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The famous Gelfand formula ρ(A) = lim supn→∞ ‖An‖1/n for the

spectral radius of a matrix is of great importance in various math-

ematical constructions. Unfortunately, the range of applicability of

this formula is substantially restricted by a lack of estimates for

the rate of convergence of the quantities ‖An‖1/n to ρ(A). In the

paper this deficiency is made up to some extent. By using the Bochi

inequalities we establish explicit computable estimates for the rate

of convergence of the quantities ‖An‖1/n to ρ(A). The obtained es-

timates are then extended for evaluation of the joint spectral radius

of matrix sets.
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1. Introduction

Let A be a complex d × d matrix and ‖ · ‖ be a norm in Cd. As is known, the spectral radius ρ(A)
of the matrix A can be expressed in terms of the norms of its powers ‖An‖ by the following Gelfand

formula:
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ρ(A) = lim
n→∞ ‖An‖1/n, (1)

which is equivalent to the equality

ρ(A) = inf
n� 1

‖An‖1/n.

Nowadays, theGelfand formula is treated as a commonly known fact and ismentioned in practically all

textbooks on linear analysis without any references to the original publication, which was apparently

[1].

The spectral radius of a single matrix is defined as the maximum of modulus of its eigenvalues. For

matrix sets it is impossible to define the notion of the spectral radius in the samemanner. In this case,

it is the formula (1) that was taken in [2] as the basis for the definition of some quantity similar to the

spectral radius.

Let A be a non-empty bounded set of complexm × mmatrices. As usually, for n ≥ 1 denote by An

the set of all n-products of matrices from A; A0 = I. Given a norm ‖ · ‖ in Cd, the limit

ρ(A) = lim
n→∞ ‖An‖1/n, (2)

where

‖An‖ = max
A∈An

‖A‖ = max
Ai∈A

‖An · · · A2A1‖,
is called the joint spectral radius of the matrix set A [2]. The limit in (2) always exists and does not

dependon thenorm‖ · ‖.Moreover, for anyn� 1 theestimatesρ(A) � ‖An‖1/n hold [2], and therefore

the joint spectral radius can be defined also by the following formula:

ρ(A) = inf
n� 1

‖An‖1/n. (3)

Since for singleton matrix sets A = {A} the equality (2) coincides with the Gelfand formula (1)

then (2) is sometimes called the generalized Gelfand formula [3]. There are also a number of different

definitions [4–10] of an analog of the spectral radius for matrix sets.

In various situations it is important to know the conditions under which ρ(A) > 0. As can be seen,

for example, from the following inequality:

‖Ad‖ � Cd ρ(A)‖A‖d−1, (4)

see [11, TheoremA],ρ(A) = 0 if and only ifAd = {0}, that is if and only if thematrix setA is nilpotent.

In the case of singleton matrix sets A = {A}, as is shown in a plenty of standard courses of linear

analysis, the condition ρ(A) /= 0 implies the inequalities

γ (1+ln n)/n‖An‖1/n � ρ(A) � ‖An‖1/n (5)

with some constant γ ∈ (0, 1). In [12, Lem. 2.3] the inequalities (5) have been extended for the case

of general matrix sets:

γ (1+ln n)/n‖An‖1/n � ρ(A) � ‖An‖1/n. (6)

Unfortunately, to the best of the author’s knowledge, neither exact values for γ nor at least ef-

fectively computable estimates for the rate of convergence of the quantities ‖An‖1/n and ‖An‖1/n to

their limits are known. This substantially restricts the range of applicability of the formulas (1) and

(2). It is not very crucial for singleton matrix sets A = {A} since in this case the value of ρ(A) can be

computed by other means. However, for the case of general matrix sets the lack of estimates for the

rate of convergence of the quantities ‖An‖1/n to ρ(A) is much more critical since in this case, as far

as is known to the author, any alternative ways for evaluation of ρ(A) until now are not found.

In the paper this deficiency is made up to some extent. By using the Bochi inequalities (4) we

establish below explicit computable estimates for the rate of convergence of the quantities ‖An‖1/n

to ρ(A). Apparently, these estimates are new even for the case of matrix families consisting of a single

matrix.
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Thepaper isorganizedas follows. In Introductionwehavepresentedaconcise surveyofpublications

related to the problem of evaluation of the joint (generalized) spectral radius. In Section 2 the main

result of the paper, Theorem 1, is formulated. This theorem provides explicit upper and lower bounds

for the spectral radius of the matrix set A. The proof of the main theorem is relegated to Section 3,

while Section 4 is devoted to evaluation of the Bochi constant Cd playing the key role in the main

theorem.

2. Main theorem

The aim of this section is to obtain explicit estimates for the spectral radius of a finitematrix family.

The next result from [11, Theorem A] is of principal importance in all further considerations.

TheoremA (J. Bochi). Given d � 1, there exists Cd > 1 such that, for every bounded setA of complex d × d

matrices and every norm ‖ · ‖ in Cd,

‖Ad‖ � Cd ρ(A)‖A‖d−1. (7)

In [11] the value of the constant Cd is given only for the case r = 1, that is when thematrix familyA
consists of a single matrix. However, intermediate constructions from [11] contain all the information

needed to find Cd. This will allow to get in Section 4 an explicit expression for Cd.

Due to the Bochi theorem, if ρ(A) = 0 then Ad = {0}, that is the matrix set A is nilpotent. By

(3) a converse statement is also valid: Ad = {0} implies ρ(A) = 0. So, theoretically verification of

the condition ρ(A) = 0 may be fulfilled in a finite number of steps: it suffices only to check that all

d-products of matrices from A vanish. Of course this remark is hardly suitable in practice since even

for moderate values of d = 3, 4, r = 5, 6 the computational burden of calculations becomes too high.

Nevertheless, in what follows we will study only the case when

ρ(A) /= 0 or, equivalently, Ad /= {0}.

Theorem 1. Given d � 2, for every bounded set A of complex d × d matrices and every norm ‖ · ‖ in Cd,

C
−σd(n)/n
d

(‖A‖d

‖Ad‖
)−νd(n)/n

‖An‖1/n � ρ(A) � ‖An‖1/n, n = 1, 2, . . . , (8)

where

Cd =
{
2d − 1 for r = 1,

d3d/2 for r > 1,

σd(n) =
⎧⎪⎨
⎪⎩

1
2

(
ln n
ln 2

+ 1
) (

ln n
ln 2

+ 2
)

for d = 2,

(d−1)3

(d−2)2
· n ln(d−1)

ln d for d > 2,

νd(n) =
⎧⎨
⎩

ln n
ln 2

+ 1 for d = 2,

(d−1)2

d−2
· n ln(d−1)

ln d for d > 2.

The proof of Theorem 1 is relegated to Section 3. Clearly, the statement of Theorem 1 holds also for

real matrix sets.

Note that the estimates (8) areweaker than the estimates (6). It is not clear nowwhether it is caused

by the techniques of proof of the estimates (8) or by the fact that the obtained constants Cd, σd(n) and
νd(n) are universal, that is depend neither on a matrix set nor on the choice of the norm ‖ · ‖.

Note also that the value of the constant Cd rapidly increases in d. That is why the estimates (8)

are hardly useful in applications and sooner are of theoretical interest. Moreover, the estimates (8) are
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essentiallyfinite-dimensional and scarcely canbeextended for linearoperators in infinite-dimensional

spaces.

Remark, at last, that for irreducible matrix sets A containing more that one matrix there are valid

[12, Lemma 2.3] the following, stronger than (6) or (8), estimates:

γ 1/n‖An‖1/n � ρ(A) � ‖An‖1/n,

where the constant γ can be effectively computed [13].

3. Proof of Theorem 1

The inequality ρ(A) � ‖An‖1/n in (8) follows from (3). For r = 1 the value of the constant Cd is

found in [11]; for r > 1 this constant will be evaluated in Section 4.

Let us deduce some corollaries from the Bochi theorem. Firstly note that for any natural numbers

p and q the following inequalities hold:

‖Ap+q‖ � ‖Ap‖ · ‖Aq‖, (9)

from which

‖Ap‖ � ‖A‖p, ρ(Ap) = ρp(A), p = 1, 2, . . . (10)

Then from (4) we immediately get:

‖Adk‖ � Cd (ρ(A))d
k−1 ‖Adk−1‖d−1, k = 1, 2, . . .

If we denote

ωn(A) = ‖An‖
(ρ(A))n

, n = 1, 2, . . . ,

then the latter inequalities can be rewritten in the form:

ωdk(A) � Cd
(
ωdk−1(A)

)d−1
, k = 1, 2, . . . .

Therefore, for any integer k = 1, 2, . . .

ωdk(A) � Cd
(
ωdk−1(A)

)d−1
,(

ωdk−1(A)
)d−1 � C

d−1
d

(
ωdk−2(A)

)(d−1)2
,(

ωdk−2(A)
)(d−1)2 � C

(d−1)2

d

(
ωdk−3(A)

)(d−1)3
,

. . .

(ωd(A))(d−1)k−1

� C
(d−1)k−1

d (ω1(A))(d−1)k .

By multiplying the obtained inequalities we get:

ωdk(A) � C

∑k−1
i=0 (d−1)i

d (ω1(A))(d−1)k , k = 1, 2, . . . (11)

Now, note that by the Bochi inequality (7)

1

ρ(A)
� Cd

‖A‖d−1

‖Ad‖ .

Hence

1� ω1(A) = ‖A‖
ρ(A)

� Cd
‖A‖d

‖Ad‖ .

This allows to derive from (11) the estimate for ωdk(A) which does not contain in the right-hand part

the unknown value ρ(A):
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ωdk(A) � C

∑k
i=0(d−1)i

d

(‖A‖d

‖Ad‖
)(d−1)k

, k = 0, 1, . . . (12)

Now, let n be an arbitrary natural number. Then there is a natural k such that

dk � n < dk+1,

and consequently for n it is valid the representation

n = nkd
k + nk−1d

k−1 + · · · + n0,

where

1� nk � d − 1, 0� ni � d − 1, i = 1, 2, . . . , k − 1. (13)

Since by (9) and (10)

ωp+q(A) � ωp(A) · ωq(A)

for any natural numbers p and q, then

ωn(A) �
(
ωdk(A)

)nk · (ωdk−1(A)
)nk−1 · · · (ω1(A))n0 .

By (12) from here it follows:

ωn(A) � C
σd(n)
d

(‖A‖d

‖Ad‖
)νd(n)

, (14)

where

σd(n) =
k∑

j=0

nj

j∑
i=0

(d − 1)i, νd(n) =
k∑

j=0

nj(d − 1)j. (15)

Note that, by definition of the value ωn(A), (14) is equivalent to

‖An‖ � C
σd(n)
d

(‖A‖d

‖Ad‖
)νd(n)

(ρ(A))n ,

and therefore to the inequality

C
−σd(n)/n
d

(‖A‖d

‖Ad‖
)−νd(n)/n

‖An‖1/n � ρ(A).

Since this last inequality coincides with the left-hand part of (8) then to complete the proof of the

theorem it remains only to get the estimates for σd(n) and νd(n). By (13) and (15)

σd(n) =
k∑

j=0

nj

j∑
i=0

(d − 1)i �(d − 1)
k∑

j=0

j∑
i=0

(d − 1)i

= (d − 1)
k∑

j=0

(k + 1 − j)(d − 1)j , (16)

νd(n) =
k∑

j=0

nj(d − 1)j �(d − 1)
k∑

j=0

(d − 1)j. (17)

By definition of the number k we have k � ln n
ln d

. Then for d = 2 from (16), (17) it follows:

σ2(n) �
(k + 1)(k + 2)

2
�

1

2

(
ln n

ln 2
+ 1

)(
ln n

ln 2
+ 2

)
,

ν2(n) � k + 1�
ln n

ln 2
+ 1.
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Represent (16), (17) for d > 2 in the form

σd(n) =
k∑

j=0

nj

j∑
i=0

(d − 1)i �(d − 1)k+1
k∑

j=0

j + 1

(d − 1)j
, (18)

νd(n) =
k∑

j=0

nj(d − 1)j �(d − 1)k+1
k∑

j=0

1

(d − 1)j
, (19)

and use the equalities

∞∑
j=0

xj = 1

1 − x
,

∞∑
j=0

(j + 1)xj = 1

(1 − x)2
, |x| < 1.

By setting here x = 1
d−1

, from (18), (19) we obtain:

σd(n) �
(d − 1)k+3

(d − 2)2
�

(d − 1)3

(d − 2)2
· n ln(d−1)

ln d ,

νd(n) �
(d − 1)k+2

d − 2
�

(d − 1)2

d − 2
· n ln(d−1)

ln d .

The theorem is proved.

4. Evaluation of Cd

In [11] existence of the constant Cd is established in Theorem A, proof of which is based on Lemmas

2 and 3 cited below.

Lemma 2 (J. Bochi). Let ‖ · ‖e be the Euclidian norm in Cd. There exists C0 = C0(d) such that

‖SAdS−1‖e � C0‖A‖e‖SAS−1‖d−1
e

for every non-empty bounded set A of d × d matrices and every matrix S ∈ GL(d).

Actually, in [11] under the proof of Lemma 2 it is obtained first that for every diagonal matrix

S ∈ GL(d) the following inequality holds:

‖SAdS−1‖0 � dd−1‖A‖0‖SAS−1‖d−1
0 .

with the matrix norm ‖A‖0 = max |aij|.
As is known [14, Chapter 5], the following relations between the norm ‖ · ‖0 and the Euclidean

norm ‖ · ‖e hold:

‖A‖0 � ‖A‖e � d‖A‖0,

from which the chain of inequalities follows:

d−1‖SAdS−1‖e � ‖SAdS−1‖0 � dd−1‖A‖0‖SAS−1‖d−1
0

� ‖SAdS−1‖0 � dd−1‖A‖e‖SAS−1‖d−1
e ,

that is

‖SAdS−1‖e � d · dd−1‖A‖e‖SAS−1‖d−1
e .

The last inequality, as shown in [11] under the proof of Lemma 2, can be easily extended to the general

case S ∈ GL(d). Therefore C0 = dd.

Now, let us move to consideration of Lemma 3 from [11].
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Lemma 3 (J. Bochi). There exists C = C(d) such that, for every two norms ‖ · ‖1 and ‖ · ‖2 in Cd there is

a matrix S ∈ GL(d) such that

1. C−1‖v‖1 � ‖Sv‖2 � ‖v‖1 for all v ∈ Cd;
2. C−1‖A‖1 � ‖SAS−1‖2 � C‖A‖1 for all d × d matrices A.

Here the second part is an immediate consequence of the first one. To evaluate the constant C in

the first part, first notice that whenever Lemma 3 is applied in [11], one of the two norms ‖ · ‖1 or

‖ · ‖2 is the Euclidian norm.

So, let us evaluate the constant C under the assumption that the norm ‖ · ‖1 is arbitrary while

the norm ‖ · ‖2 is Euclidean. This can be done by using a matrix-theoretic version of complex John’s

ellipsoid theorem [15]. Certainly Bochi was not aware of this technique when he wrote his paper. To

be more specific, let us reproduce the argumentation from [16].

Given a norm ‖ · ‖1 in Cd, it can be represented in the form

‖v‖2
1 = sup

λ∈�

〈Hλv, v〉, v ∈ Cd,

where 〈·, ·〉 is the Euclidean scalar product in Cd and {Hλ, λ ∈ �} is a family of semidefinite matrices.

But according to [15, Theorem 2.1] for any family of semidefinite matrices {Hλ, λ ∈ �} there is a

positive definite matrix H such that

〈Hv, v〉 � sup
λ∈�

〈Hλv, v〉 � d〈Hv, v〉, v ∈ Cd.

Therefore

〈Hv, v〉 � ‖v‖2
1 � d〈Hv, v〉, v ∈ Cd.

Since the matrix H may be thought of as symmetric then, by setting S = H1/2, ‖ · ‖2 = √〈·, ·〉 and

‖Sv‖2
2 = 〈Sv, Sv〉 ≡ 〈H1/2v,H1/2v〉 ≡ 〈Hv, v〉, we obtain

d−1‖v‖2
1 � ‖Sv‖2

2 � ‖v‖2
1,

and the conclusion of Lemma 3 is valid with the constant C = d1/2.

Now, to evaluate the value of the constant Cd in Theorem A it suffices to note that due to [11]

Cd = CdC0 where C0 and C are the constants from Lemmas 2 and 3, respectively. Hence, Cd = d3d/2.
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