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1. I~vTR~DUCTI~N 

This paper is devoted to the problem of existence of periodic solutions for 
some nonautonomous neutral functional differential equations. It is essentially 
an application of a basic theorem on the Fredholm alternative for periodic 
solutions of some linear neutral equations recently obtained by one of 
the authors [2] and of a generalized Leray-Schauder theory developed by the 
second one [3, 41. Although their proofs are surprisingly simple, the obtained 
results are nontrivial extensions to the neutral case of a number of recent 
existence theorems for periodic solutions of functional differential equations. 
In particular, Section 3 generalizes some existence criteria due to one of the 
authors [5] and a corresponding recent extension by J. Cronin [6], the 
example following Theorem 4.1 improves a condition for existence given by 
Lopes [ 141 for the equation of a transmission line problem, and Theorem 5.1 
generalizes a result due to R. E. Fennel1 [7]. Lastly, criteria analogous to 
Theorem 5.2 for the retarded case can be found in [8]. For partly related 
results concerning periodic solutions of neutral functional differential 
equations, see [9]. 
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2. FFCEDHOLM ALTERNATIVE FOR LINEAR EQUATIONS 

Let C([a, b], W) be the space of continuous functions from [a, b] into 
W with the topology of uniform convergence. For a fixed r 3 0, let 
C = C([-Y, 01, R”) with norm I g, I = SU~-,~~Q, / q(e)/ for v E C. If 
x E C([U - Y, CJ + 61, W) for some 6 > 0, let xt E C, t E [a, u + 61 be defined 
by x,(B) = x(t + IV), 19 E [-Y, 01. Suppose w > 0 fixed, A: R x C-j W is 
continuous, A(t + w)rfz = A(t)p, for all (t, p) E lR X C, A(t)p, is linear in v 
and there exists a continuous function y: [0, a) + R, y(O) = 0, such that 

for all t E R and all functions @‘E C such that ~~(0) = 0 for 0 E [-Y, -s]. 
Let D: R x C-t Iw” be defined by D(t)v = ~(0) - A(t)p The operator D 
is said to be stable if the zero solution of the functional equation D(t) yt = 0 
is uniformly asymptotically stable; that is, there are constants K, 01 > 0 such 
that ify(v) is the solution of D(t)yt = 0 withy,, = v, then 

Let gU = {x E C(R, W): x(t + w) = x(t), t E Iw}, Xw = {HE C(R, IJP): 
H(0) = 0 and H(t) = cd + h(t) f or some 01 E IV, h E gW}. For any h E 9’,,, , 
let 1 h j = sup,,<,<, 1 h(t)1 and for any HE @“, H(t) = cd + h(t), 01 E R?, 
hE9:,,let/HI =iocI+Ihl. 

PROPOSITION 2.1. If D is stable, then, for any c E W, there is a unique 
solution MC of the equation D(t)xt = c in .Yu . Furthermore, M is a continuous 
linear operator from W to gw . 

Proof. Following the proof of Lemma 3.4 in [lo], there are constants 
b > 0, a > 0 and an appropriate equivalent norm in C such that the solution 
x(y, c) of D(t)xt = c, x0 = v, satisfies 1 x,(v, c)I < I c lb + / y 1 exp(-at), 
t 3 0, F E C, c E W. If TV = x,(91, c), then T is a contraction mapping. Thus, 
if d > 0 is sufficiently large that j c lb + d exp(--am) < d, then T has a 
unique fixed point such that 1 p 1 < d. Consequently, there is a solution of the 
equation in gW . The fact that D is stable implies the uniqueness, linearity, 
and continuous dependence on c. 

Let us rephrase Proposition 2.1 in a different way. Let L: Y:, ---f Xu be the 
continuous linear mapping defined by 

Lx(t) = D(t) xt - D(O)x, , t E IF?. 
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Proposition 2.1 implies that 

kerL ={x~Y’,:3c~lR~withx =Mc) 

is an n-dimensional subspace of 9,. Let P: Yw ---f 9m be a continuous 
projection onto ker L. 

For the statement of the next proposition, let Q: ZU --f SU be the con- 
tinuous projection defined by 

QH(t) = w-‘H(w)t, tE[W. 

PROPOSITION 2.2. If D is stable, then Im L = ker Q and there is a continuous 
linear operator K: Im L + ker P such that K is a right inverse of L. Thus, L 
is a Fredholm operator with index 0. 

Proof. The second proof given in [2] of the Fredholm alternative holds 
equally well for the equation D(t)x, = H(t). Thus, from [2] dim kerL = 
codim Im L. Proposition 2.1 implies dim ker L = n. For the equationLx = H 
to have a solution, it is clearly necessary that HE ker Q. Since codim ker Q =n, 
it it follows that Im L = ker Q. The existence of the bounded right inverse 
follows from [2] or one may apply the closed graph theorem to L 1 (I - P)J?~ . 

For the applications, it is necessary to be able to compute kerL. In some 
simple cases, this is easily accomplished. For example, if a(t) = a(t + w), 
t E IR, is an n x n matrix with 1 a(t)1 < k < 1 for t E R, then the unique 
solution MC in .Yw of 

x(t) - a(t) x(t - r) = c (2.2) 

is given by 

VW) = [I + j. i a(t -jr)] c. (2.3) 

Another case particularly interesting in the applications is when D(t)v 
is independent of t. Then kerL = (constant functions in g;,}. 

3. EXISTENCE THEOREMS FOR NONLINEAR EQUATIONS 

With the above notations, let us consider the neutral functional differential 
equation 

g D(t) xt = f (4 4 (3-l) 

where D is stable and f: R x C + 08” is w-periodic with respect to t, con- 
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tinuous, and takes bounded sets into bounded sets. If we define N: 9’U -+ SW 

bY 

it is clear that finding w-periodic solutions of (3.1) is equivalent to solving the 
operator equation Lx = Nx in 9’U with L defined in (2.7). To apply coin- 
cidence degree theory to this problem still requires that N should be compact, 
i.e., continuous and taking bounded sets of 9JW into relatively compact sets 
ofPa. 

PROPOSITION 3.1. Under the conditions listed above, N is compact. 

Proof. The continuity is obvious. If S > 0 and x ~9~ is such that 
1 x / < S, then / xt 1 < S for every t E S and thus 1 f (s, x8)/ < T for some 
T > 0 and every s E R. It then follows easily that 

and 
I Nx(t)/ < T(1 + 2~1, tElR 

I Nx(t,) - Whl < Tl t, - t, 1, t1, t, E R 

and Proposition 3.1 is a consequence of the Arzela-Ascoli theorem. 
A direct application of Propositions 2.2, 3.1 above and of Theorem 5.1(i) 

of [3] gives the following. 

THEOREM 3.1. If there exists an open bounded set Sz C Y:, whose boundary 
X2 contains no w-periodic solution of (3.1) and if the ?Z+-coincidence degree 
d[(L, N), Q] is not zero, then Eq. (3.1) h as at least one w-periodic solution in Q. 

This result is quite general but requires the solution of two difficult 
problems, namely, finding Q (it is an a priori bound problem) and estimating 
d[(L, N), 4. Th eorem 7.2 [3] reduces this last question to the study of 
Brouwer degree of some well defined finite-dimensional mapping if the 
a priori estimate condition is slightly strengthened. Letg: R x C x [0, I] + W, 
(t, F, h) +g(t, v, h) be w-periodic with respect to t, continuous, taking 
bounded sets into bounded sets and such that 

g(t, I, 1) = f (4 94, (t, p) E R x c. (3.2) 

Let M: Iw” -+ gU be the mapping defined in Proposition 2.1 and define 
B:R”-tR”by 

9(a) = w-l 
s w At, CM4 , 0) dt. 
u 
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If D( t)p, is independent of t, one can put M = I, the identity in this definition. 
Theorem 7.2 of [3] implies the following. 

THEOREM 3.2. Suppose there exists an open bounded set J2 C !YU for which 
the following conditions are satisjed. 

(1) Fm each h E (0, l), the equation 

-$ D(t) xt = W, it ,A) 

has no w-periodic solution on LZ?. 

(2) 9(a) # 0 for every a E W such that Ma belongs to aQ. 

(3) The Brouwer degree d,[Q, Q, 0] is not zero, where G = {a E W: Ma 
belongs to Q}. 

Then Eq. (3.1) has at least one w-periodic solution in Q. 

Another useful special case of Theorem 3.1 follows at once from 
Theorem 7.3 [3]. Suppose that the mapping g defined above verifies (3.2) 
and the supplementary condition 

&a -33 0) = -& % (9, (t, v) E UT? x c. (3.3) 

THEOREM 3.3. Suppose there exists an open bounded set 52 C 5@‘, symmetric 
with respect to the origin, containing it and such that XJ contains no w-periodic 
solution of each equation 

with g verifring (3.2) and (3.3). Then Eq. (3.1) has at least one w-periodic 
solution in Q. 

Let us note that (3.3) will always be satisfied if g(t, 9, 0) is linear with 
respect to v. Also, Theorems 3.1, 3.2, and 3.3 are respective generalizations of 
Theorems 2, 3, and 4 [5] which all correspond to the case of retarded func- 
tional differential equations, i.e., Dp, = do), and D an open ball. Also, an 
extension to the neutral case of Theorem 1 of [6] is easily obtained by a 
suitable choice of 9 and the properties of coincidence degree. 
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4. AN APPLICATION 

Let us consider the neutral equation 

$ [x(t) - 5 ~,x(t - T,)] = grad V[x(t)] + e(t), 
k=l 

(4.1) 

where V: UP --f R’ is of class %?, e E PU , rk E [-r, 0) (K = 1, 2 ,..., N) and the 
n x n constant matrices A, are such that 

; I A, / = 1 - 01, 01 > 0. (4.2) 
k=l 

Let F be the mean value of e. 

THEOREM 4.1. If there exists R > 0 such that 

e + u-1 
s w grad V[x(t)] dt + o 

0 

for every x E 9, satisfring inf,,, 1 x(t)1 3 R and if the Brouwer degree 
d,[e + grad Y, B(0, R), 0] is not zero, then Eq. (4.1) has at least one w-periodic 
solution. 

Proof. Let 1 . 1 and (., .) respectively denote the Euclidean norm and 
the inner product in UP. It is well known [lo] that condition (4.2) implies 
that the operator D: v + ~(0) - Cr=, App(--~~) is stable and the right side 
of (4.1) clearly takes bounded sets into bounded sets. Let us consider the 
family of equations 

-$ [x(t) - c A,x(t - Ty)] = h grad V[x(t)] + he(t), A E (0, 1). (4.3) 
k=l 

If x is any w-periodic solution of (4.3) f or some h E (0, 1) then x(t) must have 
a continuous first derivative (see [ 141) and 

w-l j-U (a(t) - f Ag(t - TJ, d(t)) dt 
0 k=l 

= Au-1 SW (grad V[x(t)], f(t)) dt + L-l SW (e(t), n(t)) dt, 
0 0 

which implies, using Schwarz’ inequality and (4.2), 

(u-l lw / k(t)12 dt)li2 < L+ 



PERIODIC SOLUTIONS OF NEUTRAL EQUATIONS 301 

with 72 = w-l g 1 e(t)12 dt. Then, for every t, t’ E [0, w], we have 

j x(t) - x(t’)l < wd7p (4.4) 

On the other hand, every w-periodic solution of (4.3) verifies the equation 

e + w-1 
s 

w grad V[x(t)] dt = 0, 
0 

and, hence, there must exist some 0 E [0, w] for which 1 x(u)1 < R. Taking 
t’ = 0 in (4.4) we obtain 

1x1 <R+udq = S 

for every w-periodic solution of (4.3). The result then follows from 
Theorem 3.2 by taking for Sz the open ball of center 0 and radius S in 9:, . 

As an application of Theorem 4.1, let us consider the special case of a 
scalar equation with one delay, 

g [x(t) + 4 - ~11 = $44 + 40, 

where 1 a j < 1, e E 9w and p(x) is a given function of x. This equation 
arises in a transmission line problem with a shunt across the line (see [13, 141). 
Then, if p is any continuous function such that / p(x) 1 + co if / x / + co and 
p(x)p(-x) < 0 for all x with I x I sufficiently large, there will exist an 
w-periodic solution. Using Liapunov functions, Lopes [14] has obtained the 
existence of an w-periodic solution of this special equation for I a 1 < $ and 
x$(x) + +a3 as / x [ ---f co. 

5. NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS WITH 

QUASIBOUNDED NONLINEARITIES 

We shall consider in this section w-periodic equations of the form 

where D satisfies the conditions in Section 2, b: R x C ---f R”, (t, v) -+ b(t, y) 
is linear with respect to p and continuous, f: R x C + Iw” is continuous, 
takes bounded sets into bounded sets and is such that 

hnjstP(l 9J I-l If@, TN = o&~m(;gJo I v I-l I f(t, TN = 0 (5.2) , 

uniformly in t E R. 
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Let us recall that a mapping F: X--+ Y between normed spaces is quasi- 
bounded if the number IF 1 = lim sup~~l+~ j x j-l1 Fx 1 is finite, in which 
case it is called the quasinorm of F [12]. We shall use in this section a mapping 
theorem of Granas for compact quasibounded perturbations of the identity 
[12] and a specia1 case of its generalization in the frame of coincidence degree 
theory [4]. 

PROPOSITION 5.1. If f satisfies the conditions above, then the mapping 
N: Yw + Xw defined by Nx(t) = St f (s, x,) ds, t E R, is compact, quasibounded 
and)N(=O. 

Proof. The compactness follows from Proposition 3.1. Now, if E > 0, 
it follows from (5.1) and the fact that f takes bounded sets into bounded sets 
that there exist Y(E) > 0 such that, for every (t, v) E Iw x C, 

Hence, for every x E 9’:, , 

I Nx I = ( a+ jouf (s, 4 ds 1 

+ tz;;, j it [f (t’, xc> - w-l lwf (s> 4 ds] dt’ 1 

G (1 + 2w)[c I x I + r(41 

which clearly implies m N 1 = 0. 
Now we can prove the following. 

THEOREM 5.1. With D, b andf as above, suppose the linear equation 

; D(t) xt = b(t, xt) (5.3) 

has no nontrivial w-periodic solution. Then Eq. (5.1) has at least one w-periodic 
solution. 

Proof. The result is equivalent to solving the equation Lx - Bx = Nx 
in 9’w with B: 9, -+ SW defined by Bx(t) = Ji b(s, x,) ds, t E 08, and L, N as 
above. From Proposition 3.1 we know that B is a compact mapping and L 
being a continuous Fredholm mapping of index zero, the same is true for 
L - B [II]. As L - B is one-to-one by our assumption on (5.3) it will 
necessarily be onto and such that (L - B)-l: ZU -+ ~7~ is continuous. The 
proof of Theorem 5.1 is then equivalent to the fixed point problem 
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x = (L - B)-lNx in 9,,, with (L - B)-lN clearly compact, quasibounded, 
and of quasinorm zero. The result then follows from Granas’ theorem. 

An interesting problem is now to try to drop the assumption about the 
nonexistence of nontrivial w-periodic solutions for (5.3). It is clear from the 
Fredholm alternative that conditions uponf will then be needed. We consider 
here the simplest case, i.e., b(t, p’) = 0. Let us define 9: [w” + lR* by 
F(a) = w-l Gf(t, (Mu),) dt. If D(t) C+J is independent of t, take M = I, the 
identity, in the definition of 9’. 

THEOREM 5.2. Let D and f be as above and suppose there exists p > 0 such 
that j(Mc)(t)j 3 ~1 c 1 for every t E R and ewery c E [w”. If there exists R, > 0 
such that Gf (s, x,) ds # 0 for every x E 9’:, verifring infteP I x(t)/ 3 R, 
and zf d,[S, Q, , 0] is not zero, where Q;2, = {a E W: Ma E B(0, R)} and 
R = p-l1 M 1 R, , then the equation 

(5.4) 

has at least one w-periodic solution. 

Proof. We will use Propositions 3.1 and 5.1 above and Theorem 4.1 of [4]. 
The proof will be complete if we show the existence of (Y > 0 and R > 0 
such that every w-periodic solution x of (5.4) satisfies the inequality 

IPxl <orl(I-P)xI+R. (5.5) 

If x is any w-periodic solution of (5.4), then jif(s, x8) ds = 0, and, hence, 
there will exist u E [0, w] such that I x(u)1 < R, . Therefore, if c E lRn is such 
that Px = MC, we have 

PI c I G IWW4 < R, + IV - P) +>I d 4 + I(1 - P>x I, 

which implies 

I Px I < I M I I c I < CL-‘I M I& + CL-‘/ Ml IU - P)x I, 

and (5.5) holds with 01 = @I M / and R = ~~‘1 M IR, . 
Let us remark that if D(t)v is independent of t, ker L is the subspace of 9’,,, 

of constant functions and the positive number TV involved above always 
exists and can be taken equal to one. Hence, a simple example for Theorem 5.2 
is given by the scalar equation 

$ i?(t) - 4t - r)l = d4 + 4th (5.6) 
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where a E (- 1, I), e E Sj’, has mean value zero, g: C -+ iw” is continuous, 
quasibounded with quasinorm zero, takes bounded sets into bounded sets and 
is such that, for some R > 0, eitherg(v) ~(0) > 0 erg(v) ~(0) < 0, for every 
0 E [-Y, O] and every v E C such that infL-r,OI 1 v(@)/ 3 R. It is the case, for 
example, for the equation 

if 1 a 1 < 1, b # 0, e E 9’U has mean value zero and y/l y II/a is extended by 
0 aty = 0. 

To apply Theorem 5.2 to a scalar equation of the form 

g Cx(t> - a(t) 4t - 111 = Ad + -44 

with g and e as above and a E gW , the crucial point is to prove the existence of 
p > 0 such that I( 2 ~1 c 1 f or every t E: R and every c E R. The 
following propositions give answers to this problem. For the sake of brevity, 
we shall say that the operator M associated with the scalar equation 
x(t) - a(t) x(t - r) = c has property p if there exists p > 0 such that 
j(Mc)(t)l > ~1 c I for every t E R and every c E R. 

PROPOSITION 5.2. If / a(t)1 < k for all t E [w and k E [0, +), then M has 
property p. 

Proof. From the relation 

(MC)(t) - a(t)(Mc)(t - Y) = c 

one obtains easily 1 MC 1 < (1 - K)-lj c I, and, hence, 

I(MWl 2 I c I - kl(Mc)(t - r)I 2 I c I(1 - 2k)(l - K)-’ 

for every t E R and every c E R. 
The following example will show that Proposition 5.2 is the best possible 

without supplementary assumptions on the oscillatory character of u(t). Let 
w = p, p a positive integer, r = 1 and a(t) be ap-periodic continuous function 
such that I a(t)1 < k < 1, t G R, a(0) = --K, a(m) = K (m = 1, 2 ,..., p - 1). 
Then, if x(t) is the solution of x(t) - u(t) x(t - 1) = 1, property p clearly 
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will not hold if we exhibit one t E [0, p] such that x(t) = 0. Using formula (2.3) 
and the form of a(t) we have 

x(O) = 1 - k(1 + k + k2 + ... + kp-l - kp(l + k + ... + kp-l - ... 

z 1 - k (g) (1 - k’ + 122” - -.) 

= 1 - k( 1 - kp)(l - k)-l (1 + kp)-l 

= (1 f k”)-” (1 - k)-l (1 - 2k + KS) = y(k). 

It is easy to show that r(k) is strictly positive in [0, l/2) and is strictly negative 
in a neighborhood of 1. Thus, x(0) = 0 for some k E [l/2, 1) and this zero is 
arbitrary close to l/2 if we takep sufficiently large, as follows at once from the 
form of r(k). 

It is, however, possible to improve the condition upon k when a(t) has a 
constant sign as follows from the following. 

PROPOSITION 5.3. If / a(t)1 < k ( 1 and a(t) has constant sign, then M 

has property /A. 

Proof. Let us first consider the case where 0 < u(t) < k for every t E R. 
Then M has property p because 

I(~4(t)I = I 1 + 4) + 4) a@ - r> + ... I I c I 3 I c I. 

Now suppose that -k < u(t) < 0 for every t E R. It is clear that the unique 
w-periodic solution x of x(t) - u(t) x(t - r) = c is the limit of the sequence 
{x”(t)} of w-periodic functions defined by 

x0(t) = c, xm+l(t) = c + u(t) LP(t - r), m = 0, 1, 2 ,... . 

If c > 0, then xl(t) = [l + a(t)]c > (1 - k)c > 0, x2(t) = c + u(t)xl(t - r) 3 
[l - k( I - k)]c = (1 - k + k2)c > 0, and if 

p(t) > [l - k + k2 + ... + (-l)mkm]c > 0, 

then xm+l(t) = c + u(t)xm(t - r) > c{l - k[l - k + ... + (-l)mkm]} = 
[I - k + k2 + ..* + (-l)m+lkm+l]c > 0. Hence by induction and passing 
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to the limit, we have I(Mc)(t)j > (1 + k)-ll c j. Finally, suppose that c < 0. 
Then, 

and, hence, 

c < xl(t) = c + a(t)c < (1 - k)” < 0, 

c < ““s(t) = c + a(t) xyt - Y) < (1 - k)” < 0. 

If we suppose that c < A+-l(t) < (1 - k)c < 0, then 0 < a($~-‘(t - Y) < -A, 
and, hence, 

0 > (1 - k)c 3 x”(t) = c + a(t) P-l(t) 3 c. 

By induction and passing to the limit we have 0 > (1 - k)c > (MC)(~) > c, 
and, hence, I(Mc)(t)l > (1 - A)] c 1, which achieves the proof. 

COROLLARY 5.1. If a is a constant werifying 0 < j a ( < 1 then, for every 
b E P:, such that / b(t)1 < min( 1 a 1, 1 1 - a I), t E 08, the mapping M associated 
with x(t) - [a + b(t)] x(t - r) = c has property p. 
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