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Recent studies show that endogenous hydrogen sulfide (H2S) plays an anti-inflammatory role in the

pathogenesis of airway inflammation. This study investigated whether exogenous H2S may counteract

oxidative stress-mediated lung damage in allergic mice. Female BALB/c mice previously sensitized with

ovalbumin (OVA) were treated with sodium hydrosulfide (NaHS) 30 min before OVA challenge. Forty

eight hours after antigen-challenge, the mice were killed and leukocyte counting as well as nitrite plus

nitrate concentrations were determined in the bronchoalveolar lavage fluid, and lung tissue was

analysed for nitric oxide synthase (NOS) activity, iNOS expression, superoxide dismutase (SOD),

catalase, glutathione reductase (GR) and glutathione peroxidase (GPx) activities, thiobarbituric acid

reactive species and 3-nitrotyrosine containing proteins (3-NT). Pre-treatment of OVA-sensitized mice

with NaHS resulted in significant reduction of both eosinophil and neutrophil migration to the lungs,

and prevented the elevation of iNOS expression and activity observed in the lungs from the untreated

allergic mice, although it did not affect 3-NT . NaHS treatment also abolished the increased lipid

peroxidation present in the allergic mouse lungs and increased SOD, GPx and GR enzyme activities.

These results show, for the first time, that the beneficial in vivo effects of the H2S-donor NaHS on

allergic airway inflammation involve its inhibitory action on leukocyte recruitment and the prevention

of lung damage by increasing endogenous antioxidant defenses. Thus, exogenous administration of H2S

donors may be beneficial in reducing the deleterius impact of allergic pulmonary disease, and might

represent an additional class of pharmacological agents for treatment of chronic pulmonary diseases.

& 2012 Elsevier B.V. Open access under the Elsevier OA license. 
1. Introduction

In the bronchopulmonary airways, oxidative stress can affect a
variety of endogenous molecular targets (phospholipids, proteins,
nucleic acids) and is mediated by the unbalanced production of
the so-called reactive oxygen species, including superoxide
anion—O 2

� ., hydrogen peroxide—H 2O2, hydroxyl radical—OH
�, singlet oxygen, as well as reactive nitrogen species, mainly
nitric oxide (NO) and the derived species dinitrogen trioxide
(N2O3), peroxynitrite anion (ONOO�), nitrogen dioxide (NO2),
nitrosoperoxycarbonate anion (ONOOCO2

�). These species are
usually involved and mediate cellular dysfunction and inflamma-
tion in humans and other mammals (Comhair and Erzurum,
2010). Particularly, reactive oxygen species and/or derived
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biomarkers for their production have been found in the lung of
individuals with respiratory diseases, including chronic obstruc-
tive pulmonary disease (COPD) and asthma (Kirkham et al., 2006).
In this way, the development of defensive biological mechanisms
is crucial to lessen the potential damage secondary to oxidative
stress, as an imbalance between reactive oxygen/nitrogen species
production and antioxidant enzyme activities, such as superoxide
dismutase (SOD), glutathione peroxidase (GPx) and catalase,
contributes to the chronic inflammation process that charac-
terizes asthma (Dworski, 2000).

A growing number of observations suggest that, similarly to
NO, hydrogen sulfide (H2S) might be of biological relevance as an
endogenous gasotransmitter in the pathogenesis of airway dis-
eases, such as COPD and asthma (Chen and Wang, 2012). Chen
et al. (2009) observed that in ovalbumin (OVA)-sensitized rats,
exogenously supplied H2S alleviated airway inflammation, char-
acterized by a diminished influx of eosinophils and neutrophils
into the lungs and abnormal metabolism and function of H2S, in
addition to significantly attenuated pulmonary iNOS activation.
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In patients with COPD, it was found that serum total sulfide
concentrations were negatively correlated with the number of
neutrophils in sputum, but positively correlated with the propor-
tion of lymphocytes (Chen et al., 2005).

Although the underlying mechanisms of action of H2S are
incompletely understood to date, it has been shown that this
mediator can induce cell hyperpolarization by activation of ATP-
dependent Kþ (KATP) channels, a mechanism that can account for
H2S effects as a vasodilator and inhibitor of leukocyte adherence
to mesenteric venule endothelium (Zanardo et al., 2006).

H2S is endogenously produced in mammalian lung and air-
ways tissues by mutiple transsulfuration reactions catalyzed by
the enzymes cystathionine beta-synthase (CBS) and cystathionine
gamma-lyase (CSE); however, the dominant reactions comprise
H2S synthesis from cysteine (by both CBS and CSE) and homo-
cysteine (by CBS; Kabil et al., 2010).

As previously stated, H2S may react with reactive oxygen/
nitrogen species produced under inflammatory conditions
(Lowicka and Beltowski, 2007), and this has led us to hypothesize
on the possibility that exogenously supplied H2S may counteract
the oxidative stress-mediated lung damage that occurs in
allergic mice.

In the present study, we show some results related to the
effects of treatment of allergic mice with sodium hydrosulfide
(NaHS), an H2S donor, on oxidative stress in lung inflammation.
2. Material and methods

2.1. Drugs

Protein assay kit, acrylamide, bisacrylamide, sodium dodecyl
sulfate (SDS) and nitrocellulose membrane were purchased from
Bio-Rad Laboratories (CA, USA). Antibodies (anti-iNOS, anti-actin
and goat anti-rabbit IgG coupled to horseradish peroxidase) were
from Upstate Biotechnology (NY, USA). Chemiluminescence sub-
strate (SuperSignal-West Pico) was purchased from Thermo
Scientific (IL, USA). Other reagents were purchased from Sigma
Chemical (St. Louis, MO, USA).

2.2. Animals

All animal care and experimental procedures were in accor-
dance with the Brazilian and American Guidelines for the Care
and Use of Laboratory Animals, and were approved by the local
animal ethics committee (San Francisco University, Brazil; licence
number 0021108). A total of 50 female BALB/c mice, 5–8 week
old, were obtained from the Multi-institutional Center for Biolo-
gical Investigation (CEMIB, UNICAMP, Brazil). The mice were
maintained in polypropylene cages (five per cage) under standard
controlled conditions (22 1C, 12 h light/dark cycle) with food and
water ad libitum.

2.3. Ovalbumin sensitization protocol

The study design comprised 3 experimental groups: OVA-
sensitized non-challenged (n¼6), untreated OVA-sensitized and
challenged (control; n¼8) and NaHS-treated OVA-sensitized and
challenged (n¼8) mice. Mice were sensitized at days 0 and 7 by
the subcutaneous (s.c) injection of 400 ml of a suspension contain-
ing 100 mg grade V ovalbumin (OVA) bound to 4 mg of aluminum
hydroxide in sterile phosphate buffered saline (PBS) solution.
Seven days after the second sensitization, groups of animals were
briefly anesthetized with halothane and intranasally challenged
with OVA (10 mg in 50 ml of sterile saline solution), or received the
same volume of sterile saline solution alone. These OVA or saline
exposures were performed twice a day during 2 consecutive days.
A set of animals from the challenged group (n¼8) received
intraperitoneal (i.p.) injections of freshly prepared sodium hydro-
sulfide solution (NaHS; 14 mmol/kg) twice a day, 30 min before
the OVA challenge; the untreated challenged animals received the
same volume of sterile saline alone (n¼8). All the mice were
killed 48 h after the first challenge.

2.4. Cell collection and sample processing

To obtain the bronchoalveolar lavages, mice were anesthetized
with halothane and lungs were washed three times with 500 ml of
saline. The samples were immediately centrifuged (20 1C, 300g,
10 min); the cell pellets were resuspended in PBS containing
2 mM ethylenediaminetetraacetic acid (PBS/EDTA) and the super-
natants were collected and frozen at �80 1C for further analysis.

Total leukocyte number in the bronchoalveolar lavage samples
was determined using standard hematological procedures. Differ-
ential leukocyte count was carried out on a minimum of 400 cells
using cytospin preparations and the cells were classified as
neutrophils, eosinophils or monoclear cells based on standard
morphological criteria, as previously described (Ferreira et al.,
1998). The lungs were then homogenized with cold Tris–HCl
buffer (50 mM, pH 7.4) containing 1% protease inhibitor cocktail
and 0.5 mM PMSF, and the homogenates were centrifuged at 800g

for 10 min at 4 1C. The supernatants was aliquoted, quickly frozen
in liquid nitrogen and kept at �80 1C until analysed.

2.5. Western blot for inducible nitric oxide synthase (iNOS)

expression

The presence of iNOS in the lung homogenates was detected
by Western blotting. Briefly, after sodium dodecyl sulfate-
polyacrilamide gel electrophoresis (SDS-PAGE with 7% total
polyacrilamide) of 25 mg of total proteins, the bands were
electro-transferred to nitrocellulose membranes (Bio-Rad, USA),
and following blockade of non-specific sites with 1% BSA,
the membranes were incubated overnight at 4 1C with a poly-
clonal rabbit IgG anti-iNOS antibody (2.5 mg/ml). A horseradish
peroxidase-conjugated goat anti-rabbit IgG was used as a sec-
ondary antibody and the immunoreactive bands were visualized
using a chemiluminiscence detection system (SuperSignal-West
Pico; Pierce Biotechnology, Rockford, IL, USA) by exposure to a
photographic film (Kodak-Medical X-ray Film, NY, USA). The
developed films were scanned and the band intensities were
estimated by densitometry using the UN-SCAN-IT gel software
(Silk Scientific Inc., UT, USA).

2.6. Measurement of nitric oxide synthase (NOS) activity

Ca2þ-dependent and -independent NOS activity present in the
lung homogenates were determined based on the [3H]-L-arginine
to [3H]-L-citrulline conversion, as previously described (Teixeira
et al., 2002).

2.7. Measurement of total nitriteþnitrate concentration

Total concentrations of nitrite plus nitrate (NOx) anions in the
bronchoalveolar lavage samples were determined by the Griess
reaction for nitrite anion after the nitrate reductase-catalyzed reduc-
tion of nitrate to nitrite, as previously described (Grisham et al., 1996).

2.8. Slot blotting analysis of nitrotyrosine-containing proteins

The presence of proteins containing 3-nitrotyrosine (NT)
residues was analyzed by slot blotting, as previously described
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(Sultana et al., 2008). Immunoreactivity of the slots was detected
using a chemiluminescence system and their intensities were
estimated by densitometric analysis (ChemImager 5500 system,
Alpha Innotech Corp., USA). Results were normalized by the
intensity values obtained after staining of the slots with a
Ponceau S dye solution.
2.9. Measurement of antioxidant enzyme activities

Total superoxide dismutase (SOD) activity was estimated by
the rate of inhibition of cytochrome c oxidation at 550 nm, as
previously described (McCord and Fridovich, 1968). Catalase
activity was measured by the decrease in absorption of H2O2 at
240 nm, as previously described (Nelson and Kiesow, 1972).
Glutathione peroxidase (GPx) activity was determined by mea-
suring the rate of formation of oxidized glutathione from reduced
GSH in the presence of H2O2 (detected by the change in absor-
bance at 340 nm due to NADPH oxidation), as previously
described (Lawrence and Burk, 1976). Glutathione reductase
(GR) activity was measured by monitoring the rate of decrease
of NADPH absorbance at 340 nm, considering that one unit of
glutathione reductase catalizes the oxidation of 1 mmol of
NADPH/min, as previously described (Carlberg and Mannervik,
1975). The enzyme activity values are expressed as relative to the
total protein contents, which was determined by the method of
Bradford (1976) using bovine serum albumin as standard.
2.10. Analysis of thiobarbituric acid reactive species

Lipid peroxidation was estimated by the quantification of
thiobarbituric acid reactive species present in the lung homo-
genates, as previously described (Ohkawa et al., 1979).
Fig. 1. Effect of NaHS on leukocyte migration to the lungs of OVA-sensitized and challe

n¼6), untreated controls (n¼8) or NaHS-pre-treated mice (n¼8) 48 h after the first O

administration. Each column represents the mean7S.E.M. of n mice. ]Po0.05 vs. NC a
2.11. Data analysis and statistical procedures

Except for the iNOS expression experiments, all data are expressed
as mean7S.E.M. of n experiments and were analyzed by one-way
ANOVA followed by the Student–Newman–Keuls test for multiple
comparisons. The densitometric values for iNOS band expression are
expressed as medians and were analyzed by non-parametric statis-
tics, using the Kruskal–Wallis test followed by the Mann–Whitney
test. Statistical significance was established at Po0.05.
3. Results

3.1. Leukocyte lung infiltration

As shown in Fig. 1, leukocytes present in the bronchoalveolar
lavage samples collected from non-challenged animals are exclu-
sively mononuclear cells (Fig. 1). However, 48 h after OVA challenge,
a significant increase in total leucocytes (associated with eosino-
phils, neutrophils and mononuclear cells) was observed in the
bronchoalveolar lavages samples, and pre-treatment with NaHS
resulted in significant reduction of both eosinophil and neutrophil
infiltration into the lungs (Fig. 1B and C).

3.2. Lung NOS and 3-NT residues contents

After 48 h, OVA challenge did not affect lung Caþ2-dependent
NOS activity, but resulted in significant elevation of iNOS expres-
sion and activity (Caþ2-independent NOS), which was avoided by
NaHS pre-treatment . In addition, in the OVA challenged mice,
bronchoalveolar lavages NOx (nitrite plus nitrate) concentrations
and lung 3-NT-containing protein content were significantly
augmented in relation to the non-challenged group, but unaf-
fected by NaHS pre-treatment (Fig. 2, panels C and D,
respectively).
nged mice. Bronchoalveolar lavages were obtained from non-challenged mice (NC;

VA-challenge. NaHS was administered intraperitoneally 30 min before each OVA

nd nPo0.05 vs. Control.



Fig. 2. Effect of NaHS on lung iNOS expression, NOS activity, 3-NT–containing proteins and bronchoalveolar lavage NOx concentrations in OVA-sensitized and challenged

mice. Panel A shows a representative Western blot for iNOS and the densitometric analysis of its expression in all the experimental groups (n¼4). Panel B: lung NOS

activities (in pmol/min/mg protein) in terms of their dependence on Ca2þ (n¼5). Panel C: Bronchoalveolar lavage NOx (nitrite plus nitrate) concentrations (n¼8) in mmol/l.

Panel D: Representative slot blots of 3-NT containing proteins in lungs from the experimental groups and densitometric analysis (relative to the control NC group; n¼7).
]Po0.05 vs. NC; nPo0.05 vs. Control.

Fig. 3. Effect of NaHS on SOD, catalase, GPx and GR activities and thiobarbituric acid reactive species contents in lungs obtained from OVA-sensitized and challenged mice.

Panels A–C shows SOD, Catalase and GPx activity, respectively (in U/mg protein). Panel D: GR activity (in mmol NADPH/mg protein). Panel E: lung thiobarbituric acid

reactive species contents (in nmols MDA/mg protein). The lungs were obtained from non-challenged (NC; n¼6), control (n¼8) or NaHS-treated mice (n¼6) 48 h after the

first OVA-challenge. All the bar graphs represent the results as mean7S.E.M. ]Po0.05 compared to NC; nPo 0.05 compared to Control.
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3.3. Lung SOD, catalase, GPx, GR and thiobarbituric acid reactive

species

As shown in Fig. 3, OVA-challenge did not affect pulmonary
SOD activity, although NaHS pre-treatment resulted in significant
increase of this activity (panel A). Both lung catalase activity and
thiobarbituric acid reactive species content were significantly
higher in the OVA-challenged group in comparison with the
non-challenged animals, and these increases were prevented by
NaHS-pre-treatment (panels B and E). GR activity was also
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significantly elevated in the OVA-challenged group, and was
potentiated by NaHS pre-treatment (panel D). In contrast, OVA
challenge did not affect lung GPx activity, but NaHS pre-
treatment resulted in significant increase of this enzyme activity
(panel C).
4. Discussion

Compelling evidence suggests a pathophysiological relevance
for the new gasotransmitter, hydrogen sulphide (H2S), in both
acute and chronic inflammatory processes (see reviews: Wallace
et al., 2012; Vandiver and Snyder, 2012). Additionally, while
recent findings indicate an inverse correlation between total
circulating sulfide concentrations and the severity of chronic
inflammatory respiratory diseases (e.g., asthma; Wang et al.,
2012; Chen and Wang, 2012), little is known about the effects
and mechanisms of H2S donors in allergic inflammation in
the lung.

In the present study we provide the first in vivo evidence that
the H2S donor-mediated protective effect in ovalbumin-induced
allergic airway inflammation in mice (assessed by the increased
eosinophils and neutrophils) is related to both iNOS inhibition
and upregulation of antioxidant defenses (e.g., SOD, GPx and GR).
These results are in tune whith the fact of bronchial obstruction
during asthma being associated with increased production of
oxygen-derived free radicals (Mak et al., 2006).

In both animal and humans with allergic lung inflammation,
eosinophils and lymphocytes are the main inflammatory cells
found in the bronchoalveolar lavage or sputum, respectively, thus
making of these cells useful markers for evaluation of asthma
severity (Ferreira et al., 1998, 2004; Hamid and Tulic, 2009;
Spahn, 2012). Although macrophages can also play an important
role in asthma due the release of inflammatory mediators, the
number of resident pulmonary macrophages is actually decreased
in relation to the non-allergic conditions; in additon, and more
importantly, H2S does not affect this situation (Chen et al., 2009).
Regarding neutrophils, despite bronchoalveolar neutrophilia has
been considered an additional feature of allergic lung diseases, its
significance is not yet completely understood (Barnes, 2011;
Nakagome et al., 2012). Therefore, and since eosinophils peak at
48 h after OVA-challenge, we decided to study the cell migration
response at this time-point .

Activated eosinophils and macrophages produce O2�
� , via the

membrane associated NADPH-dependent complex, and the sub-
sequent dismutation of O2� gives rise to H2O2. Both neutrophil
myeloperoxidase and eosinophil peroxidase can catalyse the
formation of the powerful oxidant OH�, as well as nitrating
intermediates from the nitrite anion (an NO end product) and
H2O2 (Ricciardolo et al., 2006). We have previously shown that
treatment with the iNOS inhibitor 1400 W does not affect
neutrophil migration, but significantly inhibits eosinophil migra-
tion to the lungs of allergic mice (Pelaquini et al., 2011), a fact that
led us to postulate whether NO could be involved in the observed
H2S effects. Here, it is shown that in lungs from allergic mice pre-
treated with the H2S donor NaHS there is a marked reduction of
iNOS activity and upregulation of SOD, GPx and GR activities.
Corroborating these findings, Szabó and co-workers (2011)
demonstrated that, in addition to KATP channel activation, the
cardioprotective actions of H2S also involves increased gene
expression of antioxidant enzymes secondary to activation of
the cytoprotective Nrf-2 gene.

The report from Abe et al. (2006) give support to our results on
the signifcant elevation of NOx concentrations in bronchoalveolar
lavage samples from control (non-treated) allergic mice, in
parallel with increased Ca2þ-independent iNOS activity and
expression in the lungs. As shown in this study, the inhibitory
effect of exogenous H2S on iNOS activity and expression has been
also previously observed in the carrageenan-induced knee joint
synovitis in rats, an inflammatory conditions unrelated to allergic
inflammation (Ekundi-Valentim et al., 2010). Curiously, and in
contrast to our findings, Chen et al. (2005) show that NaHS
treatment does not significantly affect increased iNOS expression
in the lung of OVA-chellenged rats. These discrepancies might be
related to either the experimental protocol (i.e., exposure of rats
to OVA and/or NaHS-treatment during 2 weeks) and/or the
animal species (i.e., rats) used by these authors.

It is noteworthy that although NaHS treatment inhibited lung
iNOS activity, it failed to affect the increased NOx—concentrations
in the bronchoalveolar lavage. In fact, it must be considered that
Ca2þ-dependent NOS activity was not significantly altered by
NaHS. In addition, NOx—values just represent NO2

�
þNO3

� anion
concentrations, but not real NO which could easily undergo
alternative reaction pathways (e.g., reaction with thiols,
amines, etc.).

In line with our previous report showing that the H2S donor
Lawesson’s reagent was devoid of effects on the 3-NT-containing
proteins present in the knee joint synovial membrane of rats with
carrageenan-induced synovitis, despite the beneficial effects of
this H2S donor on other inflammatory markers (Ekundi-Valentim
et al., 2010). In these study, we also show that the increased
amount of lung 3-NT-containing proteins observed at 48 h after
OVA-challenge was unaffected by NaHS-pre-treatment . Nitration
of protein tyrosine residues has been observed in diverse acute
and chronic inflammatory diseases, including asthma (Ulrich
et al., 2008). The presence of protein 3-NT residues has been
proposed as a marker for the highly reactive peroxynitrite anion
(ONOO�), which can be formed by the reaction between O2�

�

and �NO, mainly in situations where high amounts of iNOS-
derived NO are present (Ischiropoulos et al., 1992). However,
protein nitration can also occur in an iNOS-independent manner,
and as a result of the presence of peroxidases (van der Vliet et al.,
1997) or abundant heme proteins (such as myoglobin; Kilinc
et al., 2001). Interestingly, Duguet et al. (2001) have shown that
3-NT formation secondary to allergen challenge in mice is
dependent on eosinophil peroxidase activity and independent of
increased NO production. However, all the above mentioned
tyrosine nitration mechanisms fail to support the observed lack
of effects of the NaHS treatment on lung protein nitration,
considering the reported inhibitory properties of this H2S donor
on leukocyte (neutrophilþeosinophil) migration and on iNOS
activity/expression. Consequently, alternative compensatory
mechanisms (e.g., lung denitrase enzymes) could be involved
(Kamisaki et al., 1998).

In addition to NO (and other NO-derived species), reactive
oxygen species also contribute to the oxidative stress status
present in asthma. In this study we show that lipid peroxidation
is increased in the lungs of OVA-sensitized mice (as demonstrated
by the higher thiobarbituric acid reactive species content) and
that NaHS treatment prevents this increase. Lipid peroxidation is
a chain reaction usually initiated by the electrophilic attack of
unsaturated lipids by free radicals such as hydroxyl—OH �, or
hydroperoxyl—HO 2�. In biological systems, OH� usually origi-
nates from hydrogen peroxide—H 2O2 in the presence of trace
amounts of Cuþ or Fe2þ (as described by Fenton reaction) or, to a
lesser extent, from H2O2,þO2

�� in the presence of trace amounts
of Fe3þ (according to the Haber–Weiss reaction). According to
Beckman et al. (1990), OH� can also result from the homolytic
decomposition of protonated peroxynitrite (ONOOH) in aqueous
solutions.

The observed inhibitory effects of the H2S-donor treatment on
lipoperoxidation thus shows that H2S (or the resultant sulfide
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ions in aqueous medium at physiological pH) can either directly
scavenge OH� radicals or interfere with the mechanisms of OH�
production. Sulfide anion (either as soluble or insoluble metal
salts) not only fails to inhibit H2O2-derived OH� formation, but
also increases OH� formation, as detected by electronic spin
resonance in a cell-organelle free system (Shi et al., 1994), liver
microsomes in vitro (Fontecave et al., 1990) or by thiobarbituric
acid reactive species measurement in E. coli cultures (Berglin
et al., 1985). Therefore, the decrease in lipid peroxidation
observed in the NaHS-treated rats may be secondary to dimin-
ished OH� formation.

According to Fig. 3, lung SOD, GPx and GR activities were
increased in response to NaHS treatment. Taking into account the
reactions catalysed by each of these three enzymes, we should
expect a net fall in O2

�� and H2O2 (due to the increased SOD and
GPx activities, respectively) that would limit OH� production
through substrate availability. Moreover, and strengthening these
observations, GR activity was also increased by the H2S-donor .
Thus, the increased availability of reduced glutathione (i.e., the
GPx substrate) does not limit H2O2 consumption by GPx, and
consequently lowers the availability of H2O2 to undergo decom-
position to OH� through the Fenton or the Haber–Weiss
reactions.

Corroborating our results, H2S-induced upregulation of anti-
oxidant enzymes, such as superoxide dismutase, glutathione
peroxidase or thioredoxin, has been shown in rats subjected to
intestinal ischemia-reperfusion (Liu et al., 2009), and in brain
endothelial cells under methionine-induced oxidative stress
in vitro (Tyagi et al., 2009). Furthermore, H2S protects osteoblasts
exposed to H2O2 in vitro by diminishing NADPH oxidase activity
(Xu et al., 2011), thus showing another mechanism by which H2S
can lower OH� production and consequent lipid peroxidation.

Lung catalase activity was augmented in the OVA-sensitized
rats and treatment with NaHS resulted in a reversal of this
increase to control values, as shown Fig. 3. It is feasible to
speculate that NaHS-induced catalase decrease is due to an
adaptation of the system to the low H2O2 concentrations that
emerge from the GPx up-regulation . However, direct effects of
H2S on the enzyme cannot be ruled out.

The inhibitory effects of sulfide ion on catalase activity were
recognized early by Stern (1932), and later confirmed by the
spectroscopic studies performed by Nicolls (1961), and involve
the formation of a complex of this anion with the iron of the heme
group of catalase. In fact, catalase inhibition by non-lethal con-
centrations of Na2S potentiated the mutagenic and lethal effects
of H2O2 on Salmonella typhimurium cultures (Carlsson et al.,
1988). In contrast, it has also been reported that H2S can increase
catalase activity, as part of the beneficial antioxidant effects that
this mediator shows in some disease models such as, lung
ischemia-reperfusion (Fu et al., 2008), heroin-induced hippocam-
pal damage (Jiang at al., 2011) and isoproterenol-induced myo-
cardial infarction (Sojitra et al., 2012).

To the best of our knowledge, the present study is the first to
address the relationship between lung catalase activity and H2S in
allergic mice, thus it is difficult to compare our results with other
data obtained from different experimental disease models. How-
ever, and independently of the exact mechanisms involved, based
on the lipid peroxidation results discussed above, it is clear that
the fall in catalase activity secondary to NaHS treatment, did not
compromise the general antioxidant effects of this treatment.
Furthermore, shifting the H2O2 consuming system from catalase
to glutathione is quite beneficial in terms of antioxidant activity,
considering the large differences in the Km values for H2O2 that
exist between these enzymes (low micromolar concentrations for
peroxidase vs. millimolar for catalase (Flohé et al., 1972; Jones
et al., 1968).
5. Conclusion

The present study shows the beneficial effects of the H2S-
donor, NaHS, on the pathogenesis of allergic airway inflammation
in terms of inhibition of both eosinophil and neutrophil recruit-
ment to the lung and increase of the endogenous antioxidant
enzymes SOD, GPx and GR. Thus, H2S donors may emerge as an
additional class of pharmacological agents for the treatment of
allergic pulmonary diseases.
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