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Genomic research can lead to discoveries of copy number variations (CNVs) which can be a sus-
ceptibility factor for autism spectrum disorder (ASD). The clinical translation is that this can
improve the care of children with ASD. Chromosome microarray is now the first-tiered genetic
investigation for ASD, with a detection rate exceeding conventional cytogenetics and any sin-
gle gene testing. However, interpretation of the results is challenging and there is no consensus
on “what” and “how much” to disclose. In this article, we will review how CNV studies have
improved our understanding of ASD, the clinical applications, and related counseling issues.
Future direction of autism genetic research is also discussed.
Copyright ª 2013, Elsevier Taiwan LLC & Formosan Medical Association. All rights reserved.
Introduction

Autism spectrum disorders (ASDs) are neurodevelopmental
conditions that share features of impaired communication,
impaired social interactions, and repetitive behaviors with
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a narrow range of interests. According to the Centers for
Disease Control and Prevention (CDC) 2012 estimates, one
in 88 children has been identified to have ASD in the United
States.1 The average age of diagnosis is 4.5 years, when
symptoms in the three core domains become apparent (CDC
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2009). Approximately 75% of children with ASD have a
lifelong disability requiring substantial social and educa-
tional support.2 ASD represents an important health burden
with its astonishing 78% increase in pediatric prevalence
between 2002 and 2012 (CDC data).

According to the new Diagnostic and Statistical Manual
of Mental Disorders edition 5 (DSM-V),3 the diagnosis of
“autistic disorders” is replaced by “autism spectrum dis-
orders” because autism is defined by a common set of be-
haviors. The three domains in DSM-IV become two with
social and communication domains merged to improve the
diagnostic clarity. Importantly, this revision is more
adapted to the individual’s clinical heterogeneity by
including clinical specifiers and associated features,
including any known genetic disorders. This certainly re-
flects the improved understanding of the clinical presen-
tation, the pathology, and the genetic susceptibility of ASD.

Recent research has suggested that ASD might result
from atypical brain structure, differentiation, synchroni-
zation, or connections.4e6 As mentioned earlier, it was long
believed that genetics played a major role in ASD. The
heritability of autism was reported to be approximately
90%.7 Concordance rate in monozygotic twins is as high as
70%,8 while the recurrence rate in siblings is approximately
20%.9 Understanding of the genetic origin of ASD first came
from studying various genetic syndromes, for example,
fragile X syndrome (FMR1), Rett syndrome (MECP2),
Angelman syndrome (UBE3A), tuberous sclerosis (TSC1 and
TSC2). Genetic studies on various neurodevelopmental/
psychiatric diseases, for example, bipolar disorders,
schizophrenia (SZ), intellectual disability (ID), develop-
mental delay (DD), attention deficit-hyperactivity disorders
(ADHDs), provide further evidence that these conditions
share considerable locus heterogeneity. An emerging model
has been that certain mutations or genetic variability would
disrupt the homeostasis of normal neuronal development
resulting in a range of disorders as part of a neuro-
developmental continuum.10 A recent review identified
more than 100 disease genes and over 40 genomic loci
among patients with ASD.11 Many of these findings were
discoveries made from the study on copy number variation
(CNV) in patients with ASD or other neurodevelopmental/
neuropsychiatric phenotypes.12e14

In the subsequent discussion, we will focus on how CNV
studies have improved our understanding of the genetics of
ASD and their impacts on the clinical evaluation of patients
with this common and potentially devastating neuro-
developmental disorder. The experience in handling the
interpretive complexities of CNV studies will also be
important and applicable to other emerging and increas-
ingly complex genome-based technologies.
CNVs and human genome

CNVs are segments of DNA ranging from a kilobase to
several mega-bases, present in varying number of copies in
different individuals.15 They can be gains (duplication or
insertional transpositions), losses (deletion), or complex
rearrangements. The function of CNVs is yet to be fully
understood. However, the contribution of CNVs in genomic
variation has gained more attention because they
encompass more nucleotides per genome than the total
number of single-nucleotide polymorphisms (SNPs).16

The first CNV studies were published in 2004.17,18 CNVs
can involve one or multiple genes and can affect gene
function by (1) disrupting the coding region as a recessive or
dominant allele, (2) disrupting the regulatory landscape,
(3) generating a chimeric gene, or by (4) position effect.19

Genomic disorders are syndromes caused by alteration of
specific dosage-sensitive genome segments.20 Often the
genomic region is flanked by homologous low-copy number
repeats that mediate nonallelic homologous recombina-
tion, resulting in deletion/duplication of the same genomic
region, for example, the 22q11.2 deletion/duplication
syndrome, the WilliamseBeuren syndrome and its recip-
rocal duplication.21 Conversely, CNVs can be associated
with no overt phenotype, even for the large CNVs involving
multiple genes.17,18 The Database of Genomic Variants
(http://projects.tcag.ca/variation/) is a useful catalog
that provides a comprehensive summary of structural
variation in the human genome. It annotates CNVs that
involve segments of DNA that are greater than 1 kb, as well
as InDels (insertions and deletions) in the 100 bpe1 kb
range, identified in healthy control samples.
CNV studies in ASD

Cytogenetically visible chromosomal anomalies are found in
approximately 7e8% of patients with autism.22 Almost
every chromosome is affected by numeric or structural
aberrations but the most consistent findings are fragile X
and duplication of maternal 15q11-13.22 Chromosome
microarray (CMA) is a molecular cytogenetic technique that
overcomes the limited resolution of conventional cytoge-
netics and allows genome-wide scanning for both micro-
scopic and submicroscopic chromosomal aberrations.23 This
strategy has been very successful in the discovery of ASD
candidate genes, making it the best known example of CNV
studies for pediatric disorders.24

In 2007, Sebat et al reported the first family-based CNV
study by examining 118 simplex, 47multiplex, and 99 control
families, and identified de novo CNVs in 10% of sporadic pa-
tients, compared with 3% in multiplex families and 1% in
controls.25 Disease-associatedCNVswere identified at 17 loci
on 11 chromosomes, suggesting multiple genes are involved
in the pathogenesis. The concept of CNVs has then emerged
as a possible genetic contribution to the development of
autism. Multiple large studies have been performed using
different platforms to examine different cohorts25e33 and
many are impactful studies in the field of autism research [as
rated by the Interagency Autism Coordinating Committee
(http://iacc.hhs.org/) of the U.S. Department of Health and
Human Services]. By summarizing the findings of these
studies,25e33 we can conclude the following:

1. Multiple rare de novo (and some inherited) CNVs
contribute to ASD susceptibility. All have an individual
contribution of less than 1% in the frequency of
occurrence.26,28,29,33

2. The proportion of de novo CNVs is three to five times
higher in families with ASD than in controls, and it is
higher in simplex than multiplex families.25,26,28,29
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3. Some patients with ASD have two or more de novo CNVs
and typically have more severe phenotype. Approxi-
mately 27% patients with syndromic ASD have de novo
CNVs.31,32

4. Up to 40% of family-specific CNVs are inherited from an
apparently non-ASD parent, suggesting incomplete
penetrance.25,26,31

5. Although many CNVs appear to involve haploinsufficient
regions, some act recessively as homozygous alleles
deleting both copies of a gene in consanguineous fam-
ilies (e.g., PCDH10, DIA1, NHE926).32

6. Some CNVs recur at the same locus among unrelated
patients, and may coincide with genomic disorders
associated with ASD. Some are well-known (e.g.,
maternal 15q11-q13 duplication),26e31,33 while the
others are more recent findings (e.g., 16p11.2 deletion/
duplication25,26,28e30,33 and 17p11.2 duplication28).

7. There is a relative enrichment within CNVs in ASD
studies for neuronal synaptic complex genes (e.g.,
SHANK2, SHANK3, NRXN1, NLGN4).25e28,31e33

8. CNV studies in ASD identified the same genes spanning
across different neuropsychiatric and neuro-
developmental disorders including ADHD, SZ, and ID,
indicating that overlapping pathways may be involved
in phenotypically distinct outcomes.12

It is important to note that different CNVs exhibit
different penetrance for ASD depending on multiple factors
including dosage sensitivity and the function of the gene(s)
they affect.25e33 For CNVs with large impact on ASD sus-
ceptibility, they will typically be de novo in origin, higher in
the frequency of occurrence and associated with more se-
vere symptoms, for example, maternal 15q11-q13, 16p11.2
deletion and 22q13 deletion (SHANK3 gene). Some have
moderate or mild effects and will require a “second-hit” or
“multiple-hits” to take the phenotype across the ASD
threshold, for example, 15q11.2 deletion,34 16p12.1 dele-
tion,35 SHANK2 mutation.36 Others demonstrate phenotypic
variation and can be seen in non-ASD individuals.19 CNV
deletions, compared with duplications, tend to have a
stronger effect size on phenotype severity across the
spectrum of neurodevelopmental diseases.10
International collaborations and recent
landmark studies

Tremendous effort is made to establish collaborations for
autism genetic researches. Two important examples in this
regard are the Autism Genome Project (AGP) (http://www.
autismgenome.org/) and the Simons Simplex Collection
(http://sfari.org/sfari-initiatives/simons-simplex-
collection).

The AGP aims to identify autism susceptibility genes by
drawing on very large cohorts of simplex (trios with an
affected child and the parents) and multiplex (a family with
at least two children affected) families from more than 40
academic/research institutions across North America and
Europe.37 The probands are fully characterized in the
autism phenotype. Phase I of the project was completed in
2007, while phase II was finalized in 2010. Its landmark
study on CNVs, involving 996 cases with ASD and 1287
controls, has demonstrated a higher burden of rare, genic
CNVs in patients compared with controls and notably higher
involvement of genes previously implicated in ID. It has also
implicated new ASD genes such as SHANK2 and the DDX53-
PTCHD1 locus and using gene set analysis, the study iden-
tified novel important ASD pathways (e.g., cellular prolif-
eration, projection and motility, and guanosine
triphosphatase/Ras signaling).38

In contrast, the Simons Foundation Autism Research
Initiative embarked on an effort to recruit and carefully
phenotype more than 2000 simplex families.39 The majority
(>80%) of the study population included at least one un-
affected sibling and the probands were evaluated with a
battery of diagnostic measures related to ASD and related
co-morbidities. Its landmark study involves 1124 cases and
872 controls, and uses the same microarray platform as the
AGP study.38 They have found that CNVs were four times
more common in the probands compared with their unaf-
fected siblings. In addition, CNVs in affected children were
larger and overlapped with more genes. These findings
support that autism is mostly caused by rare de novo events
unique to each proband.40

Table 112,38,40e52 summarizes the loci/genes most often
affected by CNVs from these two most comprehensive
studies.

Clinical applications of CMA in the evaluation
of patients with ASD

Clinical utility

In 2010, the International Standard Cytogenomic Array
(ISCA) Consortium reviewed 33 published studies of 21,698
patients referred for the investigations of DD, ID, multiple
congenital anomalies, and ASD and found that CMA offers a
much higher diagnostic yield of 15e20% than a conventional
karyotype of 3%, excluding the diagnosis of Down syndrome
and other recognizable chromosomal aberrations.53 ISCA,
therefore, proposed the use of CMA in place of karyotype as
the first-tier cytogenetic diagnostic test for patients with
these indications. In the same year, the Autism Consortium
Clinical Genetics/DNA Diagnostics Collaboration focused
specifically on 933 patients with ASD and compared
different testing methods. Diagnostic yield was 2.23% using
G-banding karyotype and 0.46% using fragile X testing that
was less sensitive compared with CMA method, which was
able to detect clinically significant abnormalities in 7% of
patients. They concluded that despite the potentially
complicated interpretation of novel CNVs of unknown sig-
nificance, CMA should be considered as a part of the initial
diagnostic evaluation of patients with ASD.54

With these lines of evidence showing the clinical utility,
the 2010 Practice Guidelines of the American College of
Medical Genetics has recommended testing for CNVs as
first-line test in the initial postnatal evaluation of in-
dividuals with ASD.55 The Canadian College of Medical Ge-
netics has also issued a position statement recommending
CMA as the first-line laboratory investigation when autism is
unexplained after a thorough history and physical exami-
nation.56 More recently, clinical CNV studies in Chinese
population have become available and in two recent
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Table 1 Loci/genes most commonly affected by CNV in ASD in the Autism Genome Project study by Pinto et al and Simons
Foundation study by Sanders et al.12,38,40e52

Genomic loci Gene(s) ASD cases (n Z 2200) Controls (n Z 2159) p Other overlapping phenotypes

Deletion/duplication Deletion/duplication

16p11.2 (700 kb) 30 genes 10/8 1/2 0.001 * Schizophrenia,49 ADHD12,50

Xp22.11 (1 Mb) PTCHD1 10 (with nine
affecting upstream
noncoding RNA)/0

0/0 0.038 * ADHD12

2p16.3 NRXN1 8/1 1/0 0.011 * Schizophrenia12,51

7q11.23 (1.4 Mb) 22 genes 0/4 0/0 0.06 WilliamseBeuren syndrome (deletion)41

22q11.2 (2.5 Mb) 56 genes 2/2 0/1 0.214 Schizophrenia12,52

1q21.1 (1.5 Mb) 14 genes 0/4 0/3 0.723 Schizophrenia12,43

15q13.3 (1.5 Mb) 6 genes 4/1 0/0 0.030 * Epilepsy � intellectual disability,
schizophrenia42,43

15q11-q13 (5 Mb) 12 genes 0/2 0/0 0.245 Epilepsy, schizophrenia44

11q13.3 SHANK2 2/0 0/0 0.245 Intellectual disability45

22q13.33 SHANK3 0/1 0/0 0.495 Intellectual disability46

Xq13.1 NLGN3 1/0 0/0 1 Intellectual disability47

Xp22.3 NLGN4X 0/1 0/0 1 PDD-NOS, intellectual disability48

The number of cases (and controls) is the total number combining the studies by Pinto et al38 and Sanders et al.40

*Statistically significant. ADHD Z attention deficit-hyperactivity disorder; ASD Z autism spectrum disorder; CNV Z copy number
variation; PDD-NOS Z pervasive developmental disorder not otherwise specified.
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publications from Taiwan, the detection rate of clinically
significant abnormalities by CMA is approximately 5%.13,14

Obviously, the application of CMA as the first-tiered ge-
netic testing in children with ASD needs to be cautiously
evaluated in different patient populations with different
clinical context.

An evidence-based approach for causality

As elucidated in the study by Shen et al,54 at present it is
still challenging to determine the causation and pathoge-
nicity of a given de novo variant. Our knowledge of muta-
tion rates and population-distribution statistics of CNVs is
still rudimentary. At the same time, it is difficult to know
whether an inherited variant is necessarily benign in a
particular genomic environment. Some CNVs annotated as
benign may, in fact, be found to be associated with subtle
phenotypic signs (known as “broader autism phenotype”).
Sometimes, gains and losses involving multiple genes at the
same genomic locus can lead to overlapping or very
different phenotypes. Other independent potential factors
that are genetic, epigenetic, sex-related, environmental,
or stochastic in origin may also warrant attention. All these
factors need to be considered carefully in the interpreta-
tion and subsequent genetic counseling for a complex dis-
ease like ASD.19

The ISCA Consortium aims to promote informed and
uniform CNV interpretation, which will in turn be translated
into better patient care. Besides its continuous effort to
optimize and standardize the array design,57 the con-
sortium has established a framework to assess the potential
clinical relevance of CNVs systematically.58 CNVs are clas-
sified as (1) pathogenic, (2) uncertain, likely pathogenic,
(3) uncertain, (4) uncertain, likely benign, or (5) benign by
considering the following questions:
� Is this genomic region associated with a clinical
phenotype?

� Is this clinical phenotype associated with dosage
sensitivity?

� How many lines of evidence are there to support dosage
sensitivity?

� Are CNVs involving this genomic region enriched in
disease population?

� Is there any compelling evidence to refute its dosage
sensitivity?

Peer-reviewed literature is considered the gold standard
for primary evidenceand large-scale case-control studies are
of particular value in assessing the clinical relevance, while
locus-specific database such as the ISCA Database (www.
ncbi.nlm.nih.gov/dbvar/studies/nstd37/), DECIPHER,59 or
the Autism Chromosome Rearrangement Database (ACRD)
(http://projects.tcag.ca/autism/) are examples of second-
ary evidence. The ACRD is a collection of hand curated
breakpoints and other genomic features that are related to
autism, taken from publicly available literature, databases,
and unpublished data. It was first described in 200418 and is
constantly updated.

Role and responsibility of the clinicians

It is important for clinicians to have a sufficient under-
standing of the technology. They need to be aware of the
different clinical platforms and the information they can
provide.55 In general, smaller probe size and higher den-
sity enhance the accuracy and resolution. Balanced
chromosome rearrangements such as translocation or in-
versions cannot be identified through CMA, which can only
essentially detect copy number changes. A SNP-based
platform can not only detect CNVs, but also copy-
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number neutral abnormalities such as uniparental disomy
and areas of homozygosities. Clinicians should also un-
derstand what type of follow-up tests needs to be per-
formed, including conventional karyotype, fluorescence in
situ hybridization, and quantitative polymerase chain re-
action studies. Often parental studies need to be con-
ducted to rule out the presence of chromosomal
rearrangement predisposing to recurrence. Clinicians shall
also be familiar about the databases and resources
currently available for referencing gene location and
function, CNV listings, and up-to-date clinical information
for specific CNVs. Certainly, clinicians must be aware that
CNV studies are just part of the overall genetic evaluation
of patients with ASD (Fig. 1).2,60e62 Clinical geneticists
shall be involved to provide dysmorphology assessment63

and targeted neurogenetic evaluation according to latest
development.64e66
Disclosing results of autism genomic testing

Currently, there is still no international consensus regarding
the disclosure of results for genomic testing in individuals
with ASD in both the clinical and research setting. With the
objective to determine opinions on genomic testing
disclosure, we performed a systematic review involving a
comprehensive search of MEDLINE and Embase for quanti-
tative and qualitative studies on the opinions of researchers
and participants, in the context of autism genomic research
(using search terms “autism”, “autism spectrum disorder”,
“genetic”, “genome”, “genomic”, “result”, and “disclo-
sure”).67 Publications published in English before December
2011 were included, whereas those presenting ethical ar-
guments alone were excluded. Two quantitative studies
and one qualitative study68e70 were included. The two
quantitative surveys involved only researchers (N Z 168) or
participants (N Z 158) with response rates of 40% and 41%,
respectively. The qualitative study involved both (23 re-
searchers and 34 participants) and the response rate was
not stated.

Almost all (97%) participants wished to obtain individual
research results, whether favorable or not, irrespective of
whether they would act upon the results. Majority of re-
searchers (80%) agreed that clinically significant findings
should be disclosed, while those of uncertain significance
should not be reported (85%). “Clinical significance” depends
on whether the genetic finding is robust, well-replicated, or
incidental. Researchers with clinical interpretive role or
capability to explain the results are more inclined to disclose
the results. Integrating the opinions of both parties, the
qualitative study found that reportability is related to
perceived meaning to participants, evidentiary standards,
and epistemological commitments regarding the role of ge-
netics in autism and concluded that disclosure standards
remained context specific and not universal. Our systematic
review provides limited guidance on genomic research
disclosure and the meaning of “clinical significance” remains
subjective and poorly defined. Furthermore, all included
studies are susceptible to response bias and selection bias,
limiting their validity and generalizability.

Research with larger samples evaluating different sce-
narios is needed to guide the decision-making process on
result disclosure and to explore the ethical and legal re-
sponsibility of researchers. These studies will provide the
evidence necessary to guide clinicians and scientists in
result disclosure. However, the ultimate disclosure stan-
dards will be context specific and require individualized
considerations for different participants, given the
complexity of the issue.
Conclusion and future directions

At the time of writing this review paper, the Phase III study
of AGP was just reported in the 2012 International Meeting
for Autism Research, supporting and reinforcing the major
findings in the Phase II study. Three studies, using exome
sequencing, have investigated more than 600 families and
identified a two to four times increase in de novo mutations
in the coding regions of the genome among affected in-
dividuals over their controls.71e73 The Autism Sequencing
Consortium has begun studies using whole exome/genome
sequencing and these projects are expected to be
completed within a reasonable time frame. Both whole
exome and genome sequencing make use of massively
parallel sequencing (or next-generation sequencing) tech-
nology.2 Exome sequencing investigates all the exons, or
coding regions of genes which comprise of approximately
1% of the entire genome. It has been successfully applied in
the identification of causative mutations in Mendelian and
non-Mendelian disorders including ASD, using case-control
design or using parents-affected child trios.74 However, in
conditions caused by mutations in the noncoding regions of
the genome, the genetic changes will escape detection by
exome sequencing and would only be detectable by whole
genome sequencing. However, whole genome sequencing is
relatively expensive and the huge amount of data requires
sophisticated bioinformatic analysis and computational
power that is still beyond the capacities of most clinical
molecular laboratories. Detailed discussion of these tech-
nologies is beyond the scope of this review and readers are
referred to relevant comprehensive reviews for more
information.2,74

Massively parallel sequencing has also brought about
advances in the understanding of our epigenome. Epige-
netics refers to heritable changes in gene expression that
occur without a change in the primary DNA sequence.
Identifying the relationship between our epigenome and
neurodevelopment and the link to ASD susceptibility has
become an emerging area in autism research. Global DNA
methylation profiling in lymphoblastoid cell lines has iden-
tified interesting candidate genes with altered expression
in brain tissues from individuals with ASD,75 whereas whole-
genome research studying postmortem brain samples from
tissue banks have identified chromatin changes in affected
individuals.76

Pluripotent stem cells and animal models are new
technologies that enable researches to shed lights on
promising novel strategies for interventions in the future.77

For example, the triple-Ube3a autistic mouse model with
diminished glutaminergic transmission in synaptic pathway
exhibited the behavior phenotype of maternal 15q11-13
duplication and triplication syndrome.78 The FMR1 knock-
out mouse model with deficiency in metabotropic



Figure 1 Clinical genetic evaluation of children with autism spectrum disorder (ASD).2,60e62
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glutamate receptors showed a phenotype similar to that of
fragile X syndrome.79 These animal models played impor-
tant roles in pharmaceutical exploration of treatment
methods for syndromic ASD. Following promising results in
animal drug trials, several medications entered into clinical
trial phase. For example, the mGluR5 antagonist showed
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some positive effect without clinically significant adverse
effect in a pilot study in adult patients with fragile X syn-
drome.80 Another example would be minocycline,81 which
was previously used in neurodegenerative disease treat-
ment for its neuroprotective effect.82 Encouraged with the
rescue effect on the dendritic spine and synaptic structural
abnormalities in the fragile X knock-out mouse,83 Utari
et al84 put it into clinical use and reported promising result
when treating 50 fragile X syndrome patients with a 2-week
course of minocycline.

The incremental advance in ASD genetic research has
not only improved our understanding of this complex neu-
rodevelopmental disorder, but it has also started to have an
impact on the diagnosis, classification, and intervention of
ASD. It is our hope that with the data accumulated through
whole genome technology, important pathways will
continue to be discovered and be translated into better
clinical care for children with ASD and other neuro-
developmental disorders.
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