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a b s t r a c t

Every complex plane curveC determines a subschemeS of the P8 of 3×3matrices, whose
projective normal cone (PNC) captures subtle invariants of C .
In [P. Aluffi, C. Faber, Limits of PGL(3)-translates of plane curves, I, J. Pure Appl. Algebra

214 (5) (2010) 526–547] we obtain a set-theoretic description of the PNC and thereby
we determine all possible limits of families of plane curves whose general element is
isomorphic to C . The main result of this article is the determination of the PNC as a cycle;
this is an essential ingredient in our computation in [P. Aluffi, C. Faber, Linear orbits of
arbitrary plane curves, Michigan Math. J. 48 (2000) 1–37] of the degree of the PGL(3)-orbit
closure of an arbitrary plane curve, an invariant of natural enumerative significance.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

1.1

In [1] we determine the possible limits of a fixed, arbitrary complex plane curve C obtained by applying to it a family of
translations α(t) centered at a singular transformation of the plane. In other words, we describe the curves in the boundary
of the PGL(3)-orbit closure of a given curve C .
The germ α(t) is seen as a C[[t]]-valued point of the projective space P8 parametrizing 3 × 3 matrices (up to scalar);

the determination of the limits of a curve C of degree d, as points of the projective space PN of degree-d plane curves, is
accomplished by studying a specific subset of P8 × PN , determined by C : namely, the projective normal cone (PNC) of the
subschemeS of indeterminacies of the rational map c : P8 99K PN associating to ϕ ∈ PGL(3) the translate of C by ϕ.
In [1] we find that the PNC has five types of components, reflecting different features of (the support C ′ of) C : linear

components of C ′ (type I); nonlinear components (type II); singular points at which the tangent cone consists of at least
three lines (type III); sides of the Newton polygon at inflectional or singular points (type IV); and specially ‘tuned’ formal
branches at singularities of C ′ (type V). This analysis amounts to a set-theoretic description of the PNC, and suffices for the
determination of the limits of C . For applications to enumerative geometry, and specifically the computation of the degree
of the PGL(3)-orbit closure of C , it is necessary to have the more refined information of the PNC as a cycle; that is, the
multiplicities with which the components identified in [1] appear in the PNC. This information is listed in [2], Section 2, and
crucially used there as an ingredient in the proof of the enumerative results. In this article we prove that the multiplicities
are as stated in [2], thereby completing the proof of the results in loc. cit.
A full statement of the main result of this paper is given in Section 2; this section also includes a summary of the set-

theoretic description given in [1]. An outline of the result is as follows: for each feature of C ‘responsible’ for a component
of the PNC, we give a corresponding contribution to the multiplicity; the multiplicity for a given component is obtained by
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adding these contributions. For example, components of type IV correspond to sides of the Newton polygon for C at singular
or inflection points of its support. We find that the contribution due to a side of the Newton polygon with vertices (j0, k0),
(j1, k1) (where j0 < j1), and corresponding limit for C

xqyrzq
S∏
j=1

(
yc + ρjxc−bzb

)
(with b and c relatively prime), equals

j1k0 − j0k1
S

A,

where A is the number of automorphisms A1 → A1, ρ 7→ uρ (with u a root of unity) preserving the S-tuple {ρ1, . . . , ρS}.
In general, the multiplicities computed here capture delicate information about the singularities of C ; cf. especially
the multiplicities of components of type V. It would be interesting to characterize deformations of C for which these
multiplicities remain constant.
Explicit examples of computations of multiplicities, for the two curves described in Examples 2.1 and 2.2 of [1], Section

2.6, are given in Section 1.2.
Concerning the proofs: the PNCmay be realized as the exceptional divisor in the blow-up P̃8 of P8 along the subschemeS

mentioned above. The multiplicities of components of type I and II, which depend on ‘global’ features of the curve (the type
andmultiplicity of components of the curve) may be computed by analyzing explicitly parts of this blow-up. Components of
type III, IV, and V depend on the behavior of C at singularities or inflection points of its support, and require a more refined
analysis. This is performed by considering the normalization P of P̃8, and studying the pull-back of the PNC to P. ‘Marker’
germs obtained in [1] and centered at such componentsmay be lifted to germs intersecting the components of this pull-back
transversally. We use this fact to relate the multiplicity of a given component D to a weight associated to the corresponding
marker germ, the number of components D of the pull-back dominating D, and the degrees of the induced maps D→ D.
The weights may be computed from information collected in [1]. The other ingredients are obtained by studying more

closely the behavior of germs α(t) centered at a point of S , especially in connection with the natural PGL(3)-action on P̃8
and P. For example, every α(t) determines several subgroups of PGL(3): among these are the stabilizer G of the limit X

of translates of C by α(t); the stabilizer G̃ of the center (α,X ) of its lift to P̃8; and the stabilizer G of the center α of the
lift to P. We prove that the degree of D → D equals the index of G in G̃ for a corresponding marker germ. The group G is
available from previous work (cf. Section 1 of [3]); from this it is not hard to obtain a description of G̃. Further, we identify
G with a subgroup of PGL(3), which we call the ‘inessential subgroup’ (w.r.t. α(t)), roughly consisting of elements in the
stabilizer of (α,X )whose presence is due to possible reparametrizations of α(t).
An explicit computation of the inessential subgroups for the different types of components then allows us to compute

the degree of D→ D.

1.2. Two examples

Wepresent two examples of computations ofmultiplicities of all components of the PNC for twoplane quartic curves. The
PNCs for these two curves are described (set-theoretically) in [1], Section 2.6, Examples 2.1 and 2.2. The reader should refer
to Section 2, and especially Theorem2.1, for the notation used in this subsection.We also include enumerative consequences
for these curves, obtained by applying the machinery of [2] to the information obtained here.

Example 1.1. Consider the reducible quartic C1 given by the equation

(y+ z)(xy2 + xyz + xz2 + y2z + yz2) = 0.

It consists of an irreducible nodal cubic and a line through the node and an inflection point. In [1], Example 2.1, we showed
that the PNC for C1 has seven components: one each of types I, II, III, and four components of type IV. According to Theo-
rem 2.1, the component of type I has multiplicity 1 and the component of type II has multiplicity 2. The multiplicity of the
component of type III equals 3 · 6 = 18, the product of the multiplicity of the point and the number of automorphisms
of the tangent cone as a triple in the pencil of lines through the point. To determine the multiplicities of the four compo-
nents of type IV, we first note that in each case S = 1 and hence A = 1. For each of the two components coming from
the inflection points, the relevant side of the Newton polygon has endpoints (j0, k0) = (0, 1) and (j1, k1) = (3, 0); hence
their multiplicities equal j1k0 − j0k1 = 3. For the component coming from the double point and the tangent line to the
cubic, (j0, k0) = (1, 1) and (j1, k1) = (4, 0), so its multiplicity equals 4. For the component coming from the triple point,
both tangent lines to the cubic give rise to a Newton polygon whose only relevant side has endpoints (2, 1) and (4, 0). The
multiplicity of this component is obtained by adding the two contributions; thus it equals 4+ 4 = 8.
The knowledge of the PNC as a cycle makes it possible to apply the results of [2], specifically, Propositions 3.1–3.5. One

finds that the adjusted predegree polynomial (a.p.p.) of C1 equals

1+ 4H + 8H2 +
21
2
H3 +

81
8
H4 +

147
20
H5 +

91
30
H6 +

89
140
H7 +

31
840
H8.
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The a.p.p. is defined on p. 4 of [2]. The ‘predegree’ of the orbit closure of a curve is 8!·(the coefficient of H8 in the a.p.p.); the
predegree of C1 equals 8! · 31840 = 1488. Since the stabilizer of C1 has order 2, the degree of its orbit closure equals 744. �

Example 1.2. Consider the irreducible quartic C2 given by the equation

(y2 − xz)2 = y3z.

Its singular points are the ramphoid cusp (1 : 0 : 0) and the ordinary cusp (0 : 0 : 1); further, it has one inflection point,
which is ordinary. In [1], Example 2.2, we showed that the PNC for C2 has four components: one of type II, two of type IV, and
one of type V. According to Theorem 2.1, the component of type II has multiplicity 2 and the component of type IV coming
from the inflection point has multiplicity 3. For the component of type IV coming from the ordinary cusp, the relevant
side of the Newton polygon has endpoints (0, 2) and (3, 0), so its multiplicity equals 6. To compute the multiplicity of the
component of type V coming from the ramphoid cusp, observe that (with notation as in Section 2) C = 5

2 , f(C)(y) = y
2,

S = 2, and [γ (1)C , γ
(2)
C ] = [1,−1], so that ` = 1, W =

5
2 +

5
2 = 5, and A = 2 · 2 = 4. Hence the multiplicity equals

1 · 5 · 4 = 20. Applying the results of [2], one finds that the a.p.p. of C2 equals

1+ 4H + 8H2 +
32
3
H3 +

32
3
H4 +

122
15
H5 +

61
16
H6 +

27
28
H7 +

31
896
H8,

so that its predegree is 1395 (cf. Examples 5.2 and 5.4 of [2]: the predegree 14280 for the orbit closure of a general quartic is
corrected by 3960 because of the ordinary cusp, and by 1785 ·5 = 8925 due to the ramphoid cusp; 14 280−3960−8925 =
1395). Since C2 has trivial stabilizer, the degree of its orbit closure equals 1395 as well. �

2. Statement of the result

2.1. Summary of [1]

We begin by recalling briefly the situation examined in [1].
We work over C. Let C be an arbitrary (possibly singular, reducible, non-reduced) plane curve of degree d. The group

PGL(3) acts on the plane P2, and hence on the projective space PN = Pd(d+3)/2 parametrizing plane curves of degree d.
Explicitly, if F(x, y, z) is a homogeneous polynomial generating the ideal of C , then α ∈ PGL(3) translates C to the curve
C ◦ α determined by

F(α(x, y, z)).

The subset of PN consisting of all translates C ◦ α is the linear orbit of C , which we denote by OC . In [1] we determine the
‘limits’ of C , by describing the boundary (=OC r OC ) of the linear orbit of C . We do this by analyzing a locus in P8 × PN ,
components of which dominate (most of) the boundary of OC .
This locus is the PNC determined by C , as follows. The action map PGL(3)→ PN determined by C extends to a rational

map

c : P8 99K PN

defined by α 7→ C ◦ α for α ∈ P8 a 3× 3 matrix. We letS be the scheme of indeterminacies of this rational map. The PNC
(projective normal cone) ofS in P8 is a purely 7-dimensional scheme E, which can be naturally embedded in P8 × PN .
The set-theoretic description of the PNC in [1] identifies five ‘types’ of components, arising from different features of (the

support C ′ of) C :

I: The linear components;
II: The nonlinear components;
III: The singular points at which the tangent cone is supported on≥3 lines;
IV: The Newton polygons at its singular and inflection points;
V: The Puiseux expansions of formal branches at its singular points.

Each of the corresponding components of the PNCmaybedescribed by giving general points on it; the component is obtained
as the orbit closure of such a point under the natural right action of PGL(3) on P8 × PN , or as the closure of a union of such
orbits in the type II case.
These general points (α,X ) ∈ P8 × PN are as listed below (cf. [1], Section 2.3). Concerning our terminology, a star of

lines is a set of concurrent lines; a fan is a star union a general line; the reader is addressed to [3], Section 1, or the summary
in the appendix of [1] for a more extensive description of the curves appearing in this list.

I: imα = a line L ⊂ C ;X = a star or fan centered at kerα;
II: imα = a general point of a nonlinear component D of C ′;X = a (possibly multiple) conic, (possibly) union a multiple
tangent line supported on kerα;

III: imα = a singular point of multiplicity m on C at which the tangent cone consists of three or more lines; X = a star
union a line of multiplicity d−m supported on kerα;
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IV: imα = a singular or inflection point of C at which the Newton polygon of C has a segment of slope strictly between−1
and 0;X = a union of (possibly degenerate, possibly multiple) cuspidal curves;

V: imα = a point of C at which the formal branches of C ′ have suitable truncations f(C)(y) =
∑

λi<C
γλiy

λi depending on
certain rational numbers (‘characteristics’) C;X = a union of quadritangent conics, union (possibly) a multiple tangent
line supported on kerα.

The limits in type IV and V may be written explicitly in the form given below in Theorem 2.1.

2.2. The main theorem

The goal of this paper is to extend the set-theoretic description of the PNC obtained in [1] and recalled above to a
description of the PNC as a cycle, that is, to determine the multiplicities of the various components.
For each feature of C responsible for a component of the PNC, we give a corresponding contribution to the multiplicity;

the multiplicity for a given component is obtained by adding these contributions.
The main result of this paper is the following (compare with [2], Section 2, Facts 1 through 5).

Theorem 2.1. Each feature of C contributes a multiplicity to the corresponding component, as follows:

• Type I. The multiplicity of the component determined by a line L ⊂ C equals the multiplicity of L in C .
• Type II. Themultiplicity of the component determined by a nonlinear component D of C equals 2m,wherem is themultiplicity
of D in C .
• Type III. The multiplicity of the component determined by a singular point p of C such that the tangent cone λ to C at p is
supported on three or more lines equals mA, where m is the multiplicity of C at p and A equals the number of automorphisms
of λ as an m-tuple in the pencil of lines through p.
• Type IV. The multiplicity of the component determined by one side of a Newton polygon for C , with endpoints (j0, k0), (j1, k1)
(where j0 < j1) and limit

xqyrzq
S∏
j=1

(
yc + ρjxc−bzb

)
(with b and c relatively prime), equals

j1k0 − j0k1
S

A,

where A is the number of automorphisms A1 → A1, ρ 7→ uρ (with u a root of unity) preserving the S-tuple [ρ1, . . . , ρS].1
• Type V. The multiplicity of the component corresponding to the choice of a characteristic C and a formal branch f (y) =∑

i≥0 γλiy
λi at a point p, with limit

xd−2S
S∏
i=1

(
zx−

λ0(λ0 − 1)
2

γλ0y
2
−
λ0 + C
2

γ λ0+C
2
yx− γ (i)C x

2
)

is `WA, where:
– ` is the least positive integer µ such that f(C)(yµ) has integer exponents.
– W is defined as follows. For each formal branch β of C at p, let vβ be the first exponent at which β and f(C)(y) =∑

λi<C
γλiy

λi differ, and let wβ be the minimum of C and vβ . Then W is the sum
∑
wβ .

– A is twice the number of automorphisms γ → uγ + v preserving the S-tuple [γ (1)C , . . . , γ
(S)
C ].

Note that a given component may be obtained in different ways (each producing a multiplicity, given in the statement).
Concerning components of type I, II, or III, there is only one contribution for each of the specified data—that is, exactly one
contribution of type I from each line contained in C , one contribution of type II from each nonlinear component D of C , and
one of type III from each singular point of C at which the tangent cone is supported on three or more distinct lines.
As usual, the situation is a little more complex for components of type IV and V. The following information is necessary

in order to apply Theorem 2.1 to a given curve C .
Components of type IV correspond to sides of Newton polygons; one polygon is obtained for each line in the tangent cone

at a fixed singular or inflection point p ofC , and each of these polygons provides a set of sides (with slope strictly between−1
and 0). Exactly one contribution has to be counted for each side obtained in this fashion. Note that sides of different Newton
polygons (for different lines in the tangent cone of C at the same point) may lead to the same limits by germs centered at
the same point, hence to the same component of the PNC.
Components of type V are determined by a choice of a singular point p of C , a line L in the tangent cone to C at p, a

characteristic C and a formal branch z = f (y) of C , tangent to L. Recall (from [1], Section 2.3 and 2.4) that these data

1 Note: the number A given here is denoted A/δ in [2].
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determine a triple of positive integers a < b < c with C = c/a. Again, different choices may lead to the same component of
the PNC, andwe have to specify when choices should be counted as giving separate contributions. Of course different points
p or different lines in the tangent cone at p give separate contributions; the question is when two sets of data (C, f (y)) for
the same point, with respect to the same tangent line, should be counted separately.
We say that (C, f (y)), (C ′, g(y)) are sibling data if C = C ′, the corresponding triples of positive integers are identical,

and the truncations f(C)(ta), g(C)(ta) are related by g(C)(ta) = f(C)((ξ t)a) for an ath root ξ of 1. (Note that f(C)((ξ t)a) does not
equal f(C)(ta) in general, since formal branches may have fractional exponents.)
Then: two pairs (C, f (y)), (C ′, g(y)) at the same point, with respect to the same tangent line, yield separate contributions

if and only if they are not siblings.
The proof of Theorem 2.1 occupies the rest of this paper. Rather direct arguments can be given for the components of

type I and type II, depending on ‘global’ features of C ; we treat these cases in Section 3. The ‘local’ types III, IV, and V require
the development of appropriate tools, and are treated in Sections 4–7.

3. Components of type I and II

3.1. Type I

The PNC of C is denoted by E; recall that it may be identified with the exceptional divisor of the blow-up of P8 along the
subschemeS (cf. Section 2.1).

Proposition 3.1 (Type I). Assume that C contains a line L with multiplicity m, and let (α,X ) be a general point of the corre-
sponding component D of E. Then P̃8 is nonsingular at (α,X ), and D appears with multiplicity m in E.

Proof. We are going to show that, in a neighborhood of (α,X ), P̃8 is isomorphic to the blow-up of P8 along the P5 of
matrices whose image is contained in L. The nonsingularity of P̃8 near (α,X ) follows from this.
Choose coordinates so that L is the line z = 0, and

α =

(1 0 0
0 1 0
0 0 0

)
;

consider the open neighborhood U ⊂ P8 of α, with coordinates( 1 p1 p2
p3 p4 p5
p6 p7 p8

)
.

The P5 of matrices with image contained in L intersects this open set along p6 = p7 = p8 = 0; hence we can choose
coordinates q1, . . . , q8 in an affine open subset V of the blow-up of P8 along P5 so that the blow-up map is given by

pi = qi i = 1, . . . , 5
p6 = q6
p7 = q6q7
p8 = q6q8

(the part of the blow-up over U is covered by three such open sets; it will be clear from the argument that the choice made
here is immaterial). With these coordinates, the exceptional divisor has equation q6 = 0.
Under the hypotheses of the statement, the ideal of C is generated by zmG(x, y, z), where z does not divide G; that is,

G(x, y, 0) 6≡ 0. The rational map c : P8 99K PN sends (p1, . . . , p8) ∈ U to the curve with ideal generated by

(p6x+ p7y+ p8z)mG(x+ p1y+ p2z, p3x+ p4y+ p5z, p6x+ p7y+ p8z);

it follows that the ideal of S in U is generated by these polynomials (in p1, . . . , p8) as (x : y : z) varies in P2. Composing
with the blow-up map:

V −→ U 99K PN ,

these generators pull-back to

qm6 (x+ q7y+ q8z)
mG(x+ q1y+ q2z, q3x+ q4y+ q5z, q6x+ q6q7y+ q6q8z).

By the hypothesis on G, this shows that, along a dense open setW of V intersecting the exceptional divisor q6 = 0, the ideal
ofS pulls back to (qm6 ); by the universal property of blow-ups we obtain an induced map

W → P̃8
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mapping the exceptional divisor q6 = 0 to D. A coordinate verification shows that this is an isomorphism onto the image in
a neighborhood of a general point of the exceptional divisor, proving that P̃8 is nonsingular in a neighborhood of a general
(α,X ) in D, and that the multiplicity of D in E ism, as stated. �

Proposition 3.1 yields the multiplicity statement concerning type I components in Theorem 2.1; also cf. Fact 2 (i) in
Section 2 of [2].

3.2. Type II

Components of type II correspond to nonlinear components D of C ′.

Proposition 3.2 (Type II). Assume a nonlinear component D appears with multiplicity m in C , and let D be the corresponding
component of E. Then D appears with multiplicity 2m in E.

This can be proved by using the blow-ups described in [4], which resolve the indeterminacies of the basic rational map
P8 99K PN over nonsingular, non-inflectional points of C . We sketch the argument here, leaving detailed verifications to the
reader.
Proof. In [4] it is shown that two blow-ups at smooth centers suffice over nonsingular, non-inflectional points of C . While
the curve was assumed to be reduced and irreducible in loc. cit. the reader may check that the same blow-ups resolve the
indeterminacies over a possibly multiple component D , near nonsingular, non-inflectional points of the support of D . Let V
be the variety obtained after these two blow-ups.
Since the basic rational map is resolved by V over a general point of D , the inverse image of the base scheme S is

locally principal in V over such points. By the universal property of blow-ups, the map V → P8 factors through P̃8 over a
neighborhood of a general point of D . It may then be checked that the second exceptional divisor obtained in the sequence
maps birationally onto D, and appears with a multiplicity of 2m. The statement follows. �

Proposition 3.2 yields the multiplicity statement concerning type II components in Theorem 2.1; also cf. Fact 2 (ii) in
Section 2 of [2].

4. Components of type III, IV, and V

4.1. Normalizing the graph

The computation of the multiplicity of components of type III, IV, and V is considerably subtler, and requires some
preparatory work.
Our main tool will be the normalization P of the closure P̃8 of the graph of the basic rational map c : P8 99K PN from

Section 2. We denote by
n : P→ P̃8

the normalization map, and by n the composition P→ P̃8 → P8.
Recall that the PNC may be realized as the exceptional divisor E in the blow-up P̃8 of P8 along the scheme S of

indeterminacies of c. If F ∈ C[x, y, z] generates the ideal of C in P2, then the ideal ofS in P8 is generated by all expressions
F(ϕ(x0, y0, z0)),

viewed as polynomials in ϕ ∈ P8, as (x0, y0, z0) ranges over P2. The ideals of E and of E = n−1(E) = n−1(S ) are generated
by the pull-backs of F(ϕ(x0, y0, z0)) to P̃8, respectively P.
Denote by Ei the supports of the components of E, and bymi the multiplicity of Ei in E. Also, denote by
E i1, . . . , E iri

the supports of the components of E lying above a given component Ei of E. Finally, let mij be the multiplicity of E ij in E.
Summarizing: as cycles,

[E] =
∑
mi[Ei], [E] =

∑
mij[E ij].

Lemma 4.1. We have

mi =
ri∑
j=1

eijmij

where eij is the degree of the map n|Eij : E ij → Ei.

Proof. Use the projection formula ([5], Prop. 2.3 (c)) and (n|Eij)∗[E ij] = eij[Ei]. �

Example 4.2. There is exactly one component of E for each component of type I or II of E, mapping birationally to such a
component. This may be established by analyzing the blow-ups in Propositions 3.1 and 3.2.
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4.2. Three propositions

The rest of the paper consists of the computation of the ingredients needed in order to apply Lemma 4.1 to the case of
components of type III, IV, and V. It is not hard to extract themultiplicitiesmij frommore refined information collected in [1].
The number of components of E dominating a given component of E, and the degrees eij, will require more work.
The following three propositions collect the resultswewill obtain. Proofs of these results are presented in Section 5 and ff.
Concerning components of type III, the situation is very simple:

Proposition 4.3 (Type III). Let D be a component of type III, corresponding to a point p of multiplicity m at which the tangent
cone to C is supported on at least 3 lines.

• There is exactly one component D of E dominating D.
• The degree of the map D→ D equals the number of linear automorphisms of the m-tuple determined by the tangent cone to

C at p.
• The multiplicity of D equals m.

As recalled in Section 2.1, components of type IV correspond to the choice of a point p ∈ C , a line L in the tangent cone
to C at p, and one side of the Newton polygon for C at p relative to L, of slope−b/c with 0 < b < c. The same component
may arise from sides with the same slope, with respect to different lines in the tangent cone at p. Limits corresponding to
these choices are of the form

xqyrzq
S∏
j=1

(yc + ρjxc−bzb), (*)

with ρj 6= 0, where S + 1 is the number of lattice points on the chosen side of the Newton polygon.

Proposition 4.4 (Type IV). Let D be a component of E of type IV, as above. Then:
• There is exactly one component D of E over D for each line L in the tangent cone to C at p, with respect to which the Newton
polygon has a side of slope−b/c, that leads to limit (*).
• The degree of the map D → D equals the number of automorphisms A1 → A1, ρ 7→ uρ (with u a root of unity) preserving
the S-tuple [ρ1, . . . , ρS].
• Let (j0, k0) and (j1, k1) be the endpoints of the side of the Newton polygon (j0 < j1). The multiplicity of D is

j1k0 − j0k1
S

.

Components of type V are determined as follows. Choose a point p ∈ C , a line L in the tangent cone to C at p, and
coordinates so that p = (1 : 0 : 0), L is the line with equation z = 0, and y = 0 is not part of the tangent cone to C at p.
Express C at p in terms of formal branches (cf. Section 4.1 in [1]), with Puiseux expansions of the form

z = f (y) =
∑
i≥0

γλiy
λi ,

where λ0 ≥ 1, and λi < λi+1.
These choices determine a finite set of positive rational numbers (called ‘characteristics’ in [1]): that is, those numbers

C which are exponents λi, i > 0, for some formal branch tangent to L; and such that at least two formal branches have the
same truncation ‘modulo yC ’:

f(C)(y) =
∑
λi<C

γλiy
λi ,

but different coefficients for yC . Note that C > λ0.
For fixed p and L, the choice of a characteristic C and of one such formal branch determines a type V component.
If z = f (y) =

∑
i≥0 γλiy

λi is a coordinate representation of the formal branch (with λ0 > 1), the limit corresponding to
the choice of p, L, and (C, f (y)) is (cf. Section 2.2)

xd−2S
S∏
i=1

(
zx−

λ0(λ0 − 1)
2

γλ0y
2
−
λ0 + C
2

γ λ0+C
2
yx− γ (i)C x

2
)
, (**)

where γ (i)C are the coefficients of y
C for all S formal branches sharing the truncation.

We note that, for a fixed point p, different lines L and different (C, f (y)) may lead to the same limit, and hence to the
same component D of E. While it is clear that different lines must correspond to different components D of E over D, the
question of which pairs (C, f (y)) correspond to the same component D is subtle, and accounts for the most technical parts
of this paper.
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The choice (C, f (y)) determines three integers a < b < c : let B = C−λ0
2 + 1 (so that 1 < B < C , as C > λ0 > 1), and let

a = least positive integer such that aB, aC, and all aλi for λi < C are integers;

we then set b = aB, c = aC .
We say that (C, f (y)) as above and (C ′, g(y)) are sibling data if the corresponding integers a < b < c , a′ < b′ < c ′ are

the same (so in particular C = C ′) and further

g(C)(y) =
∑
λi<C

ξ aλiγλiy
λi

for an ath root ξ of 1. The right-hand side is well-defined because aλi ∈ Z for λi < C . Siblings lead to the same component
of E (cf. Claim 6.6).

Remark. If z = f (y), z = g(y) are formal branches belonging to the same irreducible branch of C at p, then the corre-
sponding data (C, f (y)), (C, g(y)) are siblings for all C . Indeed, if the branch has multiplicitym at p then f (τm) = ϕ(τ) and
g(τm) = ψ(τ), with ψ(τ) = ϕ(ζτ) for anmth root ζ of 1 ([6], Section 7.10). That is,

if f (y) =
∑

γλiy
λi , then g(y) =

∑
ζmλiγλiy

λi

for ζ an mth root of 1. Now let ρ be an (am)th root of 1 such that ρa = ζ , and set ξ = ρm; since the exponents aλi in the
truncations are integers, and so are all exponentsmλi, we have

ζmλi = ρmaλi = ξ aλi

for all exponents λi < C , and this shows that the truncations are siblings.

For a given p and L, the set of (C, f (y)) leading to a given component is partitioned into sibling classes. By the remark, all
formal branches belonging to a given irreducible branch of C tangent to L at p are in the same class. The sibling classes can
therefore be thought of as particular collections of irreducible branches with a common tangent.
We let A be the number of components of the stabilizer of the limit (**); that is, by [7], Section 4.1, twice the number of

automorphisms γ 7→ uγ + v preserving the S-tuple [γ (1)C , . . . , γ
(S)
C ].

Further, we let h denote the greatest common divisor of a and all aλi for λi < C .
Finally, for every choice of L, C , and f (y), and every formal branch β of C at p, define a rational numberwβ as follows:

• if the branch is not tangent to L, thenwβ = 1;
• if the branch is tangent to the line L, but does not truncate to f(C)(y), thenwβ = the first exponent at which β and f(C)(y)
differ;
• if the branch truncates to f(C)(y), thenwβ = C .

Note that awβ is an integer for all β . We letW denote the sum
∑
wβ .

Proposition 4.5 (Type V). Let D be a component of E of type V, determined by the choice of p and a limit (**). Then:

• The set of components D of E over D is in bijection with the set of all sibling classes contributing to D (for all lines L).
• For a choice of a line L and of (C, f (y)), the degree of the map D→ D for the corresponding component D equals Ah .
• The multiplicity of D equals aW.

The statements about multiplicities in Propositions 4.3–4.5 may be summarized as follows. Components D of E will
correspond to germs in a standard form, to be introduced in Section 5.1. For a general q ∈ P2, consider the (parametrized)
curve Y obtained by applying to q one of these germs. Then the multiplicity of D in E is the intersection multiplicity of Y
and C at p.

4.3. Propositions 4.3–4.5 imply the main theorem

Propositions 4.3 and 4.4 imply the statements for type III and IV in Theorem 2.1, as an immediate consequence of
Lemma 4.1.
It is perhaps less evident that Proposition 4.5 implies the formula for the multiplicity of a type V component given in

Theorem 2.1: according to Proposition 4.5 and Lemma 4.1, the sibling class of (C, f (y)) gives a contribution of aW A
h to the

multiplicity of the corresponding component of type V; we have to check that we have ` = a
h .

For this, let λi, i = 1, . . . , r be the exponents appearing in f(C)(y). If h′ is any divisor of a and all aλi, then as ah′ λi are
integers, necessarily ah′ is a multiple of `. That is, h

′ divides a
`
. On the other hand, a

`
is a divisor of a and all aλi. Hence a` equals

the greatest common divisor of a and all aλi, that is, h, as needed.
Summarizing, we are reduced to proving Propositions 4.3–4.5. The reader should compare the statements of these

propositions with [2], Section 2, Facts 3 through 5.
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The proof of Propositions 4.3–4.5 is organized as follows. The multiplicities of the components of E are determined in
Section 5, in terms of the weights of the marker germs found in [1]. In Section 6 we enumerate the components of E over
a given component of the PNC; the main tool is obtained in Corollary 6.4, and its application to our situation (especially
for components of type V) relies on the technical Lemma 6.5. Finally, in Section 7 we compute the degree of a component
of E over the corresponding component of the PNC. The main tool here is Proposition 7.2, which relates this degree to the
‘inessential subgroup’mentioned in Section 1. The inessential subgroups for components of type III, IV, and V are determined
in Section 7.2, concluding the proof.

5. Marker germs, and multiplicities in the normalization

5.1. Marker germs

The statements about multiplicities of components in the normalization will be straightforward consequences of more
refined information obtained in [1]; we begin by recalling this information.
Every germ α(t) in P8, whose general element is invertible, and such that α(0) ∈ S , lifts to a unique germ in P̃8 centered

at a point (α(0),X ) of the PNC. The germ lifts to a unique germ α(t) in P, centered at a point α = α(0) of E. Conversely,
every germ in P that is not contained in one of the components E ij is the lift of a unique germ in P8.
The data obtained in [1] includes a list of marker germs, marking components of different types. For types III, IV, and V

these are as follows (cf. Section 2.3 in [1]).
Components of type III, IV, and V determine a point p of C ; choose coordinates so that this point is (1 : 0 : 0). Type IV

and V depend on the choice of a line L in the tangent cone to C at p; choose coordinates so that this line is the line z = 0.
Type III. The corresponding marker germ is

αIII(t) =

(1 0 0
0 t 0
0 0 t

)
.

Type IV. These components are determined by the choice of a side with slope strictly between−1 and 0 of the Newton
polygon for C at p, with respect to L. Let b and c be relatively prime positive integers, such that−b/c is this slope. Then the
corresponding marker germ is

αIV (t) =

1 0 0
0 tb 0
0 0 tc

 .
Type V. These components are determined by the choice of a formal branch z = f (y) = γλ0y

λ0 +· · · for C at p tangent to
L, and of a characteristic C > λ0. For a < b < c positive integers such that ca = C ,

b
a =

C−λ0
2 + 1, the corresponding marker

germ is

αV (t) =

 1 0 0
ta tb 0
f (ta) f ′(ta)tb tc


where · · · denotes the truncation modulo tc . The integer a is chosen to be the minimum one for which all entries in this
germ are polynomials.

5.2. Equivalence of germs

In [1], Section 3.1.1, we consider the following notion of ‘equivalence’ of germs:

Definition 5.1. Two germs α(t), β(t) are equivalent if β(tν(t)) ≡ α(t) ◦ m(t), with ν(t) a unit in C[[t]], and m(t) a germ
such thatm(0) = I .

Intuitively speaking, equivalent germs may be ‘deformed continuously’ one into the other, while keeping their center
fixed. This notion will be crucial in the rest of the paper. We will first prove that two germs lift to P to germs with the same
center if they are equivalent; in essence, the converse also holds (cf. Proposition 6.3).

Lemma 5.2. If α(t), β(t) are equivalent germs, then α = β .
Proof. Since the center of the lift does not depend on a change of parameter, wemay assume β(t) ≡ α(t)◦m(t), withm(t)
a germ centered at the identity I . Let F(x, y, z) be a generator of the ideal of C , and let

αh(t) = α(t) ◦ ((1− h)I + hm(t)).

Then αh(t) is equivalent to α(t) for all h; in particular, the initial term of F ◦ αh(t) is independent of h (cf. Lemma 3.2 in [1]),
so the center of the lift of αh(t) to P̃8 is independent of h, and it follows that αh ∈ P is independent of h as n : P→ P̃8 is a
finite map. The statement follows, since α = α0 and β = α1. �
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A second reason why the notion of equivalence is important in this paper, as well as in [1], is the following fact. A germ
‘contributes’ a component to E if its lift to P̃8 is centered at a general point of that component (a more precise definition will
be given in Section 6.1.

Lemma 5.3. Every contributing germ α(t) is equivalent to a marker germ (in suitable coordinates, and possibly up to replacing
t by a root t1/k). �

Remark 5.4. The coordinate choices implicit in this statement are important, andwediscuss themhere. Lemma5.3 is proved
(cf. [1], Lemma 3.6 and ff.) by first showing that every germ α(t)may be written as

α(t) = H ·

(1 0 0
q 1 0
r s 1

)
·

1 0 0
0 tb 0
0 0 tc

 ·m(t),
where m(t) is invertible, and q, r , s are polynomials satisfying certain conditions; for example, q(t) may be assumed to be
either 0, or a power ta (possibly after a parameter change). Coordinates are then chosen in the plane containing C so that
H = I , and it is shown that the hypothesis that α(t) contributes a component forces certain conditions on b, c , and q, r , s,
bringing the product(1 0 0

q 1 0
r s 1

)
·

1 0 0
0 tb 0
0 0 tc


into one of the forms given in Section 5.1. Thus, once coordinates are chosen in the target plane, contributing germs are
equivalent to germs of the form

α•(t) ·M

whereα•(t) = αIII(t),αIV (t), orαV (t), according to the type of the component. Replacing t by a root t1/k ensures, if necessary,
that the exponents appearing in such a germ are relatively prime.

5.3. Computation of the multiplicities

Definition 5.5. The weight of a germ α(t) in P8 is the order of vanishing in t of F ◦ α(t).

Note that the weight of α(t) is the order of contact of α(t) with S : indeed, it is the minimum intersection multiplicity
of α(t) and generators F ◦ ϕ(x0, y0, z0) of the ideal ofS , at α(0) (cf. Section 4.1).

Lemma 5.6. The multiplicity mij is the minimum weight of a germ α(t) such that α ∈ E ij.

Proof. Let α be a general point of E ij. Since P is normal, we may assume that it is nonsingular at α. Let (z) = (z1, . . . , z8)
be a system of local parameters for P centered at α, and such that the ideal of E ij is (z1) near α; thus the ideal of E is (z

mij
1 )

near α. Consider the germ α(t) in P defined by

α(t) = (t, 0, . . . , 0),

and its push-forward α(t) = n(α(t)) in P8.
The weight of α(t) is the order of contact of α(t)withS ; hence it equals the order of contact of α(t)with n−1(S ) = E;

pulling back the ideal of E to α(t), we see that this equalsmij.
Any other germ in Pmeeting E ij and not contained in E must have intersection number≥ mij; the statement follows. �

In fact, a germ in P8 that lifts to a germ in Pmeeting the support of E at a general point of E ij intersects E ij transversally if
and only if its weight ismij.
Now, by Lemma 3.2 in [1], equivalent germs α(t), β(t) have the same weight; and their lifts are centered at the same

pointα = β , by Lemma 5.2. In particular, ifα(t) and β(t) are equivalent, thenα(t) lifts to a germ transversal to a component
E ij at a general point if and only if β(t) does.
The following easy consequence of these considerations yields the multiplicitiesmij:

Corollary 5.7. The multiplicity mij of a component E ij of E over a component Ei equals the weight of a corresponding marker
germ.

Proof. By Lemma 5.6, there exists a germ β(t) of weightmij, meeting E ij at a (general) point β . Such a germ β(t) contributes
the component Ei, hence β(t) is equivalent to α(tk) for a corresponding marker germ α(t), by Lemma 5.3. The weight of
α(t) is thenmij/k, by Lemma 3.2 in [1]. Sincemij is the minimumweight, we have k = 1, and the weight of the marker germ
α(t) ismij as stated. �
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It is now straightforward to verify the multiplicity statements given in Propositions 4.3–4.5. For example, for type IV:
with notation as above (and in [1], Section 2.3, with q = e, q = e, r = f ), the initial term of C ◦ αIV (t) is

xqyrzq
S∏
j=1

(yc + ρjxc−bzb) tSbc+br+cq;

as (j0, k0) = (r, q+ Sb), (j1, k1) = (r + Sc, q), the weight is

Sbc + br + cq =
j1k0 − j0k1

S
as stated. The other two verifications are left to the reader; for type V, use Lemma 4.3 in [1].

6. Components in the normalization

6.1. The PGL(3)-action

The other information listed in Propositions 4.3–4.5 requires a more explicit description of the components D of E,
especially in connection with the behavior of germs centered on these components.
One important ingredient is the PGL(3)-action on P. The PGL(3)-action on P8 given by multiplication on the right makes

the basic rational map P8 99K PN equivariant, and hence induces a right PGL(3)-action on P̃8 and P, fixing each component
of E. Explicitly, if α is the center of the lift to P of a germ α(t), then α · N is defined to be the center of the lift of the germ
α(t) · N , for N ∈ PGL(3). We record the following trivial but useful remarks:

Lemma 6.1. If β(t) = α(t) · N for N ∈ PGL(3), and α belongs to a component D of E, then β ∈ D.

Lemma 6.2. Let D be a component of E over a component D of type III, IV, or V. Then the orbit of a general α ∈ D is dense in D.

(Indeed, the orbit of a general point in a component of type III, IV, or V has dimension 7, as follows from the explicit
description of such points given in Section 2.1.)
Henceforth, Dwill denote a component of E of type III, IV, or V; and Dwill be a component of E over D. A general point of

D (resp. D) will be a point of the dense PGL(3)-orbit in D (resp. D). A germ α(t) ‘contributes’ to D if α is a general point of D
in this sense.

6.2. Criterion for equal lift

We are ready to upgrade Lemma 5.2.

Proposition 6.3. Let α(t), β(t) be germs such that α(t), β(t) are centered at general points of components of E dominating
components of type III, IV, or V, and meet these components transversally. Then α = β if and only if α(t), β(t) are equivalent.

Proof. One implication is given in Lemma 5.2.
We will give the argument for the converse under the assumption that the entries in α(t) are polynomials; this is the

only case in which we will use the statement, and we leave to the reader the (easy) extension to the general case.
Assume α = β is a general point of a component D of E, and α(t), β(t)meet D transversally.
The image of α = β in P̃8 is a point (α(0),X ) of a unique component D of E of type III, IV, or V; note that the PGL(3)-

stabilizer of (α(0),X ) has dimension 1. Consider an A7 ⊂ P8 through the identity I and transversal at I to the stabilizer; let
U = A7 ∩ PGL(3), and consider the action map A1 × U → P:

(t, ϕ) 7→ α(t) ◦ ϕ.

This map is dominant, and étale at (0, I). Note that α(t) factors through it:

A1 −→ A1 × U −→ P −→ P8

t 7−→ (t, I) 7−→ α(t) 7−→ α(t).

Parametrizing a lift of β(t) to A1 × U we likewise get a factorization

t 7→ (z(t),M(t)) 7→ α(z(t)) ◦M(t) = β(t) 7→ β(t)

for suitable (C[[t]]-valued) z(t), M(t). Since α = β in P, we may assume that the center (z(0),M(0)) of the lift of β(t)
equals the center (0, I) of the lift of α(t). Also, z(t) vanishes to order 1 at t = 0, since β(t) is transversal to D. Hence there
exists a unit ν(t) such that z(tν(t)) = t , and we can apply the parameter change

β(tν(t)) = α(t) ◦M(tν(t)) = α(t) ◦m(t),

where we have setm(t) = M(tν(t)), a C[[t]]-valued point of PGL(3).
Asm(0) = M(0) = I , this shows thatα(t) andβ(t) are equivalent in the sense of Definition 5.1, concluding the proof. �
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Corollary 6.4. Let α(t), β(t) be germs such that α(t), β(t) are centered at general points of components of E dominating
components of type III, IV, or V, and meet these components transversally.
Then α, β belong to the same component of E if and only if α(t)−1β(τ(t)) is a C[[t]]-valued point of PGL(3), for a change of

parameter τ(t) = tν(t) with ν(t) ∈ C[[t]] a unit.

Proof. This is an immediate consequence of Proposition 6.3 and of Lemma 6.2. �

6.3. Technical lemma

Applications of Proposition 6.3 and Corollary 6.4 to the case of type V components will rely on the following technical
lemma.

Lemma 6.5. Let

α(t) =

 1 0 0
ta tb 0
f (ta) f ′(ta)tb tc

 , β(t) =

 1 0 0
ta
′

tb
′

0
g(ta

′

) g ′(ta
′

)tb
′

tc
′


be two marker germs for type V components, and assume that α(t)−1β(τ(t)) is a C[[t]]-valued point of PGL(3), for a change of
parameter τ(t) = tν(t) with ν(t) ∈ C[[t]] a unit. Then a′ = a, b′ = b, c ′ = c, and ν(t) = ξ(1+ tb−aµ(t)), where ξ is an a-th
root of 1 and µ(t) ∈ C[[t]]; further, g((ξ t)a) = f (ta).

Recall that . . . stands for a truncation; modulo tc in the first germ, and modulo tc
′

in the second germ. The notation is
unambiguous once the equality (a, b, c) = (a′, b′, c ′) is established. Also, the expression g((ξ t)a) is then an abbreviation
for
∑
ξ aλiγ ′λi t

aλi , where g(y) =
∑
γ ′λiy

λi ; the coefficients ξ aλi are well-defined for λi < C since aλi is an integer for λi < C
(cf. Section 4.2).

Proof. Write ϕ(t) = f (ta) and ψ(t)tb = f ′(ta)tb. The hypothesis is that

α(t)−1 · β(τ) =


1 0 0

τ a
′

− ta

tb
τ b
′

tb
0

g(τ a
′

)− ϕ(t)− (τ a
′

− ta)ψ(t)

tc
g ′(τ a

′

)τ b
′

− ψ(t)τ b
′

tc
τ c
′

tc


has entries in C[[t]], and its determinant is a unit in C[[t]]. This implies b′ = b and c ′ = c. As

τ a
′

− ta

tb
∈ C[[t]]

and b > a, necessarily a′ = a and ta(ν(t)a − 1) = (τ a − ta) ≡ 0 mod tb. This implies

ν(t) = ξ(1+ tb−aµ(t))

for ξ an ath root of 1 and µ(t) ∈ C[[t]]. Also note that since the triples (a, b, c) and (a′, b′, c ′) coincide, necessarily the
dominant term in g(y) has the same exponent λ0 as in f (y), since aλ0 = 2a− 2b+ c (see Section 5.1).
Now we claim that

g(τ a)− (τ a − ta)ψ(t) ≡ g((ξ t)a) mod tc .

Granting this for a moment, it follows that

g(τ a
′

)− ϕ(t)− (τ a
′

− ta)ψ(t) ≡ g((ξ t)a)− f (ta) mod tc;

hence, the fact that the (3, 1) entry is in C[[t]] implies that

g((ξ t)a) ≡ f (ta) mod tc,

which is what we need to show in order to complete the proof.
Since the (3, 2) entry is in C[[t]], necessarily

g ′(τ a) ≡ ψ(t) mod tc−b;

so our claim is equivalent to the assertion that

g(τ a)− (τ a − ta)g ′(τ a) ≡ g((ξ t)a) mod tc .
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By linearity, in order to prove this it is enough to verify the stated congruence for g(y) = yλ, with λ ≥ λ0. That is, we have
to verify that if λ ≥ λ0 then

τ aλ − (τ a − ta)λτ aλ−a ≡ (ξ t)aλ mod tc .

For this, observe

τ aλ = (ξ t)aλ(1+ tb−aµ(t))aλ ≡ (ξ t)aλ(1+ aλtb−aµ(t)) mod taλ+2(b−a)

and similarly

τ aλ−a = (ξ t)aλ−a(1+ tb−aµ(t))aλ−a ≡ t−a(ξ t)aλ mod taλ−a+(b−a),
(τ a − ta) = (ξ t)a(1+ tb−aµ(t))a − ta ≡ atbµ(t) mod ta+2(b−a).

Thus

(τ a − ta)λτ aλ−a ≡ (ξ t)aλaλtb−aµ(t) mod taλ+2(b−a)

and

τ aλ − (τ a − ta)λτ aλ−a ≡ (ξ t)aλ mod taλ+2(b−a).

Since

aλ+ 2(b− a) ≥ aλ0 + 2b− 2a = c,

our claim follows. �

6.4. Number of components in the normalization

We are ready to prove the statements in Propositions 4.3–4.5 concerning the number of components D over a given
component D of E of type III, IV, or V.

Type III and IV. For type III and IV components, the statement is that for any fixed p ∈ C and (for type IV) line L in the
tangent cone to p at C , there is exactly one component D over each component D of E.
This is in fact an easy consequence of Lemma 6.1. For example, in the case of components of type IV it suffices to verify

that, for fixed L, any twomarker germs for a given component lift to germs in P centered on the same component of E. Now,
such marker germs are of the form (cf. Section 5.1 and Remark 5.4)1 0 0

0 tb 0
0 0 tc

 ·M1,
1 0 0
0 tb 0
0 0 tc

 ·M2
for two invertible matrices M1, M2. Lemma 6.1 implies immediately that the lifts of these two germs are centered on the
same component of E. �

Type V. The situation for components of type V is more complex, and requires the use of Corollary 6.4 and Lemma 6.5.
For a fixed point p and line L, and once coordinates are chosen as usual (so that p = (1 : 0 : 0), and L is the line z = 0)

type V components are determined by pairs (C, f (y)), where z = f (y) is a formal branch of C , by the procedure described
in Section 4.2. Recall that (C, f (y)) and (C ′, g(y)) are sibling data if the corresponding integers a < b < c , a′ < b′ < c ′ are
the same (so in particular C = C ′) and further

g(C)(y) =
∑
λi<C

ξ aλiγλiy
λi

for an ath root ξ of 1 (or, in abbreviated form, g(C)(ta) = f(C)((ξ t)a)). The statement we must prove is the following:

Claim 6.6. Two pairs (C, f (y)) and (C ′, g(y)) determine the same component D over D if and only if they are siblings.

Proof. Let α(t), β(t) be two marker germs leading to D; we may assume (cf. Remark 5.4, Lemma 6.1) that

α(t) =

 1 0 0
ta tb 0
f (ta) f ′(ta)tb tc

 , β(t) =

 1 0 0
ta
′

tb
′

0
g(ta

′

) g ′(ta
′

)tb
′

tc
′

 .
If these two germs determine the same component of E, then by Corollary 6.4 α(t)−1β(tν(t)) is a C[[t]]-valued point of
PGL(3), for a unit ν(t) ∈ C[[t]]. It follows (by Lemma 6.5) that a′ = a, b′ = b, c ′ = c , and g((ξ t)a) = f (ta); that is, (C, f (y))
and (C ′, g(y)) are siblings.



P. Aluffi, C. Faber / Journal of Pure and Applied Algebra 214 (2010) 548–564 561

Conversely, assume that (C, f (y)), (C ′, g(y)) are siblings. Then C = C ′, and for an ath root ξ of 1 the corresponding germs

α(t) =

 1 0 0
ta tb 0
f (ta) f ′(ta)tb tc

 , β(t) =

 1 0 0
ta tb 0
g(ta) g ′(ta)tb tc


satisfy

β(ξ t) =

 1 0 0
(ξ t)a (ξ t)b 0
g((ξ t)a) g ′((ξ t)a)(ξ t)b (ξ t)c

 =
 1 0 0
ta tbξ b 0
f (ta) f ′(ta)tbξ b tcξ c

 = α(t) ·
1 0 0
0 ξ b 0
0 0 ξ c

 .
Therefore, α(t)−1β(ξ t) is an invertible constant matrix. This shows that α and β belong to the same component of E, by
Lemma 6.1. �

This concludes the proof of the statement concerning the number of components D over a given component D of E in
Propositions 4.3–4.5.

7. End of the proof

7.1. Inessential subgroups

We are left with the task of verifying the statement concerning the degrees of the maps D→ D; our main tool here will
be Proposition 6.3.
Recall that PGL(3) acts on both D and on the underlying component D. Accordingly, every general α ∈ D determines two

one-dimensional subgroups of PGL(3):
• the PGL(3)-stabilizer Stab(α) of α; and
• the PGL(3)-stabilizer Stab((α,X )) of the image of α in D.

The equivariance of the normalization map n : P→ P̃8 implies that Stab(α) is a subgroup of (in fact, a union of components
of) Stab((α,X )).

Lemma 7.1. Let D be a component of type III, IV, or V, and let α(t) be a marker germ for D. Let α = α(0),X = lim C ◦ α(t),
and let D be the component of E over D containing the center α of the lift of α(t) to P.
Then the degree of D over D is the index of Stab(α) in Stab((α,X )).

Proof. If α(t) is a marker germ then (α,X ) and α are general; by Lemma 6.2, D is the closure of the PGL(3)-orbit of α. It
follows that the fiber of D→ D over (α,X ) is the Stab((α,X ))-orbit of α, giving the statement. �

The stabilizers Stab((α,X )) are easily identified subgroups of the stabilizers of the curvesX , which are discussed in [3],
Section 1. We have to determine the stabilizers Stab(α), and we do this by means of the following construction.
Let α(t) be a marker germ whose lift to P is centered at α ∈ D. Consider the C((t))-valued points of PGL(3) obtained as

products

Mν(t) := α(t)−1 · α(tν(t))
as ν(t) ranges over all units in C[[t]]. Among all the Mν(t), consider those that are in fact C[[t]]-valued points of PGL(3),
and in that case let

Mν := Mν(0).
The reader may verify directly that the set of all Mν so obtained is a subgroup of the stabilizer of (α,X ). We call it the

inessential subgroup (w.r.t. α(t)) of the stabilizer of (α,X ). It consists of the elements of the stabilizer due to reparametriza-
tions of the germ α(t). We now prove that this subgroup equals the stabilizer of α.

Proposition 7.2. Let D be a component of E of type III, IV, or V, and let D be any component of E dominating D. Further, let α(t)
be a marker germ for D, such that the lift of α(t) to P is centered at a point α ∈ D. Let α = α(0),X = lim C ◦ α(t).
Then the inessential subgroup of Stab((α,X )) (w.r.t. α(t)) is the stabilizer of α, and the degree of D over D is the index of

the inessential subgroup in Stab((α,X )).

Proof. LetMν (as above) be an element of the inessential subgroup. Thenα(t)·Mν andα(t)·Mν(t) = α(tν(t)) are equivalent
according to Definition 5.1; by Lemma 5.2, α ·Mν = α.
For the converse, assume α = α · N . By Proposition 6.3, α(t) is equivalent to α(t) · N: that is, there is a C[[t]]-valued

point N(t) of PGL(3), with N(0) = N , and a unit ν(t) ∈ C[[t]], such that

α(tν(t)) = α(t) · N(t).

ThereforeMν(t) = α(t)−1 · α(tν(t)) = N(t) ∈ C[[t]]: that is, N is in the inessential subgroup of the stabilizer of (α,X ).
The statement about the degree of D over D follows from Lemma 7.1, completing the proof. �
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7.2. The degree of D over D

We are ready to complete the proof of Propositions 4.3–4.5, and hence of Theorem 2.1.
All that is left to prove is the statement concerning the degree of each component of E over the corresponding component

of E; this is done by repeated applications of Proposition 7.2, that is, by determining the inessential subgroups of the
stabilizers for components of type III, IV, and V.

Claim 7.3. For type III and IV, the inessential subgroup is the component of the identity in the stabilizer of (α,X ).

Proof. For type III and IV, marker germs are of the form

α(t) =

1 0 0
0 tb 0
0 0 tc

 ,
with b = c = 1 for type III and b, c positive and relatively prime for type IV.
For all units ν(t),

α(t)−1 · α(tν(t)) =

1 0 0
0 tb 0
0 0 tc

−1 ·
1 0 0
0 tbν(t)b 0
0 0 tcν(t)c

 =
1 0 0
0 ν(t)b 0
0 0 ν(t)c


is a C[[t]]-valued point of PGL(3). Thus the inessential subgroup consists of the elements1 0 0

0 νb 0
0 0 νc

 ,
for ν = ν(0) ∈ C, ν 6= 0. These elements form the identity component of the stabilizer (cf. Section 3 in [7]), verifying our
claim. �

Applying Proposition 7.2, we conclude that for types III, IV the degree of D→ D equals the number of components of the
stabilizer of a general point (α,X ) ∈ D.

Type III. Recall that the limit of C along a marker germ α(t) consists of a fanX whose star reproduces the tangent cone
to C at p, and whose free line is supported on the kernel line x = 0. It is easily checked that the stabilizer of (α(0),X ) has
one component for each element of PGL(2) fixing them-tuple determined by the tangent cone to C at p, verifying the degree
statement in Proposition 4.3. �

Type IV. The number of components of the stabilizer of a general (α,X ) is determined as follows. The limitX is given by

xqyrzq
S∏
j=1

(yc + ρjxc−bzb);

the stabilizer of (α,X ) is the subgroup of the stabilizer ofX fixing the kernel line x = 0. Thus, the number of components
of the stabilizer of (α,X ) equals the number of components of the stabilizer of X , or the same number divided by 2,
according to whether the kernel line is determined by X or not; the latter eventuality occurs precisely when c = 2 and
q = q. It follows then from Lemma 3.1 in [7] that the number of components of the stabilizer of (α,X ) equals the number
of automorphisms A1 → A1, ρ 7→ uρ (with u a root of unity) preserving the S-tuple [ρ1, . . . , ρS]. This completes the proof
of Proposition 4.4. �

Type V. Finally, we deal with components of type V. The determination of the inessential subgroup of the stabilizer of a
general point (α,X ) of such a component relies again on the technical Lemma 6.5.

Lemma 7.4. Let

α(t) =

 1 0 0
ta tb 0
f (ta) f ′(ta)tb tc


be the marker germ determined by C and the formal branch f (y) =

∑
γλiy

λi , and let X = limt→0 C ◦ α(t). Then the corre-
sponding inessential subgroup consists of the components of the stabilizer of (α,X ) containing matrices1 0 0

0 ηb 0
0 0 ηc


with η an h-th root of 1 , where h is the greatest common divisor of a and all aλi (λi < C).
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Proof. For every hth root η of 1, each component of the stabilizer containing a diagonal matrix of the given form is in the
inessential subgroup: indeed, such a diagonal matrix can be realized as α(t)−1 · α(ηt).
To see that, conversely, every component of the inessential subgroup is as stated, apply Lemma 6.5 with β(t) = α(t).

We find that if α(t)−1 ·α(tν(t)) is a C[[t]]-valued point of PGL(3), then ν(t) = η(1+ tb−aµ(t)), with η an ath root of 1, and
further

f (ta) = f ((ηt)a),

that is,∑
λi<C

γλiy
λi =

∑
λi<C

ηaλiγλiy
λi .

Therefore ηaλi = 1 for all i such that λi < C , and it follows that η is an hth root of 1.
For ν(t) = η(1+ tb−aµ(t)), the matrixMν(0) = α(t)−1 · α(tν(t))|t=0 is lower triangular and invertible, of the form

1 0 0
aµ0 ηb 0

γλ0

(
λ0

2

)
(aµ0)2 + γ λ0+C

2

λ0 + C
2

(aµ0) 2γλ0

(
λ0

2

)
(aµ0)ηb ηc


where µ0 = µ(0). These matrices are in the stabilizer of (α,X ) for all µ0 (since they are in the inessential subgroup).
Setting µ0 = 0 proves the statement. �

Note that ηc = (ηb)2 since c−2b = aλ0−2a is divisible by h; this is in fact a necessary condition for the diagonal matrix
above to belong to the stabilizer. Moreover, if γ λ0+C

2
6= 0, then necessarily ηb = 1; as the proof of the following proposition

shows, this implies h = 1.

Proposition 7.5. For the component D determined by the truncation f(C)(y) as above, let A be the number of components of the
stabilizer of the limit

xd−2S
S∏
i=1

(
zx−

λ0(λ0 − 1)
2

γλ0y
2
−
λ0 + C
2

γ λ0+C
2
yx− γ (i)C x

2
)

(that is, by [7], Section 4.1, twice the number of automorphisms γ → uγ + v preserving the S-tuple [γ (1)C , . . . , γ
(S)
C ]). Then the

degree of the map D→ D equals Ah , where h is the number determined in Lemma 7.4.

Proof. As the kernel line must be supported on the distinguished tangent of the limitX , the stabilizer of (α,X ) equals the
stabilizer ofX , and in particular it consists of A components.
Next, observe that for η1 6= η2 two hth roots of 1, the two matrices1 0 0

0 ηb1 0
0 0 ηc1

 ,
1 0 0
0 ηb2 0
0 0 ηc2


are distinct: indeed, if ηb = ηc = 1, then the order of η divides every exponent of every entry of α(t), and hence it equals 1
by theminimality of a. Further, the components of the stabilizer containing these twomatrices must be distinct: indeed, the
description of the identity component of the stabilizer of a curve consisting of quadritangent conics given in [3], Section 1,
shows that the only diagonal matrix in the component of the identity is in fact the identity itself.
Therefore the index of the inessential subgroup equals A/h, and the statement follows then from Proposition 7.2. �

Proposition 7.5 verifies the degree statement in Proposition 4.5, thereby completing the proof of that proposition, and
hence of Theorem 2.1.
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