, vy, ..., v ) of L such that for some n

To = Yo, .., 0, 03x 0> Ix(@AP)ATS"x ]

Proof (see nlso [ 16]). The equivalence of (i) and (ii) is immediate
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from Theorem 5.2. The implication frorm (iii) to (ii) is straight-
forward (since D(¥, D(¥A, Y))=D(AU, Y)). We givz only a very
brief indication of the proof of the remaining direction, from (ii)
to (iii). Notice that, by compactness, to show (iii) it is sufficient
to show
(iii') For every formula ¢(x, vy, ..., vz ) of L, for every % = T,
and every by, ..., by € A such that % = dx ¢ix, by, ..., by ),
there is some Y(x, vy, ..., v ) of L such that

9[ #: 3x[¢(x> hl) wevy bk)A w(x, bla ey bk)]
and

Ak IS xYx, by, ..., b,) for some n.
But (iii’) follows easily from (ii). Thus, we know
At D(sA, {by,.r by } )< &

and hence if ¥ = I x ¢o(x, by, -, by ) there is some
a€ D(A,{by, .., by })such that A F ¢(a, by, ..., by). This point
a is then defined by some ¢ which will work in (iii').

Earlier results similar to Theorem 5.3 may be found in [19] and
[14].
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§ 6. A syntactical proof of Theorem 4.1

We give here a syntactical proof of the implication from (i),, to
(ii),, of Theorem 4.1. It proceeds roughly as fc.lows. We wirst appl/
compactness to reduce the theory 7 to a single sentence 7. Then
we give a direct argument, using only Craig’s interpolation theo-
rem, to obtain the formulas ¢ and ¢;, 1 < i< u, used in defining P.
In particular, there are no further applications of compactness.

Aside from the usual interest of effective syntactical proofs, this
proof is of interest because of its applicability to L, ,, an infini-
tary language allowing countable conjunctions and disjunctions
(see Scott [21]). Lopez-Escobar [ 11] has shown that Craig’s theo-
rem holds for L, ,, and therefore so dces Beth’s theorem, for
theories given by a singie sentence of L, ,. Thus this proof shows
that Theorem 4.1 holdsin L, Jw for theories given by a single sen-
tence. Other sorts of infinitary definability results are given in [21]
and [10]. .

Actually the proof given is not purely syntactical, bu it could be
rewritten as such a proof. This would, of course, involve stating
(i), syntactically.

We remark that we do not know to what extent tl.c interpsii-
tion theorems in § 3 have syntactical proofs, nor whether they
hold for L, .

Our proof that (i), implies (ii), proceeds by induction on n. We
assume the result is known for all &£ < n, for any choice of the
language L. Let T be a theory such that i), holds; by compact-
ness we may assume that 7" is given by a single sentence 7(P) of
L(P). (Essentially the same proof also works if 7. and hence 7,
belong to any language containing L(P).) We first show
(1) There is a formula x(x, vy, ...,v,_y) of L such that for any {

with |My () = n, there is some P € My () such that

(A, PYE vy, v, VX[P(X) = x] .
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Proof. Let Py, ..., P, be new unary predicate symbols. Let 6 be
the sentence of L(Py, ..., P, ) defined as

'r(Pl)A.../\'r(Pn VA N TV;C[Pi(x)f—» Pj(x)]
1Li<j<n

Then the following implication is valid.
E[0AT Pl(vl)/\ AT Pr.~1(“n-1)’\ Pn(x)}
= [r(P)> TP v...vIPQU,_,)vPKx)]

Applying Theorem 1.2 we get a forrula x(x, vy, ..., v,_;) ot L
interpolating between the antecedent and the consequent of this
implication.

Let 9 be such that IM; () =n, say Mp(A)={P,, .., P,} . We
may assume that P, is maximal, and so find g; € P, — P; for each
i=1....n—1.Then

(9, Pn) b= Vx[‘P”(x) - x{x, ay, ...~an~l)] ,
and

(U Py VxIx(x,aq.ha, )

n-—

- 1P v..vIPa, )vP(x)]

for each P € My (%). Fcr P= P, none of 1P(a)), ..., 1P(a,_, ) can
hold, and hence

(C*)I’Pn) ’:: VA[P(X) > X(x: aia "-9an_1)] k]
which proves (1).

We define 7, (v, ..., u,_; ) to be the formula obtained from 7(P)
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by replacing every occurrence in 7 of P(¢), for any term ¢, by
x(t, vy, ..., U,_y b it being assumed that none of vy, ..., v,_; C:cur
in 7(P). Then fo. any % and any a,, ...,a,_ { €4
Ak 7,00y, -a, ) iff (A, P)ETP),
wherc

P={acA:AF x@,ay,...a, 1)} .
Let  be the formula

Ay eV  TIO s s YV ) 2 T U5 b, )

Note that 7; and ¥ are both formulas of L and that
F 3vg, .., U,y V.

Now we expand L to a language L* by adding » — 1 new indi-
vidual constant symbols, ¢, ..., ¢,_;. We consider the theory T *
in the language L*(P) given by

T(P) ATV X[P(x) < X(x, ¢p, s €, ] A (e, s €1

Then we have

(2) Let N*=(U,a,, ...,a, ;) be any model for L*. Then:
(@) if A = Ylay, ...,a,_1) then

My (A" S Mp(A) S Mo (UAF)U Py},
where

P,={acA:AF x@,a,,....,a,_)}.
(b) My (AHI<n—1.

Proof. (a) is clear from the definition of 7. (b) Assume that
Moy (A *y# 0. Then ay, ..., a,_1 satisfy ¢, and so (a) holds. But,
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by the definition of T*, Py & My« (%*); hence if Py € M1 (%)
then (a) implies that My« (% )= Mz (%)~ {Py}, and so it can
have 2t most # — 1 elements. On the other hand, if Py ¢ M, (%)
then no set in M, (%) is definable by x with any choice of iidi-
vidual parameters. Therefore by (1), M;(%) cannot have n mem-
bers, and so | My (A*) < n - L.

Now by (2) (b) we can apply our inductive hypothesis to 7™ to
get formulas 0*(vy, ..., v, 1, ¥, o0, U ), 0,06, 09, 0, 0g),
1<i<n-1,of L such that
3) T" = an, s Uy 0%(ey, s €15 Vs oves Ug )

and

ok
T E Yy, .., vk(u*(cl, cers €13 Ups es Uy )

- V Vx[P(x) <> ¢,(X, €1, ..sC 50,5 s U )])
15i<n-1

Since T* = Y(cy, ..., €,_, ), (3) continues to hold when o* is
replaced by the formula 0** defined as

OF (U5 s U ) A Y, ..., v, 1) -
{ow define ¢, to be x(x, vy, ..., v,_1)- Then

“4) TEYy,. .,y (c**> V Vx[P(x) < ¢.1).

1<ign

(4) is clear from the definition of o**, (2)(a), (3), and the defini-
tion of ¢,,.

In general, however, vy, ..., v, 6** may not follow from T. But
if A &= 71 vy, ..., v 0%* tlen it follows from (3) that for every
ayy ey €A we have My« ((¥,ay,...,a,_1))=0.So if
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My (%) +# 0 it follows from (2) (a) that

M (M) ={{a€A:¥ F x(a,ap,...,a, )}}
for any aq, ....q,_, satisfying . So, define o(vy, ..., v, ) to be

o*¥ W, v ) v T, L 0 0 A Y, e, )]

Then what we have said above shows that (ii),, holds for this ¢ and
the previously defined ¢, ..., ¢,. Therefore the proof is completed.
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