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Psoriasis is a chronic inflammatory skin disease primarily driven by Th17 cells. IL-23 facilitates the differentiation
and induces complete maturation of Th17 cells. Lesional psoriatic skin has increased levels of IL-23 and recent
studies show that intradermal injections of IL-23 induce a psoriasis-like skin phenotype in mice. We have now
characterized the IL-23-induced skin inflammation in mice at the molecular level and found a significant
correlation with the gene expression profile from lesional psoriatic skin. As observed in psoriasis, the
pathogenesis of the IL-23-induced skin inflammation in mice is driven by Th17 cells. We demonstrate a dramatic
upregulation of IL-6 mRNA and protein after intradermal injections of IL-23 in mice. Using IL-6�/� mice we show
that IL-6 is essential for development of the IL-23-elicited responses. Despite producing high levels of IL-22,
IL-6�/� mice were unable to express the high-affinity IL-22 receptor chain and produced minimal IL-17A
in response to intradermal injections of IL-23. In conclusion, we provide evidence for the critical role played by
IL-6 in IL-23-induced skin inflammation and show that IL-6 is required for expression of IL-22R1A.
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INTRODUCTION
Psoriasis is a common chronic inflammatory skin disease
(Nickoloff et al., 2007; Sabat et al., 2007). Histological
features of psoriatic skin include epidermal hyperplasia,
increased angiogenesis, and leukocyte infiltration where
CD4þ (CD4 positive cell) T cells predominate in the dermis
and CD8þ T cells infiltrate the epidermis (Bowcock and
Krueger, 2005; Danilenko, 2008). In psoriatic skin, the
differentiation process is drastically shortened (Sabat et al.,
2007), indicating disturbed keratinocyte (KC) differentiation,
which together with infiltrating T cells constitute key
pathological characteristics of psoriasis (Lowes et al., 2007).

One sub-population of CD4þ T cells, termed Th17 cells
has recently been shown to be pivotal players in psoriasis
(Lowes et al., 2008; Kagami et al., 2010). Th17 cell differen-
tiation from naı̈ve CD4 T cells is induced by the presence
of transforming growth factor-b and IL-6 (or IL-21), which
upregulates the transcription factor ROR-gt. This event
triggers the expression of IL-23R, which when bound to

IL-23, serves to expand and stabilize Th17 responses. The
combination of transforming growth factor-b and IL-6
suppresses the expression of the transcription factor FOXP3,
preventing differentiation of naı̈ve CD4 T cells to regulatory
T cells (Tregs). IL-6 specifically has a critical role in dictating
whether an immune response is dominated by FOXP3þ

regulatory T cells or Th17 cells as shown previously by
generation of antigen-specific regulatory T cells and by
inhibition of effector T-cell development in IL-6�/� mice
(Korn et al., 2007). On binding of IL-23 to its receptor,
Janus kinase-signal transducer and activator of transcription
(JAK-STAT) signalling is activated leading to transcription of
pro-inflammatory cytokines, such as IL-22, IL-17A, IL-17F,
and IFN-G (Parham et al., 2002; Di et al., 2009).

IL-23 is overexpressed in psoriatic lesions (Lee et al.,
2004; Wilson et al., 2007) and it has recently been shown
that intradermal injections of IL-23 in mice provoke a skin
phenotype resembling psoriasis. Specifically, injections of IL-23
upregulates pro-inflammatory cytokines and induces KC
proliferation leading to epidermal hyperplasia (Kopp et al.,
2003; Chan et al., 2006; Zheng et al., 2007; Hedrick et al.,
2009). In the present study, we demonstrate a significant
correlation between the gene expression profiles of IL-23-
induced skin inflammation in mice and of lesional psoriatic
skin. Furthermore, we provide evidence for requirement of IL-6
in the development of IL-23-induced skin inflammation. Finally,
we elucidate the mechanism behind the decreased skin
inflammation in IL-6�/� mice, despite the high expression of
IL-22, by showing an impaired expression of the high affinity
IL-22 receptor chain and a decreased IL-17A production in
response to intradermal injections of IL-23.
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RESULTS
IL-23-induced inflammation and epidermal hyperplasia

As previously reported (Zheng et al., 2007; Hedrick et al.,
2009), ear swelling increased more than 2-fold after 10 days
with intradermal injections of IL-23 in the mouse ear. Addi-
tionally, cumulative ear swelling was significantly augmented
for IL-23-injected mice compared with control mice.
Histological evaluation revealed features of a psoriasis-like
phenotype including epidermal hyperplasia, parakeratosis,
and dermal infiltration in the IL-23-injected mice. Further-
more, immunohistochemical staining for Ki67 showed a
marked increase in proliferative KCs in the basal layer of the
epidermis (Supplementary Figure S1a–d online).

Differences in infiltrating cells between skin and secondary
lymphoid organs

To identify the phenotype of the immune cells that infiltrated
the ear tissue and the draining lymph nodes following
injections of IL-23, single-cell suspensions were prepared
and analyzed by flow cytometry. In the ear tissue, CD4þ T
cells (CD4þ CD3þ ) showed the most pronounced increase,
more than 3-fold, whereas the increase in CD8þ T cells
(CD8þ CD3þ ), macrophages (MHC IIþ CD11bþ ), dendritic
cells (MHC IIþ CD11cþ ), and neutrophils (Gr1high

CD11bhigh CD11clow) increased 2- to 3-fold. In contrast, the
draining lymph nodes showed reduced levels of mono-
nuclear cells (particularly neutrophils) after injection of IL-23
compared with control mice (Supplementary Table S1
online). No differences in cellular content in the blood were
detected between IL-23-injected mice and controls (data
not shown).

The IL-23-induced gene expression in mice correlates
significantly with a psoriasis gene expression signature

A meta-analysis was performed based on three published
microarray studies, including 90 patients in total, comparing
lesional versus nonlesional psoriatic skin (Yao et al., 2008;
Nair et al., 2009; Zibert et al., 2010) – see Supplementary
methods online. Among the genes identified from the meta-
analysis as highly associated with psoriasis (family-wise error
rate o0.001), we selected 51 genes whose involvement in
psoriasis is well described (Table 1). For a subset of these
genes (18 out of 51), we verified that the fold changes
calculated from the meta-analysis correlated with the gene
expression changes measured using quantitative PCR (qPCR)
on lesional versus nonlesional psoriatic skin pooled from five
patients (r¼0.74, Po0.001, see Table 1 and Supplementary
Figure S3A online). One gene (IL-20) is markedly more
induced compared with the microarray data. Three genes (IL-
6, TNF-a, and IL-12B), which were found to be slightly but
very significantly induced on average in the meta-analysis
were not verified by qPCR likely due to the small number of
patient samples included. Still, for 15 out of 18 genes (83%),
the direction of the fold change was in agreement with the
microarray data.

Next, we tested our psoriasis gene expression signature
against the expression changes found in IL-23-injected mice
compared with control mice. Here, 45 out of 51 genes (88%)

had fold changes whose direction was in agreement with the
psoriasis gene expression signature (Po0.001 using Fisher’s
exact test; see Table 1 and Supplementary Figure 3B online).
Among those six genes not in agreement with the psoriasis
gene expression signature, only one of them, Il-20, was
downregulated more than 2-fold. Four genes (Il-6, Il-1b,
Il-17a, and Il-22) were markedly more induced by the IL-23-
induced skin inflammation in mice compared with the
psoriasis gene expression signature. In addition, we included
the two genes Defb3 and Defb4 encoding defensins in our
qPCR analysis. These genes were not included on the
microarray but have been demonstrated to be highly induced
in lesional psoriatic skin. High-expression levels of defensins
were indeed observed in the IL-23-injected mice as well as
in the psoriasis biopsies.

The gene expression profile indicates a very strong Th17
signature as well as a Th1 signature following IL-23-induced
skin inflammation in mice. Epidermal differentiation markers
(Lor and Flg) were downregulated, whereas genes associated
with KC activation were upregulated in IL-23-injected mice.
Overall, the IL-23-induced gene expression profile in mice
correlated significantly with the psoriasis gene expression
signature (r¼0.45, P¼ 0.001).

Cytokine expression from IL-23-induced skin inflammation in
mice correlates with psoriatic cytokine expression

Next, we investigated the cytokine protein levels in ear
biopsies after repeated injections of IL-23. The pro-inflam-
matory cytokines analyzed were all substantially upregulated
in the IL-23-injected mice as compared with control mice
(Figure 1), whereas the Th2-associated cytokines IL-4 and
IL-5 were induced at a very low level (barely above detec-
tion limit). Furthermore, signalling downstream of the IL-23
receptor engage the JAK/STAT signalling cascade. Therefore,
the expression of STAT3 was also analyzed and our results
showed a distinct upregulation of both the inactive and
active form of STAT3 in IL-23-injected mice (Supplementary
Figure S2 online).

IL-6 has a critical role in IL-23-induced skin inflammation

IL-6 was dramatically upregulated at both the mRNA and
protein level following intradermal injections of IL-23 in
mice. As IL-6 has a central role in the control of the Th17/Treg
balance, we wanted to investigate the importance of IL-6
for the IL-23-induced skin inflammation. IL-23 was injected
in IL-6�/� mice and compared with wild-type (WT) mice
(Figure 2a). Interestingly, IL-6�/� mice had reduced ear
swelling following injections of IL-23, diminished by 59%
compared with WT mice (Figure 2b). No significant increase
in epidermal thickness (Figure 2c) or sustained inflammatory
cell infiltration (Figure 2g) could be observed in the IL-6�/�

mice compared with WT controls, in the presence of
exogenous IL-23.

The cytokines IL-1B, IL-2, IL-5, IL-10, and tumor necrosis
factor-a (Figure 3a) as well as IL-17A (Figure 3b) were
expressed at significantly lower levels in IL-6�/� mice
compared with WT mice following injections of IL-23. In
contrast, the levels of IL-22 were 2-fold higher in IL-6�/�mice

www.jidonline.org 1111

J Lindroos et al.
IL-23-Mediated Epidermal Hyperplasia

http://www.jidonline.org


compared with WT mice injected with IL-23 (Figure 3a). No
significant difference in the production of IL-4 and IL-8 was
observed between IL-6�/� mice and WT mice.

Expression of the high affinity IL-22 receptor chain IL-22R1
requires IL-6

A previous study has suggested that the Th17 cytokine IL-22
mediates IL-23-induced skin inflammation and acanthosis
(Zheng et al., 2007). IL-22 executes its function through the
IL-22 receptor complex composed of IL-22R1A and IL-10R2.
We now show that although WT mice constitutively
expressed and upregulated the IL-22R1A during the

Table 1. The IL-23-induced gene expression in mice
correlates significantly with a psoriasis gene
expression signature

Gene
symbol

Psoriasis
meta-log2-

fc1

Psoriasis
meta-P
value

Psoriasis
PP versus

PN (qPCR)
log2-fc2

IL-23-injected mice
versus control
mice log2-fc3

Epidermal differentiation

FLG �0.75 2E-10 �1.81

LOR �1.14 3E-12 �2.31 �2.40

Keratinocyte activation

KRT6A 2.27 7E-17 2.91

KRT16 4.57 1E-16 4.95 2.86

GJB2 2.85 1E-17 3.86 1.98

GJB6 1.76 1E-17 2.86 1.25

Innate immune defense

CAMP 0.29 6E-10 0.78

DEFB3 2.09 3.60

DEFB4 3.91 2.51

S100A7 0.92 3E-17 3.41

S100A9 4.97 4E-17 5.52 5.64

S100A11 0.56 1E-13 0.31

Keratinocyte proliferation

MKI67 0.89 3E-15 1.82 0.11

PCNA 0.69 4E-16 0.22 �0.21

Apoptosis

BAX 0.30 5E-12 0.54

BCL2 �0.23 6E-14 �0.69

Th1 pathway

IL-12B 0.24 3E-13 �2.74 0.99

IFNG 0.37 8E-17 2.98 2.44

CXCL9 2.46 9E-17 1.82

CXCL10 2.60 1E-16 2.91

IL-18 �0.49 3E-09 �1.33 �1.36

Th17 pathway

IL-6 0.34 9E-12 �0.48 5.41

IL-17A 0.18 2E-14 1.57 6.89

IL-22 0.17 1E-12 1.03 5.70

IL-1B 0.99 4E-17 3.05 5.41

Inflammation

ANGPTL4 1.00 1E-16 2.19 1.66

CCL19 1.11 3E-11 1.29

Table 1. Continued

Gene
symbol

Psoriasis
meta-log2-

fc1

Psoriasis
meta-P
value

Psoriasis
PP versus

PN (qPCR)
log2-fc2

IL-23-injected mice
versus control
mice log2-fc3

CCL2 1.46 9E-16 2.54

CCL22 1.13 4E-16 �0.40

CCR2 0.38 6E-13 2.17

CD69 0.64 7E-14 0.84

FCER1G 0.52 4E-11 1.95

FGF2 �0.18 5E-08 �0.73

HIF1A 0.52 6E-16 1.39

HMOX1 1.11 1E-14 1.97

ICOS 0.42 2E-15 1.81

IL-19 1.70 4E-15 3.60 4.10

IL-20 1.03 6E-17 6.37 �1.35

IL-4R 1.06 4E-17 3.07

KLK7 0.57 5E-12 �0.49

MMP9 1.59 2E-16 2.72

NFKB1 0.55 7E-16 0.23

PTPRC 0.71 8E-16 1.38

REL 0.53 5E-15 0.60

SOCS1 0.15 2E-11 0.82

SOCS3 0.21 2E-13 3.06

STAT1 1.79 4E-17 1.51

STAT3 0.99 2E-16 0.72

STAT5B �0.17 2E-11 0.00

TLR2 0.97 6E-17 1.32

TLR7 0.20 5E-11 �0.20

TNF 0.20 2E-12 �0.09 0.82

TSLP 0.32 3E-10 �0.66

Abbreviation: fc, fold change.
1Meta-analysis of three published microarray studies (n=90 patients
in total) comparing lesional (PP) versus nonlesional (PN) psoriatic skin.
2Verification of microarray data by quantitative PCR (qPCR) on lesional
versus nonlesional psoriatic skin pooled from 5 patients.
3qPCR on IL-23-injected mice versus control mice (n=5 in each group).
Log2 fold changes are calculated for each analysis. Weighted log2 fold
changes and P-values are listed for the meta-analysis.
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inflammatory response, the level of IL-22R1A was dramati-
cally lower in IL-6�/� mice (Figure 4a and b). Additionally, a
soluble single chain IL-22 binding protein (IL-22BP) has been
identified, which sequesters IL-22 and thereby blocks the
ligand-induced signalling in vivo (Weiss et al., 2004; Wolk
et al., 2010). Like the IL-22R1, the IL-22BP was expressed at
much lower levels in IL-6�/� mice compared with WT mice
after intradermal injections of IL-23 (Figure 4a). These data
strongly suggest that IL-6 regulates the expression of the
IL-22R1 and the soluble IL-22BP.

IL-23-induced skin inflammation is abrogated by known
anti-psoriatic drugs

Systemic daily administration of 20 mg kg�1 cyclosporine A
(CsA) or 2 mg kg�1 Dexamethasone significantly reduced the

ear thickness in the IL-23-injected mice. Dexamethasone
completely abrogated the inflammatory response, whereas an
effect of CsA first appeared at day 4–6 (Figure 2d and e). The
CsA-induced response was similar to the profile obtained
after injections of IL-23 in IL-6�/� mice (Figure 2a and b)
indicating an initial T-cell-independent phase of ear swelling.
Histological evaluation revealed a dramatic effect of each
treatment on epidermal hyperplasia (Figure 2f). Furthermore,
treatment with CsA and Dexamethasone resulted in a marked
reduction of Il-6 and Il-1b gene expression levels further
underlining the similarity to the response in the IL-6�/� mice
(data not shown).

DISCUSSION
Previous studies have described some aspects of the psoriasis-
like phenotype following injections of IL-23 in mouse skin
(Kopp et al., 2003; Chan et al., 2006; Zheng et al., 2007;
Hedrick et al., 2009). In our studies, one of the most striking
similarities to psoriasis was epidermal hyperplasia caused by
KC hyper-proliferation. This correlates with studies of
psoriatic skin showing increased KC proliferation (Sabat
et al., 2007). Activation of KCs was evident on injections of
IL-23 by upregulation of genes, such as keratin 6 and keratin
16 (Krt6 & Krt16), as we and others have observed in lesional
psoriatic skin (Zhou et al., 2003; Gudjonsson et al., 2010).
Furthermore, genes associated with epidermal differentiation
such as loricrin (LOR) and filaggrin (FLG), which are
downregulated in psoriatic lesions (Watanabe et al., 1991;
Mommers et al., 2000; Giardina et al., 2006) and Table 1, are
also downregulated during IL-23-induced skin inflammation
in mice.

A recent study suggests that IL-23-induced inflammation in
mouse skin can be divided into two distinct phases in which
the initial ear swelling is T-cell independent followed by a
later phase dependent on a Th17 response (Hedrick et al.,
2009). Indeed, our data demonstrate cytokine upregulation in
the IL-23-injected mice creating an inflammatory Th17
signature similar to that seen in psoriatic patients with high
levels of IL-17A and IL-22 as well as tumor necrosis factor-a,
IL-1B, IL-8, and IL-6 (Lowes et al., 2007; Nickoloff et al.,
2007; Figure 1 and Table 1).

Production of IL-17A and IL-22, induced by injections of
IL-23, resulted in a strong upregulation of the innate immune
defense genes Defb3, Defb4, S100a7, and S100a9 (Table 1)
as previously described for IL-17A and IL-22 in human KC
monolayer cultures and in skin equivalents (Wolk et al.,
2004, 2006; Boniface et al., 2005a; Nograles et al., 2008;
Guilloteau et al., 2010). Furthermore, a predominantly IL-22-
mediated downregulation of epidermal differentiation mar-
kers (KRT10, FLG and LOR) similar to the one we observe on
injections of IL-23 in mice, has been demonstrated in human
KC monolayer cultures and in skin equivalents (Boniface
et al., 2005b; Wolk et al., 2006; Nograles et al., 2008).

In our studies, IL-6 was one of the most upregulated
cytokines both at the mRNA and protein level following
injections of IL-23 in mouse skin. In lesional psoriatic skin,
IL-6 is also markedly upregulated at the protein level and
slightly, but very significantly, upregulated at the mRNA level
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(Grossman et al., 1989; Neuner et al., 1991; Goodman et al.,
2009; Table 1). IL-6 is critically involved in differentiation of
naı̈ve T cells to Th17 cells and has recently been proposed to
dampen normal regulatory T-cell function, thereby enhan-
cing Th17 driven effector function and sustaining chronic
inflammation in psoriasis (Goodman et al., 2009). We
therefore investigated the IL-23-induced skin inflammation
in IL-6�/� mice, previously shown to be unable to develop
Th17 cells, at least in vitro (Zheng et al., 2007). Like WT
mice, IL-23-injected IL-6�/� mice showed an initial increase
in ear thickness. In contrast to WT mice, the ear swelling was
not accompanied by infiltration of inflammatory cells,

epidermal hyperplasia, or production of pro-inflammatory
cytokines during the later time points of the study (i.e., days
6–10). The diminished inflammation during the latter part of
the response is likely where T cells are required for
modulating the inflammatory response. Indeed, when the
calcineurin inhibitor CsA, which inhibits T-cell activation
through blocking the transcription factor NFAT (Gottlieb
et al., 1992; Menter et al., 2009) was administered to IL-23-
injected WT mice a similar response was observed. This
result correlates with a previous study (Hedrick et al., 2009),
where Rag1tm1Mom-deficient mice were injected intrader-
mally with IL-23. In these mice, an initial T-cell-independent
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ear thickening accompanied by a non-T cell derived
elevation of IL-22 was observed. Still, the response was not
sustained beyond day 5 and was not accompanied by an
increase in IL-17A cytokine levels.

Surprisingly, IL-23-injected IL-6�/� mice showed mark-
edly upregulated IL-22 protein levels compared with WT
mice. These data partially correlate with those of a previous
study (Zheng et al., 2007), where sustained or marginally
enhanced IL-22 production was detected in IL-6�/� naı̈ve
T cells compared with WT naı̈ve T cells following in vitro
culture with IL-23. Alternative non-ab-T-cell sources of IL-22
are likely gd-T cells (Martin et al., 2009; Siegemund et al.,
2009), dendritic cells (Zheng et al., 2007), NK cells (Wolk
et al., 2002), and NK T cells, which have been shown to
produce IL-22 and express the IL-23R (Kastelein et al., 2007;
Goto et al., 2009). Additionally, treatment of NK-T cells with
IL-6/transforming growth factor-b was shown to reduce the
production of IL-22 (Goto et al., 2009). Thus, in IL-6�/� mice
in vivo IL-22 is produced directly by naive T cells in response
to IL-23 and is likely also produced by NK, NK-T and gd-T
cells. Collectively, these cell subsets may compensate for
lack of Th17-derived IL-22 production, but is nevertheless
not able to sustain dermal inflammation during the later
T-cell-dependent phase of the response.

IL-22 signals through the IL-22 receptor complex com-
posed of the IL-22R1 and the IL-10R2 subunits. In our studies,
we observed a disability in IL-6-deficient animals to express
the IL-22R1 as well as the regulatory soluble single-chain
receptor IL-22BP. This strongly suggests that IL-6 is required
for the functional effect of IL-22 and explains the lack of
sustained epidermal inflammation and acanthosis in IL-6�/�

mice following intradermal injections of IL-23.
Interestingly, and in contrast to a previous report (Hedrick

et al., 2009), IL-10 was markedly upregulated at both the
mRNA and protein level following injections of IL-23 in WT
mice. This was surprising as IL-10 primarily is associated with
regulatory T-cell function and an anti-inflammatory response
(Sato et al., 1999; O’Garra et al., 2004). However, IL-6 has
been shown to directly induce IL-10 production from naı̈ve
CD4þ T cells as well as under Th17 polarizing conditions
(McGeachy et al., 2007). We observed no or marginal IL-10
production following injections of IL-23 in IL-6�/� mice
indicating that IL-6 is required for the observed production of
IL-10.

IL-19 and IL-24 have been debated in recent studies for
their presence and sufficiency in mediating epidermal
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Figure 3. Deficiency of IL-6 dramatically influences the cytokine profile in

IL-23-injected ears. (a) Tissue lysates were prepared from frozen ear biopsies

and cytokine concentrations were measured by meso scale discovery

(n¼5–10), except for IL-22, which were measured by ELISA (n¼ 5–10).

Mean±SEM is indicated for all cytokines. No P-values are shown for IL-22

as control groups had levels below the detection limits of the kits.

(b) Representative double immunofluorescent stainings for CD3e (red) and

IL-17A (green) in WT and IL-6�/� mouse ear tissue, respectively, following

intradermal injection of IL-23 (n¼ 5). Co-localization of CD3e and IL-17A is

visualized by orange immunofluorescence (bar¼ 20mm). NS, not significant.
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hyperplasia via the IL-20Rb following intradermal injections
of IL-23 (Chan et al., 2006; Zheng et al., 2007). We show a
marked upregulation of Il-19 in lesional psoriatic skin and in
mouse IL-23-induced dermatitis, supporting that signalling
through the IL-20Rb might mediate residual epidermal
hyperplasia as previously suggested (Chan et al., 2006).

Earlier studies have shown that IL-23 can activate the JAK/
STAT signalling pathways (Parham et al., 2002) in KCs (Tonel
and Conrad, 2009) and in Th17 cells (Chen et al., 2006).
Correlating with these observations Stat1, Stat3, suppressor of
cytokine signalling 3 (Socs3) and protein tyrosine phospha-
tase receptor type C (Ptprc) were upregulated at the mRNA
level (Table 1) and a marked upregulation of both phos-
phorylated and non-phosphorylated STAT3 protein was seen
in IL-23-injected mice (Supplementary Figure 1 online).

FACS data from our studies showed cellular infiltration of
CD4þ T cells, CD8þ T cells, dendritic cells, macrophages,
and neutrophils in IL-23-injected ears. Additionally, we

observed a reduction in percentages of neutrophils in the
draining lymph nodes following intradermal injections of
IL-23, suggesting an active recruitment of neutrophils
from the draining lymph nodes. In a previous study of
IL-23-induced dermatitis, Chan et al. (2006) showed a similar
infiltration of immune cell subsets in mouse back skin except
for CD8þ T cell infiltration, a feature also present in psoriasis.
In another study by Hedrick et al. (2009), no differences were
observed between IL-23-injected and control mice with
respect to infiltration of macrophages, neutrophils or CD8þ

T cells. These differences could be due to varying time points
of sampling. Our data is based on single-cell suspensions
from ear skin prepared on day 10 at a time of T cell-
dependent inflammation. Chan et al. (2006) performed
immunohistochemistry staining on day 1 and day 4 possibly
before onset of the T-cell-dependent phase of the response.
Hedrick et al. (2009) did FACS analysis on day 15, a late time
point where active inflammation may have started to decline.

In conclusion, we have shown that IL-23-induced dermal
inflammation in mice is T-cell-dependent and, in particular,
IL-6-dependent. Although IL-6-deficient mice respond to
intradermal injections of IL-23 with enhanced IL-22 produc-
tion compared with WT mice, this is insufficient for sustained
dermal inflammation and acanthosis. Our findings strongly
suggest that this is due to a failure to express significant levels of
the specific IL-22 receptor (IL-22R1A) in the absence of IL-6.

MATERIALS AND METHODS
Human skin biopsies

Approval from the local Ethics Committee was obtained and the

study was conducted according to the Declaration of Helsinki

principles. Patients included had moderate-to-severe chronic plaque

psoriasis and had not received any topical or systemic anti-psoriatic

treatments for 2 and 4 weeks, respectively, before biopsy. After

informed written consent was obtained, lesional and nonlesional

keratome biopsies were taken under local anesthesia. The biopsies

were snap-frozen in liquid nitrogen for RNA extraction and analysis.

Mice

Female C57BL/6JBomTac (6- to 8-week old; Taconic, Ry, Denmark)

listed as WT in text; B6.129S2-Il6tm1Kopf/J, backcrossed for

11 generations to C57BL/6J mice (stock No. 00664, Jackson

Laboratory, Bar Harbor, ME) listed as IL-6�/� mice in text were

used for all experiments. The breading quality/health of the animals

was guaranteed by the suppliers. Mice were kept at pathogen-free

facilities at LEO Pharma, Denmark and were provided food and

water ad libitum. All experiments were approved by the animal

Ethics Committee.

Treatments

Mice were anesthetized with isoflurane and injected i.d. in the ear

every other weekday for 10 days with 10 ml of mouse recombinant

IL-23 (eBioscience, San Diego, CA) diluted 1:1 in 10% C57BL/6

mouse serum in phosphate-buffered saline (final concentration

50 mg ml�1). Control mice were injected with 5% C57BL/6 mouse

serum in phosphate-buffered saline. Ear thickness was measured

using an engineer’s calliper (Mitutoyo, Aurora, IL) every weekday

before injections. The rationale for injections into mouse ear tissue

WT IL6 –/–

+ – IL-23

IL-22R1A

IL-22BP

GAPDH

+ –

WT IL-23

a

b

IL6 –/– IL-23

Figure 4. IL-22R1A expression is regulated by IL-6 expression. (a) Protein

extracts were prepared from frozen ear biopsies of IL-23-injected WT

and IL-6�/� mice and subjected to western blot. (b) Representative

immunofluorescent stainings for IL-22R1A in IL-23-injected WT and

IL-6�/� mouse ear tissue (n¼5; bar¼ 20mm).

1116 Journal of Investigative Dermatology (2011), Volume 131

J Lindroos et al.
IL-23-Mediated Epidermal Hyperplasia



was based on the feasibility of measuring ear swelling during the

course of the experiment in addition to epidermal thickness as final

end point.

Mice received drug treatment administered p.o. either vehicle

1% methylcellulose (LEO Pharma, Ballerup, Denmark) twice daily at

0.1 ml per 10 g mouse or CsA (Alexis Biochemicals, Switzerland)

twice daily at 20 mg kg�1 mouse or Dexamethasone (Dexadresone

Intervet, Boxmeer, The Netherlands) once daily at 2 mg kg�1 mouse.

During weekends mice were treated once daily regardless of drug

treatment. At the end of experiments, mice were killed by isoflurane

anesthetization followed by cervical dislocation.

Tissue sampling and measurement of epidermal thickness

Biopsies (8-mm thick) from the ears covering most of the injected

ear surface were halved and placed incision-side down in Tissue-Tek

O.C.T. Compound (Sakura Finetek, Alphen aan den Rijn, The

Netherlands) and snap-frozen in liquid nitrogen. Biopsies were

sectioned on a cryostat microtome (MICROM HM 560, Thermo

Fischer Scientific, Walldorf, Germany). Sections were stained with

Masson’s Trichrome and mean epidermal thickness determined

using Visiopharm software (Visiopharm, Hoersholm, Denmark).

Immunohistochemistry
For staining of proliferative cells, polyclonal rabbit anti-mouse

Ki67, clone SP6 (Histolab, Gothenburg, Sweden, 1:100) was used.

The cytokine IL-17A was stained by rabbit anti-human IL-17A

(Santa Cruz Biotechnology, Santa Cruz, CA, 1:100) and CD3-

positive cells by hamster polyclonal anti-mouse CD3e (Invitrogen,

Carlsbad, CA, 1:400) and rat anti-mouse IL-22R1a (clone 496514,

R&D Systems, Abingdon, UK, 1:100). Detailed descriptions of the

immunohistochemical procedures can be found in Supplementary

methods online.

RNA extraction and qPCR analysis
Biopsies from pooled lesional or matched nonlesional psoriatic skin

(n¼ 5) were crushed under liquid nitrogen. Ear biopsies of mice from

each treatment group (n¼ 5) were pooled and disintegrated in a

TissueLyser (Qiagen, Haan, Germany). RNA was extracted by use of the

RNeasy Lipid Tissue Mini Kit (Qiagen, Germantown, MD) and reverse-

transcribed using the High-Capacity cDNA Reverse Transcription kit

(Applied Biosystems, Foster City, CA). The samples were amplified by

real-time quantitative PCR (qPCR) using Applied Biosystems validated

gene expression assays and PRISM 7900HT sequence detection system

(SDS 2.3). Fold changes of mRNA expression were calculated by the

comparative Ct method and normalized to GAPDH using the RealTime

StatMiner software (Integromics, Granada, Spain).

Western blot

IL-22 Receptor Chains were detected by western blot using

the specific primary antibodies IL-22R1a (rat anti-mouse IL-22R1a,

R&D systems, Clone #496504-22) and IL-22BP (goat anti-mouse

IL-22BP, Santa Cruz Biotechnology, Sc-67638). GAPDH detection

was used for loading control. Further details are described in

Supplementary Methods online.

Cytokine determination

Cytokines from homogenized ear biopsies were measured by

Mouse Pro-inflammatory 7-Plex Ultra-Sensitive and Mouse TH1/TH2

9-Plex Ultra Sensitive Kits (Meso Scale Discovery, Gaithersburg, MD)

on a meso scale discovery platform. For analysis of Th17 cytokines,

Mouse IL-17A Quantikine Immunoassay and Mouse/Rat IL-22 Quanti-

kine Immunoassay (R&D Systems) were used. Total amounts of protein

in each sample were quantified by the Pierce BCA Protein Assay Kit

(Thermo Scientific, Rockford, IL). Further details are described in

Supplementary methods online.
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